IT for Statistics and Learning 2024

Assignment 11 Assigned: Friday, February 2, 2024 Due: Thursday, February 8, 2024

M. Skoglund

Problem 11.1: A random variable X is *sub-exponential* with parameters (τ^2, b) if for all λ such that $|\lambda| \leq 1/b$ we have

$$E[e^{\lambda(X-E[X])}] \le e^{\lambda^2 \tau^2/2}$$

Let $Z \sim \mathcal{N}(0,1)$ and set $X = Z^2$. Prove that X is sub-exponential with $\tau^2 = b = 4$

Problem 11.2: Let $X \in \mathbb{R}^{m \times p}$ be genereted with iid entries $\sim \mathcal{N}(0, 1/m)$. Prove that for any $\varepsilon \in (0, 1), \delta \in (0, 1)$,

$$m \ge \frac{8}{\varepsilon^2} \left[2\ln n + \ln \frac{1}{\delta} \right]$$

and any n points $\{\theta_i\}$ in \mathbb{R}^p we have that

$$(1-\varepsilon)\|\theta_i - \theta_j\|^2 \le \|X\theta_i - X\theta_j\|^2 \le (1+\varepsilon)\|\theta_i - \theta_j\|^2$$

with probability at least $1 - \delta$, using the bound from Problem 11.1.

Problem 11.3: Consider the model $y = X\theta + z$ where y has dimension n and θ has dimension p, p > n, but $\|\theta\|_0 = k < p$. Let g(y) denote any algorithm that produces $\hat{\theta} = g(y)$ from y. Fix $g(\cdot)$ and assume that there is a constant C such that

$$||g(X\theta + z) - \theta||_2 \le C||z||_2$$

for any $z \in \mathbb{R}^n$. Prove that then we have

$$||b||_2 \le C ||Xb||_2$$

for all $b \in \mathbb{R}^p$ for which $\|b\|_0 \leq 2k$

Problem 11.4: Consider now instead the model $y = X\theta^*$ (no noise and equality in $y = X\theta$ for $\theta = \theta^*$) where y has dimension n and θ has dimension p, p > n, but $\|\theta\|_0 = k < p$. Let θ_i^* be the elements of θ^* and let $J = \{i : |\theta_i^*| > 0\}$ be the set of indices for the support where θ_i^* is non-zero. Let N(X) denote the null-space of the matrix X, i.e. $N(X) = \{a \in \mathbb{R}^p : Xa = 0\}$, and let $C(J) = \{a \in \mathbb{R}^d : \|a_{J^c}\|_1 \le \|a_J\|_1\}$, i.e. the set of vectors for which the elements with indices in J dominates the elements with indices in J^c . Consider the convex program

$$\min_{\theta} \|\theta\|_1 \quad \text{s.t.} \quad X\theta = y$$

and let $\hat{\theta}$ be its solution. Prove that $\hat{\theta} = \theta^*$ if $C(J) \cap N(X) = \{0\}$.

Problem 11.5: Consider a set $A \subset \mathbb{R}^d$. Let $\{Z_i\}_{i=1}^d$ be iid $\sim \mathcal{N}(0,1)$ and let

$$G(A) = E\left[\sup_{a \in A} \sum_{i=1}^{d} Z_i a_i\right]$$

denote the Gaussian complexity of the set A. Let

$$L_d(r) = \{ \theta \in \mathbb{R}^d : \|\theta\|_0 \le r \text{ and } \|\theta\|_2 \le 1 \}$$

Then it can be shown that

$$G(L_d(r)) \lesssim \sqrt{r \log \frac{ed}{r}}$$

Now, consider a matrix $X \in \mathbb{R}^{n \times d}$ such that

$$\gamma_1 \|h\|_2^2 \le \frac{1}{n} \|Xh\|_2^2 \le \gamma_2 \|h\|_2^2$$

for all $h \in \mathbb{R}^d$ s.t. $||h||_0 \leq 2r$ and assume that we observe $y = X\theta^* + z$ where z has iid $\mathcal{N}(0,1)$ entries and where $||\theta^*||_0 = r$. Consider the program

$$\min_{\theta} \|y - X\theta\|_2^2 \quad \text{s.t.} \quad \|\theta\|_0 = r$$

and let $\hat{\theta}$ be the (unique) solution. Prove that

$$\|\hat{\theta} - \theta^*\|_2^2 \lesssim \frac{\gamma_2}{\gamma_1^2} \frac{r \log(ed/r)}{n}$$

with a probability that approaches one as $r \log(ed/r) \to \infty$, using the bound on the Gaussian complexity of $L_d(r)$ (that you can use without proof).