Infotheory for Statistics and Learning
Lecture 10

e Minimax lower bounds!
e Le Cam’s method
e Assouad's method
e Mutual information method

based on notes by J. Duchi and Y. Wu and book by M. Wainwright
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Recap - Minimax Risk Problem

‘P denotes class of distributions defined on sample space X.

e 0 :P — O denotes function that maps distribution P on §(P)
e IID data: X" = (X,...,X,,) are n iid observations X; ~ P
o Estimator: measurable function 6§ : X" — ©

Minimax risk: Let p: © x © — R, be a metricand & : R, — R
a non-decreasing function (e.g. p(,6')) = |0 — ¢’| and ®(t) = t2).
The minimax risk M1, (6(P), P o p) is defined as

W, (6(P), o p) = inf sup B [$(o(0(X"), 6(P)]

From estimation to testing: Let {P,},ecy be a 25-packing, then

MA(O(P), @ 0 p) > B(5) inf P (X") £ V] (1)
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Overview and outlook

M, (0(P), @ 0 p) = @(3) inf PIY(X™) # V]

Remaining challenges for minimax lower bound:
® Find a good 24-packing
e larger ¢ results in larger factor ®(0)
® Find a good lower bound on the error probability
e packing with uniform error probability seems desirable

Outlook
e Packing: metric entropy and packing numbers (lect 9)
e Fano method: |V| > 2 and multiple hypothesis test (lect 9)
e Le Cam method: |V| = 2 and binary hypothesis test
e Assouad method:|V| = 2¢ and multiple binary hypothesis tests
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Le Cam’s method - Recap binary hypothesis test

Binary hypothesis test setup

e Let P and P, be two distributions on set X. Nature choses
one distribution at random where V' € {1,2} denotes the
index. We then observe X drawn according Py and try to
guess realization of V' with test ¥ : X — {1, 2}.

Lemma (Lower bound on error probability)

f{ P (V(X) # 1) + P(U(X) #2)} =1~ [P = Poflrv - (2)

Proof: Let A C X denote decision region to output 1, then
Pl(\I/(X) #* 1)+P2(\I/(X) =+ 2) = Pl(AC)+P2<A) = 1—P1(A)+P2(.A).

Taking infimum, we have infg{P;(¥(X) # 1)+ P>(V(X) #2)} =
infaca{l — P1(A) + P2(A)}. =1 —sup gcx{ P1(A) — P2 (A)}. O
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Le Cam’'s method

Q: How can we utilize a binary (packing with |V| = 2) hypothesis
test, i.e. lower bound on error probability, to lower bound the
minimax error?

e (2) for iid observations X; ~ Py with uniformly distributed V"

inf{P(W(X") # V)} = 5 = 3[1P" = Pllrv (3)

e Le Cam's method: For any P for which there exists
Py, P, € P such that p(6(P1),0(P2)) > 26 we obtain from
(1) and (3)

M, (0(P), Do p) = 2(0) [5 — 5P = Pyllrv]

e Remaining task: Find good P;, P, with large p(6(Py),6(F2))
and small |P}* — PJ||7v, poss. upper bound? ||P/* — P}||7v .

%e.g. using Pinsker ineq. 2||P" — Q"||%, < D(P"||Q™) w nD(P1]|Q1).
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Example: Mean estimation of Gaussian distribution family

e Consider P = {N(6,02):0 € R} and || - ||; or || - ||3 as loss.
e Let Xy,...,X, beiid samples of N(#,0?) denoted as P}’
e Pick following two distributions: P§' and Py with 6 = 20

o Py, Py € P with p(0(Py),0(Py)) = [0 — 25| > 26

o HW: [P — Bill3y < f(exp(ny) — 1) = d(exp(dnZz) — 1)
e Le Cam'’s lower bounds® with § = -2:

2/n
e dop—| |
a 1) 1 1 o
inf sup Ep, [|6(X™) —0]] > 2(1— ~ve—1)> 2
inf sup P [10(XT) —0]] 2 5(1 = 5 Ve )2 5= 13
« dop=|- I3

inf sup Ep, [0(X7) 072 > S1-tvern > o &
i pep DLV =273 =%~ 2

. . 2
3Pre-factors are not optimal, but scalings and Z- are sharp.
VG{
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Squared Hellinger distance

e The squared Hellinger distance for Py, P, < X is given by
dpP, dP,
H(Pi||Py) = <\/ a Y d>\> A

e we also write H?(py||p2) with p; pdf of P;, i = 1,2 (if exists).
e Le Cam’s ineq.: Upper bound* on TV distance (proofs HW):

_HEA(P|P)

|P1 — Py||7v < HX(Py||Py) 1

(4)
e For Pp,..., P, and P5" = ®"_, P; and likewise Q" we have
o sHA(PYM|QY™) =1 - I, (1 - 3 H*(B]|Q:))

e and in the iid case
FH?(P'™M|QY") = 1— (1 - 3H?(P1[|Q1))" < ng H?(P1||Q1)

*Upper bound is decreasing with increasing H?(Py||P,).
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Example: Mean estimation of Uniform distribution family

e Consider P =

{U([0,0 +1]) : 0 € R} and || - |3 as loss
o Let Xy,.

X, be iid samples of U([#, 0 + 1]) denoted as Uy
e Hellinger distance H?(Uy||Uy) = H?(Uy/||Uy) for 6,0' € R
o for |6/ — 6] > 1 we have H2(U9||U9/) =2

o for 0 € (6,0+1): H2(Ug||Up')

0'+1
= [ at+ [ e = 200 o)
e Pick distributions Uy and Uy such that |0/ — 0] = 26 = -,
o thus LH2(UP||U) < 2H?(Ug||Up ) = 226/
e Le Cam’'s ineq.:

1Ug —
e Le Cam’s lower bounds®

,g‘zl

4
Upl3y < HX(UR||UG) < 3.

inf sup Ey, [|0(X]) - 6] >
0 UyeP

/2 (L= Vg = Ugtllrv)
~~ 4

_1/12
=3(5%)

1
>1-25

5n72

rate is optimal, e.g. achieved with estimator é(Xl ) = minj<;<n X
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Le Cam’s convex hull method

e ldea: Instead two distributions, consider two classes of
distributions!

e Separation over the convex hull can be (significantly) smaller
than the point-wise separation.

e Subsets Py, P; C P are 2j-separated if p(6(P1),0(FP2)) > 26
for all Py € Py and P, € Py.

e Le Cam’s convex hull method: For any 2J-separated classes
Po, P1 C P we have

Y n n
MO(P), p) = 5 sup [1 =P = P3lrv]
PyeConvexHull(P;)i=1,2

e Proof can be found in [Wainwright, Lemma 15.9]

e Improved bound for mean estimation of Gaussian dist. family:
Po = {P}'} and Py = {P}', P",} — pre-factor 3; instead 5.
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Le Cam for functionals

e Estimate functional 6 : 7 — R defined on set of densities F
e e.g. evaluational functional 6(f) = f(0) (density at point 0)

e Lipschitz constant of functionals w.r.t. Hellinger norm:

N = su - : 2 62
w(€v977)—f’gel;{l9(f) 0(g)l - H*(fllg) < €’}

e measure of fluctuations of 6(f) when f is perturbed

e Le Cam'’s for functionals:

w(Q\I/ﬁ;H,]:)>

inf sup £ [@(é —G(f))] > 1@( 5

0 feF 4

e Proof: Set €2 = ﬁ, pick f,g that achieves® w(e; 6, F). Apply
Le Cam method with § = w(e; 0, F) and bound
1P} = Pl < HA(PFII)) < nH?(Pyl|Py) < . 2

A sequence that comes arbitrary closely if supremum is not achieved.
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Example: Point-wise estimation of Lipschitz densities

o Consider set of Lipschitz densities defined on [—2, 2] bounded
away from zero & linear functional 0(f) = f(0).
e Approach: Apply lower bound on w(e; 0, F) in Le Cam bound
e To this end, pick fo,g € F with H?(folg) = & = €2, then
| fo(0) — g(0)| provides lower bound to w(zf,H F)
e Let fy uniform density and g = fo + ¢(z) with perturbation
¢(x) that is 6 — |z| for |z| < § and |z — 25| — 6 for = € [6, 34].
e It can be shown’ that H?(follg) < 363

e Thus, setting §° = > results in H2 (follg) < 77,
e which gives lower bound w(2f,9 F) > \fo(O) g(0)] = 0.

e Considering ®(t) = t? gives then

e l0-a] = ) ()

v

"For details see Wainwright, Example 15.7.
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Assoud’s method - 20-Hamming separation

e Idea: Transform the estimation problem in multiple binary
hypothesis testing problems exploiting the problem structure

Definition (26-Hamming separation)

The set {P,}yey C P with V = {—1,+1}%,d € N induces a
26-Hamming separation for ® o p if there exists a function
9 :0(P) — {—1,+1}% such that

D(p(6,0(P, >2521{ l; # vi}

e index v = (v1,...,v4) €V = {—1,+1}% is a binary sequence
e loss function of parameter 6 can be component-wisely lower
bounded
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20-Hamming separation example

e Consider Laplace distributed data z € R? with
p(@) = 5z exp(—|lz — pl1)
e want to estimate mean p in || - ||;-distance, i.e. O(p) = p

o for some & > 0 define set {p, }oey with v € V = {1, +1}¢
with p,(x) = 2% exp(—||z — dvl|1) with mean 0(p,) = dv

o for any # € R? we have for the || - ||;-error
d d
16— B(po)ll =D 10; — 6v;] > 6y Lisign(d;) # v;}
j=1 j=1

since ]% —v;| > I{sign(0;) # v;} > 0

= {py}vey is a 20-Hamming separation for || - ||1-error because
[0(8)]; = sign(6;) for all j satisfies the condition
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Assouad’s method

Lemma (Sharper version of Assouad’s lemma)

Let {P,}vecy be a 26-Hamming separation for loss ® o p, then

d
M(O(P), Dop) = 6 Y inf [Py ([W(X)]; # +1) + P;([¥(X)]; # ~1)]
j=1

with P ; (resp. P_;) denotes the joint probability over X and
random index V' that is uniformly distributed over {+1, —1}¢
conditioned that the j-th coordinate V; = +1 (resp. V; = —1).

o Let Pyj(x) = 2%1 Evev:vjzﬂ P, denote the marginal
distribution conditioned V; = +1 (resp. P_j(z) for V; = —1),
then the bound can be equivalently written as (see Le Cam)

d
MO(P), Pop) > Z [1 =[P — P-jllzv]
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Proof of Lemma

e Since an average over {P,},cy C P (which also satisfies the
20-Hamming separation condition) is smaller than the
supremum over P we have for an estimator 6 : X — ©

sup Ep | @(p(0(X), 0(P)))] = MZER,[ (p(0(X).6.)) |

Pep

>96 Z 1{[8(0(X))];7v;}

7j=1

e with U(X) = 6(A(X)) we can rewrite the sum as follows

veY veY
2 2
= > P([R(X)]; # vy) + W > P([R(X)]; # vy)
v:vj:—l—l v:vj:—l
P ([W(X)];A+1) —P_([(X)];%-1)

e result follows taking infima over all tests W and estimators 60
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Standard version of Assouad’s lemma

o Let YV denote the index set excluding index v; and let Pt
(resp. P,y _) with vV € YV denote P, with v € V where
vj = +1 (resp. v; = —1) & dy(-,-) be the Hamming distance.
e Using triangle inequality of total variation (due to convexity)

1 1
1P = Pojllzv = |5z D Pois —ga1 D Poi-

v\ gP\i vw\iep\i TV
1
ST D ’ Py~ Pv\j,—HTV
U\jeV\j
< max ||, — Pyllpy Vie{l,2,...,d}
v,v' €V
dg (v,v')=1

e Ineq. above leads to standard version of Assouad’s lemma:
MO(P), B o p) > 6d[1 — max  ||Py— PU/||TV]
v’ €Y
dp(vv')=1
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Example: Mean estimation of Normal distribution

o Consider P = {N(6,0%1;) : 6 € R%} and || - ||3 as loss

e Construction of 62-Hamming separation with V = {—1, +1}¢
e Fix 6 > 0 and define 6, = dv and P, = N'(dv,0?) Vo € V.
e Family {P,},cy satisfies the condition since for any 6 we have

10— 0(P,)|13 = 3201 10— 0v;[2 > 62 327, I{sign(0;) # v;}.

e Assouad’s lemma for n iid observations

> -
M (O(P), 11 113) = 5 D [1 = 1B = Pyllav]  (5)
j=1
e || - |7y can be bounded using Pinsker inequality

1

n n |12 2

1P =P 7y < Jnax 1Py = Porlly < 5 Jnax: D(Py| Py)
dp(v,v")=1 dp (v,0')=1

e with D(P [1Py) = 5221100 — O [|5 = 236° since dp (v,v") = 1.
e For §%2 = th|s gives lower bound® M, (A(P), || - ||2) > 4=

= 8n -

®Bound asymptotlcally sharp since sample mean has mean square error %
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Example: Model fitting for logistic regression

e Logistic regression: Estimation of probabilities of binary
(categorical) variable Y; € {—1,+1} and dependent variable
X; € R? using a logistic function.

e Bernoulli distribution: P(Y; = y|X;,0) = m

e Task: Estimation of parameter § € R? after observing a
sequence of (Y, X;), 1 < i < n, that fits logistic model best!
e maximization over set of Bernoulli distributions P
e O(P) denotes estimation of parameter for P € P
e use squared /o error as metric
e Use Assouad method to lower bound minimax risk®
e Same §%2-Hamming separation as before: V = {—1,+1}¢; for
some § > 0 define §, = v and P, = P(Y; = y\Xl,O,,) 10 then

m, (0P, |- 13) > % ll—\/‘fnxn%

°Frobenius norm || X || = >0 | ZJ 1 Xij, Xij j-th element of X;.
As before, fam|ly {P, }vev satisfies the condition since for any 6 we have
16 — 6(P.)I3 = 325, 16; — 6vs|* = 6% 35, 1{sign(6;) # v;}-
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e For n iid observations using P we use Assoud's lemma (5)

P 18
M (O(P), |- 1B) = 5 (1= 5 2 P = Pyl )
j=1

e using C.S. and Jensen ineq. (|| - ||7v is convex) we end up
with a weaker version of Assoud's lemma used here 11

C.s. 1/2
SR = Py £ x/&(ZHPﬁj ~ Py )
r -
Jzneq 1/2
(Z od Z ||Pv +j — vﬁj”%“\/)

e It remains to bound ||P, 1 — P, _;||% for Bernoulli
distributions using Pinsker ineq. etc (HW). O

1P, +; is distribution where j-th element takes +1; P}; = 2% > Poti-
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Mutual information method

e Task: Estimate parameter § € O distributed by some prior
using estimator 6 observing data X.

e Accordingly, we have Markov chain § — X — 6 so that with
data processing inequality we get

inf  1(0;0) < I(0;0) < I1(0,X) <supI(6;X)
Py EL(0,0)<R; T

e Note, only lower bound involves R} and loss.
o Lower (upper) bound relate to rate-distortion-like
(capacity-like) bounds.
e Approach: Derive lower and upper bounds and solve for R

e Derivation of bounds can be difficult, see [W] for more
approaches and discussion.
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Example: Gaussian location model

e Upperbound: Y =X+ Z, Z~N(0,1,), Z L X
* maxXp, c(py:p|x|2<ps) L (X3 X +2Z) = Flog(l+s)
e Lower bound: X ~ N (0, s,) and squared distortion
Plog(E
. min IX;Y):{ZIOg(e)’ <5
Py x:E[|Y —X||2]<pe 0, otherwise
e Let  ~ N (0,5 I,) and Px|g ~ N (6,11,) then

o from the upper bound: I(0,0) < I(0,X) = Blog(1+S-n)
e from the lower bound R
100,0) > minPé‘giEW*éH%SRi‘r 1(0,0) = §log
= Combining both bounds and solve for R

S
Rx/p

S-p
R:E> ———
TT14+8n
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