IT for Statistics and Learning
 2024

Assignment 11

Assigned: Friday, February 2, 2024
Due: Thursday, February 8, 2024
M. Skoglund

Problem 11.1: A random variable X is sub-exponential with parameters $\left(\tau^{2}, b\right)$ if for all λ such that $|\lambda| \leq 1 / b$ we have

$$
E\left[e^{\lambda(X-E[X])}\right] \leq e^{\lambda^{2} \tau^{2} / 2}
$$

Let $Z \sim \mathcal{N}(0,1)$ and set $X=Z^{2}$. Prove that X is sub-exponential with $\tau^{2}=b=4$
Problem 11.2: Let $X \in \mathbb{R}^{m \times p}$ be genereted with iid entries $\sim \mathcal{N}(0,1 / m)$. Prove that for any $\varepsilon \in(0,1), \delta \in(0,1)$,

$$
m \geq \frac{8}{\varepsilon^{2}}\left[2 \ln n+\ln \frac{1}{\delta}\right]
$$

and any n points $\left\{\theta_{i}\right\}$ in \mathbb{R}^{p} we have that

$$
(1-\varepsilon)\left\|\theta_{i}-\theta_{j}\right\|^{2} \leq\left\|X \theta_{i}-X \theta_{j}\right\|^{2} \leq(1+\varepsilon)\left\|\theta_{i}-\theta_{j}\right\|^{2}
$$

with probability at least $1-\delta$, using the bound from Problem 11.1.
Problem 11.3: Consider the model $y=X \theta+z$ where y has dimension n and θ has dimension $p, p>n$, but $\|\theta\|_{0}=k<p$. Let $g(y)$ denote any algorithm that produces $\hat{\theta}=g(y)$ from y. Fix $g(\cdot)$ and assume that there is a constant C such that

$$
\|g(X \theta+z)-\theta\|_{2} \leq C\|z\|_{2}
$$

for any $z \in \mathbb{R}^{n}$. Prove that then we have

$$
\|b\|_{2} \leq C\|X b\|_{2}
$$

for all $b \in \mathbb{R}^{p}$ for which $\|b\|_{0} \leq 2 k$
Problem 11.4: Consider now instead the model $y=X \theta^{*}$ (no noise and equality in $y=X \theta$ for $\theta=\theta^{*}$) where y has dimension n and θ has dimension $p, p>n$, but $\|\theta\|_{0}=k<p$. Let θ_{i}^{*} be the elements of θ^{*} and let $J=\left\{i:\left|\theta_{i}^{*}\right|>0\right\}$ be the set of indices for the support where θ_{i}^{*} is non-zero. Let $N(X)$ denote the null-space of the matrix X, i.e. $N(X)=\left\{a \in \mathbb{R}^{p}: X a=0\right\}$, and let $C(J)=\left\{a \in \mathbb{R}^{d}:\left\|a_{J^{c}}\right\|_{1} \leq\left\|a_{J}\right\|_{1}\right\}$, i.e. the set of vectors for which the elements with indices in J dominates the elements with indices in J^{c}. Consider the convex program

$$
\min _{\theta}\|\theta\|_{1} \quad \text { s.t. } \quad X \theta=y
$$

and let $\hat{\theta}$ be its solution. Prove that $\hat{\theta}=\theta^{*}$ if $C(J) \cap N(X)=\{0\}$.
Problem 11.5: Consider a set $A \subset \mathbb{R}^{d}$. Let $\left\{Z_{i}\right\}_{i=1}^{d}$ be iid $\sim \mathcal{N}(0,1)$ and let

$$
G(A)=E\left[\sup _{a \in A} \sum_{i=1}^{d} Z_{i} a_{i}\right]
$$

denote the Gaussian complexity of the set A. Let

$$
L_{d}(r)=\left\{\theta \in \mathbb{R}^{d}:\|\theta\|_{0} \leq r \text { and }\|\theta\|_{2} \leq 1\right\}
$$

Then it can be shown that

$$
G\left(L_{d}(r)\right) \lesssim \sqrt{r \log \frac{e d}{r}}
$$

Now, consider a matrix $X \in \mathbb{R}^{n \times d}$ such that

$$
\gamma_{1}\|h\|_{2}^{2} \leq \frac{1}{n}\|X h\|_{2}^{2} \leq \gamma_{2}\|h\|_{2}^{2}
$$

for all $h \in \mathbb{R}^{d}$ s.t. $\|h\|_{0} \leq 2 r$ and assume that we observe $y=X \theta^{*}+z$ where z has iid $\mathcal{N}(0,1)$ entries and where $\left\|\theta^{*}\right\|_{0}=r$. Consider the program

$$
\min _{\theta}\|y-X \theta\|_{2}^{2} \text { s.t. }\|\theta\|_{0}=r
$$

and let $\hat{\theta}$ be the (unique) solution. Prove that

$$
\left\|\hat{\theta}-\theta^{*}\right\|_{2}^{2} \lesssim \frac{\gamma_{2}}{\gamma_{1}^{2}} \frac{r \log (e d / r)}{n}
$$

with a probability that approaches one as $r \log (e d / r) \rightarrow \infty$, using the bound on the Gaussian complexity of $L_{d}(r)$ (that you can use without proof).

