IT for Statistics and Learning 2024

Assignment 12 Assigned: Thu, Feb 8, 2024 Due: before the lecture on Thu, Feb 15, 2024

T. Oechtering

Problem 12.1: Complete the proof. Show that for the number of possible *n*-types we have

$$|\mathbb{P}_n| = \binom{n+M-1}{M-1} \le (n+1)^{M-1}$$

Problem 12.2: Stirling's formula. Show that for the size of \mathcal{T}_P^n we have

$$\log |\mathcal{T}_P^n| = nH(P) - \frac{s(P) - 1}{2}\log(2\pi n) - \frac{1}{2}\sum_{a:P(a)>0}\log P(a) - \frac{\vartheta(n, P)}{12\ln 2}s(P)$$

with s(P) is the number of elements $a \in \mathcal{A}$ with P(a) > 0 and $0 \leq \vartheta(n, P) \leq 1$. Note that $P(a) \leq \frac{1}{n}$ if P(a) > 0. Use Robbins' sharpening of Stirling's formula :

$$\sqrt{2\pi}n^{n+\frac{1}{2}}\mathrm{e}^{-n+\frac{1}{12(n+1)}} \le n! \le \sqrt{2\pi}n^{n+\frac{1}{2}}\mathrm{e}^{-n+\frac{1}{12n}}$$

Problem 12.3: Large deviation. Let \mathcal{P} be any set of probability distributions on \mathcal{A} and let \mathcal{P}_n be the set of those distributions $P \in \mathcal{P}$ which are types of sequences in \mathcal{A}^n . Show that for every distribution Q on \mathcal{A} we have

$$\left|\frac{1}{n}\log Q^n(\{x^n: P_{x^n} \in \mathcal{P}\}) + \min_{P \in \mathcal{P}_n} D(P||Q)\right| \le \frac{\log(n+1)}{n}|\mathcal{A}|$$

Problem 12.4: *V-shell.* Every $y^n \in \mathcal{B}^n$ in the *V*-shell of an $x^n \in \mathcal{A}^n$ has the same type Q where Q(b) is defined as

$$Q(b) = \sum_{a \in \mathcal{A}} P_{x^n}(a) V(b|a)$$

- (i) Show that $\mathcal{T}_V^n(x^n) \neq \mathcal{T}_Q^n$ even if all rows of the matrix V are equal to Q (unless x^n consists of identical elements).
- (ii) Show that if $P_{x^n} = P$ then

$$(n+1)^{-|\mathcal{A}||\mathcal{B}|} 2^{-nI(P,V)} \le \frac{|\mathcal{T}_V^n(x^n)|}{|\mathcal{T}_Q^n|} \le (n+1)^{|\mathcal{B}|} 2^{-nI(P,V)}$$

where the mutual information is defined as I(P; V) = H(Q) - H(V|P) with roles $P = P_X$ and $V = P_{Y|X}$.