IT for Statistics and Learning
 2024

Assignment 8

Assigned: Fr, Jan 12, 2024
Due: before the lecture on Fr, Jan 19, 2024
T. Oechtering

Problem 8.1: Maximum Likelihood Estimator. Consider the linear regression model with observations $y_{i}=x_{i} \theta+n_{i}, i=1, \ldots, n \geq p$ in independent Gaussian noise $n_{i} \mid x_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \sigma^{2}\right)$ given known vector $x_{i} \in \mathbb{R}^{1 \times p}$ and parameter $\theta \in \mathbb{R}^{p \times 1}$ to be estimated.
(i) Show that the pdf of $y_{i} \mid x_{i}$ is Gaussian with mean $x_{i} \theta$ and variance σ^{2}.
(ii) Show that the maximum likelihood estimator of θ is $\hat{T}_{\theta}(y, X)=\left(X^{T} X\right)^{-1} X^{T} y$ with $y=\left(y_{1}, \ldots, y_{n}\right)^{T} \in \mathbb{R}^{n \times 1}$ and $X^{T}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{p \times n}$.

Problem 8.2: Complete the proofs. Show that
(i) $f^{*}(y)=y+\frac{1}{4} y^{2}$ is the convex conjugate of $f(x)=(x-1)^{2}$ which is used in the variational representation of the χ^{2}-divergence;
(ii) Find coefficients a, b in linear function $h(x)=a x+b$ such that we have

$$
\sup _{a, b \in \mathbb{R}} 2\left(a E_{P}[X]+b\right)-E_{Q}\left[(a X+b)^{2}\right]-1=\frac{\left(E_{P}[X]-E_{Q}[X]\right)^{2}}{\operatorname{Var}_{Q}[X]} .
$$

Problem 8.3: Complete the proofs. Show that for Fisher information we have
(i) Regularity condition: $I(\theta)=-E_{\theta}\left[\frac{\mathrm{d}^{2} \log P_{\theta}}{\mathrm{d} \theta^{2}}\right]$ if P_{θ} is twice differentiable and we have

$$
\int \frac{\mathrm{d}^{2} P_{\theta}(x)}{\mathrm{d} \theta^{2}} \mathrm{~d} x=\frac{\mathrm{d}^{2}}{\mathrm{~d} \theta^{2}} \int P_{\theta}(x) \mathrm{d} x=0 .
$$

(ii) Multiple samples: Let $X_{1}, \ldots, X_{n} \sim P_{\theta}$ iid, then

$$
I_{n}(\theta)=n I(\theta)
$$

Problem 8.4: Coin flips $[W]$. Consider the experiment flipping a coin with a bias. Let $X_{1}, \ldots X_{n} \stackrel{i i d}{\sim} \operatorname{Bern}(\theta)$ denote the random experiments with bias $\theta \in[0,1]$. We consider the quadratic loss $l(\theta, \hat{\theta}]=(\theta-\hat{\theta})^{2}$ and denote the minimax risk by R^{*}.
(i) Use the empirical frequency as estimator $\hat{\theta}_{\text {emp }}$ to estimate θ. Compute and plot the risk $R_{\theta}\left(\hat{\theta}_{\text {emp }}\right)$ and show that $R^{*} \leq \frac{1}{4 n}$.
(ii) Compute the Fisher information of $P_{\theta}=\operatorname{Bern}(\theta)^{\otimes n}$ and $Q_{\theta}=\operatorname{Binom}(n, \theta)$. Explain why they are equal.
(iii) Invoke the Bayesian Cramér-Rao lower bound to show that $R^{*}=\frac{1+o(1)}{4 n}$.
(iv) The risk of $\hat{\theta}_{\text {emp }}$ is maximized at $\frac{1}{2}$, which suggests that it might be possible to hedge against the situation by using the following randomized estimator

$$
\hat{\theta}_{\text {rand }}= \begin{cases}\hat{\theta}_{\text {emp }}, & \text { with probability } \delta, \\ 1 / 2, & \text { with probability } 1-\delta\end{cases}
$$

Find the worst-case risk of $\hat{\theta}_{\text {rand }}$ as a function of δ. Choose the best δ ans show that this leads to a better upper bound $R^{*} \leq \frac{1}{4(n+1)}$.
(v) Randomized estimators are always improvable when the loss is convex by averaging out the randomness by considering the estimator $\hat{\theta}^{*}=E\left[\hat{\theta}_{\text {rand }}\right]=\hat{\theta}_{\text {emp }} \delta+1 / 2(1-\delta)$. Find the optimal δ that minimizes the worst-case risk and show that it is independent of δ and $R^{*} \leq \frac{1}{4(1+\sqrt{n})^{2}}$.
(vi) (optional to trade one of the previous subquestion) Show that $\hat{\theta}^{*}$ is exactly minimax optimal and hence $R^{*}=\frac{1}{4(1+\sqrt{n})^{2}}$. Consider the following prior $\operatorname{Beta}(a, b)$ with density

$$
\pi(\theta)=\frac{\Gamma(a+b)}{\Gamma(a) \Gamma(b)} \theta^{a-1}(1-\theta)^{b-1}, \quad \theta \in[0,1]
$$

where $\Gamma(a)=\int_{0}^{\infty} x^{a-1} \mathrm{e}^{-x}$. Show that if $a=b=\sqrt{n} / 2$, then $\hat{\theta}^{*}$ coincides with Bayes estimator $E\left[\theta \mid X_{1}, \ldots X_{n}\right]$ for this prior, which is therefore least favourable. (Hint: Work with the sufficient statistic $S=X_{1}+\cdots+x_{n}$)

