IT for Statistics and Learning 2024

Assignment 12

Assigned: Thu, Feb 8, 2024
Due: before the lecture on Thu, Feb 15, 2024

Problem 12.1: Complete the proof. Show that for the number of possible n-types we have

$$
\left|\mathbb{P}_{n}\right|=\binom{n+M-1}{M-1} \leq(n+1)^{M-1}
$$

Problem 12.2: Stirling's formula. Show that for the size of \mathcal{T}_{P}^{n} we have

$$
\log \left|\mathcal{T}_{P}^{n}\right|=n H(P)-\frac{s(P)-1}{2} \log (2 \pi n)-\frac{1}{2} \sum_{a: P(a)>0} \log P(a)-\frac{\vartheta(n, P)}{12 \ln 2} s(P)
$$

with $s(P)$ is the number of elements $a \in \mathcal{A}$ with $P(a)>0$ and $0 \leq \vartheta(n, P) \leq 1$. Note that $P(a) \leq \frac{1}{n}$ if $P(a)>0$. Use Robbins' sharpening of Stirling's formula :

$$
\sqrt{2 \pi} n^{n+\frac{1}{2}} \mathrm{e}^{-n+\frac{1}{12(n+1)}} \leq n!\leq \sqrt{2 \pi} n^{n+\frac{1}{2}} \mathrm{e}^{-n+\frac{1}{12 n}}
$$

Problem 12.3: Large deviation. Let \mathcal{P} be any set of probability distributions on \mathcal{A} and let \mathcal{P}_{n} be the set of those distributions $P \in \mathcal{P}$ which are types of sequences in \mathcal{A}^{n}. Show that for every distribution Q on \mathcal{A} we have

$$
\left|\frac{1}{n} \log Q^{n}\left(\left\{x^{n}: P_{x^{n}} \in \mathcal{P}\right\}\right)+\min _{P \in \mathcal{P}_{n}} D(P \| Q)\right| \leq \frac{\log (n+1)}{n}|\mathcal{A}|
$$

Problem 12.4: V-shell. Every $y^{n} \in \mathcal{B}^{n}$ in the V-shell of an $x^{n} \in \mathcal{A}^{n}$ has the same type Q where $Q(b)$ is defined as

$$
Q(b)=\sum_{a \in \mathcal{A}} P_{x^{n}}(a) V(b \mid a)
$$

(i) Show that $\mathcal{T}_{V}^{n}\left(x^{n}\right) \neq \mathcal{T}_{Q}^{n}$ even if all rows of the matrix V are equal to Q (unless x^{n} consists of identical elements).
(ii) Show that if $P_{x^{n}}=P$ then

$$
(n+1)^{-|\mathcal{A}||\mathcal{B}|} 2^{-n I(P, V)} \leq \frac{\left|\mathcal{T}_{V}^{n}\left(x^{n}\right)\right|}{\left|\mathcal{T}_{Q}^{n}\right|} \leq(n+1)^{|\mathcal{B}|} 2^{-n I(P, V)}
$$

where the mutual information is defined as $I(P ; V)=H(Q)-H(V \mid P)$ with roles $P=P_{X}$ and $V=P_{Y \mid X}$.

