IT for Statistics and Learning 2024

Assignment 13

Assigned: Thu, Feb 15, 2024
Due: before the lecture on Fr, Feb 23, 2024
T. Oechtering

Problem 13.1: Complete the proof. Show that the Neyman-Pearson optimal test $g\left(x^{n}\right)=$ $\left\{\begin{array}{ll}H_{0}, & \text { if } x^{n} \in \mathcal{D}, \\ H_{1}, & \text { if } x^{n} \notin \mathcal{D}\end{array}\right.$ with decision region $\mathcal{D}_{n}(T)=\left\{x^{n} \in \mathcal{A}^{n}: \frac{P_{0}^{n}\left(x^{n}\right)}{P_{1}^{n}\left(x^{n}\right)}>T\right\}$ can be equivalently written as $D\left(\hat{P}_{x^{n}} \| P_{1}\right)-D\left(\hat{P}_{x^{n}} \| P_{0}\right) \underset{H_{1}}{\stackrel{H_{0}}{\gtrless}} \frac{1}{n} \log T$

Problem 13.2: Hypothesis testing. Let $X_{i} \stackrel{i i d}{\sim} P$ defined on $\mathcal{A}=\{0,1,2,3\}$. Consider two hypothesis $H_{0}: P(x)=P_{0}(x)$ and $H_{1}: P(x)=P_{1}(x)$ with

$$
P_{0}(x)=\left\{\begin{array}{ll}
\frac{1}{8}, & \text { if } x=0 \\
\frac{1}{2}, & \text { if } x=1 \\
\frac{1}{8}, & \text { if } x=2 \\
\frac{1}{4}, & \text { if } x=3
\end{array} \quad P_{1}(x)= \begin{cases}\frac{1}{4}, & \text { if } x=0 \\
\frac{1}{8}, & \text { if } x=1 \\
\frac{1}{2}, & \text { if } x=2 \\
\frac{1}{8}, & \text { if } x=3\end{cases}\right.
$$

Find the error exponent for $\operatorname{Prob}\left\{\right.$ decide $H_{1} \mid H_{0}$ true $\}$ in the best hypothesis test subject to $\operatorname{Prob}\left\{\right.$ decide $H_{0} \mid H_{1}$ true $\} \leq \frac{1}{2}$ and Prob $\left\{\right.$ decide $H_{0} \mid H_{1}$ true $\} \leq \frac{1}{4}$.

Problem 13.3: Conditional limiting distribution. Find the exact value of $\operatorname{Prob}\left\{X_{1}=\right.$ $\left.1 \left\lvert\, \frac{1}{n} \sum_{i=1}^{n} X_{i}=\frac{1}{4}\right.\right\}$ if $X_{1}, X_{2}, \ldots, X_{n}$ are $\operatorname{Bernoulli}\left(\frac{2}{3}\right)$ and n is a multiple of 4.

Problem 13.4: Variational inequality. Verify for positive random variables X that

$$
\log E_{P}(X)=\sup _{Q}\left[E_{Q}(\log X)-D(Q \| P)\right]
$$

with expectation $E_{P}(X)=\sum_{x} P(x)$ and relative entropy $D(Q \| P)=\sum_{x} Q(x) \log \frac{Q(x)}{P(x)}$ and the supremum is over all $Q(x) \geq 0, \sum_{x} Q(x)=1$.
Hint: It is enough to extremize $J(Q)=E_{Q} \ln X-D(Q \| P)+\lambda\left(\sum_{x} Q(x)-1\right)$

