IT for Statistics and Learning 2024

Assignment 13 Assigned: Thu, Feb 15, 2024 Due: before the lecture on Fr, Feb 23, 2024

T. Oechtering

Problem 13.1: Complete the proof. Show that the Neyman-Pearson optimal test $g(x^n) = \begin{cases} H_0, & \text{if } x^n \in \mathcal{D}, \\ H_1, & \text{if } x^n \notin \mathcal{D} \end{cases}$ with decision region $\mathcal{D}_n(T) = \left\{ x^n \in \mathcal{A}^n : \frac{P_0^n(x^n)}{P_1^n(x^n)} > T \right\}$ can be equivalently written as $D(\hat{P}_{x^n} || P_1) - D(\hat{P}_{x^n} || P_0) \underset{H_1}{\gtrless} \frac{1}{n} \log T$

Problem 13.2: Hypothesis testing. Let $X_i \stackrel{iid}{\sim} P$ defined on $\mathcal{A} = \{0, 1, 2, 3\}$. Consider two hypothesis $H_0: P(x) = P_0(x)$ and $H_1: P(x) = P_1(x)$ with

$P_0(x) = \langle$	$ \left(\begin{array}{c} \frac{1}{8}, \\ \frac{1}{2}, \\ \frac{1}{8}, \\ 1 \end{array}\right) $	if x = 0 $if x = 1$ $if x = 2$	$P_1(x) = \begin{cases} \\ \end{cases}$	$\frac{\frac{1}{4}}{\frac{1}{8}},$ $\frac{\frac{1}{2}}{\frac{1}{2}},$	if x = 0 $if x = 1$ $if x = 2$
	$\left(\frac{1}{4}\right)$	if $x = 3$		$\frac{1}{8}$,	if $x = 3$

Find the error exponent for Prob{decide $H_1|H_0$ true} in the best hypothesis test subject to Prob{decide $H_0|H_1$ true} $\leq \frac{1}{2}$ and Prob{decide $H_0|H_1$ true} $\leq \frac{1}{4}$.

Problem 13.3: Conditional limiting distribution. Find the exact value of $\operatorname{Prob}\left\{X_1 = 1 \left|\frac{1}{n}\sum_{i=1}^n X_i = \frac{1}{4}\right\}$ if X_1, X_2, \ldots, X_n are $\operatorname{Bernoulli}\left(\frac{2}{3}\right)$ and n is a multiple of 4.

Problem 13.4: Variational inequality. Verify for positive random variables X that

$$\log E_P(X) = \sup_Q \left[E_Q(\log X) - D(Q||P) \right]$$

with expectation $E_P(X) = \sum_x P(x)$ and relative entropy $D(Q||P) = \sum_x Q(x) \log \frac{Q(x)}{P(x)}$ and the supremum is over all $Q(x) \ge 0$, $\sum_x Q(x) = 1$.

Hint: It is enough to extremize $J(Q) = E_Q \ln X - D(Q||P) + \lambda(\sum_x Q(x) - 1)$