IT for Statistics and Learning 2023

Assignment 5 Assigned: Fri Dec 8 2023 Due: Fri Dec 15 2023

M. Skoglund

Problem 5.1: Assume that X_1, \ldots, X_n are iid $\sim \mathcal{N}(\theta, 1)$. Let $\hat{\theta}_1(X_1, \ldots, X_n)$ be the median of the samples, and let

$$T = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Find a rule $P_{\hat{\theta}|T=t}$ based on T that has the same risk as $\hat{\theta}_1$ no matter what the loss function is.

Problem 5.2: For $\theta \to X \to \hat{\theta}$ on (Ω, \mathcal{A}, P) , where all variables are discrete and θ is uniformly distributed, let E = 1 on $\{\omega : \hat{\theta} \neq \theta\}$ and E = 0 o.w. Derive Fano's inequality using the simple fact that

$$H(E,\theta|\hat{\theta}) = H(\theta|\hat{\theta}) + H(E|\theta,\hat{\theta}) = H(E|\hat{\theta}) + H(\theta|E,\hat{\theta})$$

(thus arriving at an alternative proof to the one shown in class).

Problem 5.3: Consider the Gaussian location model $X_i \sim \mathcal{N}(\theta, I_p), i = 1, ..., n$. Assume $\ell(\theta, \hat{\theta}) = \|\theta - \hat{\theta}\|^2$ where $\|\cdot\|$ is the Euclidean norm in p dimensions. Using the Shannon lower bound, verify the (tight) lower bound

$$R_n^* \ge \frac{p}{n}$$

on the minimax risk.

Problem 5.4: Assume that X_i , i = 1, ..., n, are iid uniformly distributed over the interval $[\theta, \theta + 1]$. Assuming $\ell(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$ prove that the minimax risk decreases as n^{-2} with the number of samples n.

Problem 5.5: Assume that S is drawn uniformly at random from $\{-1, 0, 1\}^d$ subject to $||S||^2 = k < d$. That is, the d-dimensional vector S is drawn uniformly subject to having k non-zero components (-1 or 1). Assume we observe

$$Y = X(\theta S) + W$$

where $W \sim \mathcal{N}(0, I_n)$ and where $\theta > 0$ is a fixed and known scalar. The $n \times d$ matrix X, with d < n, is also fixed and known. This is a model for *sparse linear regression*. Assume now we wish to estimate S from Y as $\hat{S} \in \{-1, 0, 1\}^d$ s.t. $\|\hat{S}\|^2 = k$. Show that there is a constant C > 0 such that unless

$$n \ge C \frac{\frac{d}{k} \log \binom{d}{k}}{\|n^{-1/2}X\|^2 \theta^2}$$

(where $\|\cdot\|^2$ is the Frobenius norm) we have $\Pr(\hat{S} \neq S) \ge 1/2$ for any \hat{S} . You can assume that $k \ge 4$ and $\log \binom{d}{k} \ge 10$.