IT for Statistics and Learning 2023

Assignment 7 Assigned: Thursday, Dec 21, 2023 Due: Friday, Jan 12, 2024

M. Skoglund

Problem 7.1: Prove that if Z is σ^2 -sub-Gaussian then for any $\lambda \ge 0$,

$$E[e^{\lambda Z^2}] \le \frac{1}{\sqrt{[1 - 2\sigma^2 \lambda]^+}}$$

where $[x]^+ = \max\{x, 0\}$, and where we get equality for $Z \sim \mathcal{N}(0, \sigma^2)$

Problem 7.2: Let $X^n = (X_1, \ldots, X_n)$ be drawn iid $\sim P$ from \mathcal{X} . Let $\{\phi_t\}_{t \in \mathcal{T}}$ be a collection of mappings $\phi_t : \mathcal{X} \to \mathbb{R}$ such that $\phi_t(X_i)$ is σ^2 -sub-Gaussian for each t and i. Let T be any random variable with values in \mathcal{T} (for example uniform over \mathcal{T} if \mathcal{T} is an interval in \mathbb{R}), and not necessarily independent of X^n . Let

$$M_n(X^n;T) = \frac{1}{n} \sum_{i=1}^n \phi_T(X_i)$$

and $M(t) = E_P[\phi_t(X)]$ for any fixed $t \in \mathcal{T}$. Use the result in Prob. 7.1 and the Donsker–Varadhan lemma to show that

$$E[(M_n(X^n;T) - M(T))^2] \le \frac{1}{\lambda} \left(I(X^n;T) - \frac{1}{2} \log[1 - 2\lambda\sigma^2/n]^+ \right)$$

Problem 7.3: Show that for squared Hellinger distance,

$$H^{2}(P,Q) = \sup_{X} \left(E_{P}[X] - E_{Q}\left[\frac{X}{1-X}\right] \right)$$

Problem 7.4: Let $\theta = \sigma^2$ for

$$f_{\theta}(x_1, x_2) = \frac{1}{2\pi\sigma^2} \exp\left[-\frac{1}{2\sigma^2}(x_1^2 + x_2^2)\right]$$

and consider approximating the Gaussian pdf

$$g(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{x_1^2}{2\sigma_1^2} - \frac{x_2^2}{2\sigma_2^2}\right)$$

with f_{θ} by minimizing $D(f_{\theta}||g)$ over $\theta = \sigma^2$. Compare the result with what you obtain by instead minimizing $D(g||f_{\theta})$ and comment on the nature of the two different solutions.

Problem 7.5: Consider the variational Bayes example presented in Lec. 7, where

$$f(\theta|x^n) = \frac{f_{\theta}(x^n)\pi(\theta)}{\int f_{\theta}(x^n)\pi(\theta)d\theta}, \quad f(x^n) = \int f_{\theta}(x^n)\pi(\theta)d\theta$$

for $X^n = (X_1, \ldots, X_n)$ iid $\sim \mathcal{N}(\mu, \sigma^2)$ and with $\pi(\theta), \theta = (\mu, \sigma)$, such that

$$f_{\theta|X^n = x^n}(\theta|x^n) f(x^n) = \frac{1}{\sigma_\mu \sigma (2\pi\sigma^2)^{n/2}} \exp\left(-\frac{n(\mu - \bar{x})^2 + S}{2\sigma^2}\right)$$

For $q(\theta) = q(\mu)q(\sigma)$, derive necessary conditions for minimizing $D(q(\theta)||f_{\theta}(x^n)\pi(\theta))$ over $q(\mu)$ for a fixed $q(\sigma)$, and vice versa.