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Problem 7.1: Prove that if Z is o2-sub-Gaussian then for any A > 0,
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where [r]T = max{x,0}, and where we get equality for Z ~ N(0, 0?)

Problem 7.2: Let X" = (X1,...,X,) be drawn iid ~ P from X. Let {¢;}e7 be a collection
of mappings ¢; : X — R such that ¢;(X;) is o0?-sub-Gaussian for each ¢ and i. Let T be any
random variable with values in 7 (for example uniform over 7 if T is an interval in R), and
not necessarily independent of X™. Let

My(X™T) = -3 6r(X)
=1

and M(t) = Ep[¢:(X)] for any fixed ¢t € T. Use the result in Prob. 7.1 and the Donsker—
Varadhan lemma to show that

BI(M,(XT) =MD < 5 (1007) = loglt = 230/l

Problem 7.3: Show that for squared Hellinger distance,
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Problem 7.4: Let 6 = o2 for
fo(z1,22) = 352 XP | ~5—3 (x] + z3)

and consider approximating the Gaussian pdf
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with fp by minimizing D(fy||g) over § = o2. Compare the result with what you obtain by

instead minimizing D(g|| fg) and comment on the nature of the two different solutions.

Problem 7.5: Consider the variational Bayes example presented in Lec. 7, where

ny __ Jo(@")m(6) Y _ o
POl = T T = [ o)
for X" = (X1,...,X,) iid ~ N (i, 0?) and with 7(0), § = (u, o), such that
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For q(0) = q(p)q(o), derive necessary conditions for minimizing D(q(0)|| fo(z™)m(0)) over q(u)
for a fixed ¢(o), and vice versa.



