IT for Statistics and Learning
 2023

Assignment 1

Assigned: Friday, Nov 10, 2023
Due: Friday, Nov 17, 2023
M. Skoglund

Problem 1.1: Let $X \geq 0$ be an integer-valued (discrete) random variable with $p(x)=$ $\operatorname{Pr}(X=x), x=0,1,2, \ldots$. Specify the pmf $p(x)$ that maximizes $H(X)$ subject to the constraint $E[X]=m>0$.

Problem 1.2: Assume $\left\{X_{n}\right\}$ is a stationary discrete-valued random sequence. Prove that

$$
\frac{1}{n} H\left(X_{1}, \ldots, X_{n}\right)
$$

is non-increasing in n

Problem 1.3: Consider three random variables X, Y and Z, each with values in $\{1, \ldots, M\}$, $M<\infty$. Assume that every pair is pairwise independent, i.e. $I(X ; Y)=I(X ; Z)=I(Z ; Y)=$ 0 ; and that each marginal is uniform, i.e. $H(X)=H(Y)=H(Z)=\log M$. Give a tight lower bound on $H(X, Y, Z)$, and describe (e.g. in the case $M=2$) a joint distribution that achieves it.

Problem 1.4: Prove that $D(P \| Q)$ is convex in (P, Q), that is

$$
D\left(\lambda P_{1}+(1-\lambda) P_{2} \| \lambda Q_{1}+(1-\lambda) Q_{2}\right) \leq \lambda D\left(P_{1} \| Q_{1}\right)+(1-\lambda) D\left(P_{2} \| Q_{2}\right)
$$

for $\lambda \in[0,1]$
Problem 1.5: Given P and Q on (Ω, \mathcal{A}), prove that

$$
\frac{1}{2} E_{Q}\left|\frac{d P}{d Q}-1\right|=\sup _{A \in \mathcal{A}}(P(A)-Q(A))
$$

Problem 1.6: Given P and Q on (Ω, \mathcal{A}), prove that

$$
\frac{1}{2} E_{Q}\left|\frac{d P}{d Q}-1\right|=\frac{1}{2} \sum_{x}|p(x)-q(x)|
$$

if P and Q have pmfs p and q (the discrete case)
Problem 1.7: Prove that $D(P \| Q) \leq \log \left(1+\chi^{2}(P \| Q)\right)$

