IT for Statistics and Learning
 2023

Assignment 5

Assigned: Fri Dec 82023
Due: Fri Dec 152023
M. Skoglund

Problem 5.1: Assume that X_{1}, \ldots, X_{n} are iid $\sim \mathcal{N}(\theta, 1)$. Let $\hat{\theta}_{1}\left(X_{1}, \ldots, X_{n}\right)$ be the median of the samples, and let

$$
T=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Find a rule $P_{\hat{\theta} \mid T=t}$ based on T that has the same risk as $\hat{\theta}_{1}$ no matter what the loss function is.

Problem 5.2: For $\theta \rightarrow X \rightarrow \hat{\theta}$ on (Ω, \mathcal{A}, P), where all variables are discrete and θ is uniformly distributed, let $E=1$ on $\{\omega: \hat{\theta} \neq \theta\}$ and $E=0$ o.w. Derive Fano's inequality using the simple fact that

$$
H(E, \theta \mid \hat{\theta})=H(\theta \mid \hat{\theta})+H(E \mid \theta, \hat{\theta})=H(E \mid \hat{\theta})+H(\theta \mid E, \hat{\theta})
$$

(thus arriving at an alternative proof to the one shown in class).
Problem 5.3: Consider the Gaussian location model $X_{i} \sim \mathcal{N}\left(\theta, I_{p}\right), i=1, \ldots, n$. Assume $\ell(\theta, \hat{\theta})=\|\theta-\hat{\theta}\|^{2}$ where $\|\cdot\|$ is the Euclidean norm in p dimensions. Using the Shannon lower bound, verify the (tight) lower bound

$$
R_{n}^{*} \geq \frac{p}{n}
$$

on the minimax risk.
Problem 5.4: Assume that $X_{i}, i=1, \ldots, n$, are iid uniformly distributed over the interval $[\theta, \theta+1]$. Assuming $\ell(\theta, \hat{\theta})=(\theta-\hat{\theta})^{2}$ prove that the minimax risk decreases as n^{-2} with the number of samples n.

Problem 5.5: Assume that S is drawn uniformly at random from $\{-1,0,1\}^{d}$ subject to $\|S\|^{2}=k<d$. That is, the d-dimensional vector S is drawn uniformly subject to having k non-zero components (-1 or 1). Assume we observe

$$
Y=X(\theta S)+W
$$

where $W \sim \mathcal{N}\left(0, I_{n}\right)$ and where $\theta>0$ is a fixed and known scalar. The $n \times d$ matrix X, with $d<n$, is also fixed and known. This is a model for sparse linear regression. Assume now we wish to estimate S from Y as $\hat{S} \in\{-1,0,1\}^{d}$ s.t. $\|\hat{S}\|^{2}=k$. Show that there is a constant $C>0$ such that unless

$$
n \geq C \frac{\frac{d}{k} \log \binom{d}{k}}{\left\|n^{-1 / 2} X\right\|^{2} \theta^{2}}
$$

(where $\|\cdot\|^{2}$ is the Frobenius norm) we have $\operatorname{Pr}(\hat{S} \neq S) \geq 1 / 2$ for any \hat{S}. You can assume that $k \geq 4$ and $\log \binom{d}{k} \geq 10$.

