
Infotheory for Statistics and Learning
Lecture 13

• Method of types in action1

• Recap
• Conditional limit theorem
• Hypothesis testing
• Neyman Pearson’s Lemma
• Stein’s Lemma
• Chernoff information

1based on material in [CS] and [CT].
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Recap: Sanov’s Theorem

• Let xn = (x1, x2 . . . , xn) ∈ An denote a sequence of length n
defined on finite set A = {a1, a2, . . . aM} with empirical
distribution P̂xn , which is also the type of the sequence.

• The probability that a sequence drawn iid ∼ Q will have type
P̂Xn depends exponentially on the distance D(P̂Xn ||Q) · n.

• Sanov’s Theorem asks for the probability that the type P̂Xn

will be in a set E ⊂ P. We again observe an exponential decay
rate, but the decay depends on the smallest distance between
Q and distributions P ∈ E , i.e. D(E||Q) = inf

P∈E
D(P ||Q).

Sanov’s Theorem: Let E be a set of distribution whose closure is
equal to it closure of its interior. Then for the empirical
distribution P̂xn of a sample sequence iid of strictly positive
distribution Q on A we have

− 1

n
log Prob{P̂Xn ∈ E} n→∞−→ D(E||Q).
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Recap: Proof of Sanov’s Theorem

Let Πn = Π ∩ Pn be the set of possible n-types in Π, then

• Prob{P̂n ∈ Πn} = Pn(∪Q∈ΠnT nQ ) =
∑

Q∈Πn
Pn(T nQ ) and

•
∑

Q∈Πn

Pn(T nQ ) ≤
∑

Q∈Πn

2−nD(Πn||P ) ≤
(
n+M−1
M−1

)
2−nD(Πn||P )

since Pn(T nQ ) ≤ 2−nD(Q||P ) ≤ 2−nD(Πn||P ) and

•
∑

Q∈Πn

Pn(T nQ ) ≥
∑

Q∈Πn

1

(n+M−1
M−1 )

2−nD(Q||P ) ≥ 1

(n+M−1
M−1 )

2−nD(Πn||P )

Result follows taking the limit of − 1
n log of the RHS and LHS. �
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Pythagorean theorem

• D(P ||Q) is not a metric, but it behaves like an Euclidean
metric

Theorem 1: For a closed convex set of distributions E ⊂ P and
distribution Q /∈ E .

D(P ∗||Q) = min
P∈E

D(P ||Q)

then
D(P ||Q) ≥ D(P ||P ∗) +D(P ∗||Q) ∀P ∈ E .

• The result implies if you have a sequence Pn ∈ E with
D(Pn||Q)

n→∞−→ D(P ∗||Q), then D(Pn||P ∗)
n→∞−→ 0.
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Proof of Pythagorean theorem

• Let Pλ = λP + (1− λ)P ∗ ∈ E , since E is convex, Pλ
λ→0−→ P ∗.

• Since D(P ∗||Q) ≤ D(Pλ||Q) = Dλ, we have dDλ
dλ |λ=0 ≤ 0.

dDλ

dλ
=

d

dλ

[∑
Pλ(x) log

Pλ(x)

Q(x)

]
=
∑

(P (x)− P ∗(x)) log
Pλ(x)

Q(x)

since
∑

x P (x)− P ∗(x) = 0. For λ = 0 we have Pλ = P ∗ and

0 ≤ dDλ

dλ

∣∣
λ=0

=
∑

(P (x)− P ∗(x)) log
P ∗(x)

Q(x)

=
∑

P (x) log
P ∗(x)

Q(x)

P (x)

P (x)
−
∑

P ∗(x) log
P ∗(x)

Q(x)

= D(P ||Q)−D(P ||P ∗)−D(P ∗||Q)

�
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Conditional Limit Theorem

Consider a set of distributions E , e.g. satisfying a condition.

• Sanov: For sequence generated by distribution Q /∈ E , the
probability that the sequence has a type in E is asymptotically
dominated by the distribution in E that is closest to Q.

• The next theorem states that conditional probability of each
random variable in the sequences asymptotically in probability
also behaves as the dominating distribution.

Theorem 2: Let E ⊂ P be a closed and convex set of distributions
on A and Q /∈ E a distribution on A. Let sequence xn ∈ An be a
realization of independently drawn random variables Xi ∼ Q and
P ∗ achieve minP∈E D(P ||Q) = D(P ∗||Q). Then

Prob{X1 = a|P̂Xn ∈ E} n→∞−→ P ∗(a)

in probability (with respect to Xn).2

2Convergence in probability: limn→∞ Prob{|Zn − Z| ≥ ε} = 0 for ε > 0.
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Proof of Conditional Limit Theorem

• Let D∗ = D(P ∗||Q) = minP∈E D(P ||Q) with P ∗ unique
since D(P ||Q) is strictly convex in P and convex set
St = {P ∈ P : D(P ||Q) ≤ t}. Therewith define

U1 = SD∗+δ ∩ E U2 = SD∗+2δ ∩ E V = E \ U2.

• For P ∈ V we have Qn(T nP ) ≤ 2−nD(P ||Q) ≤ 2−n(D∗+2δ) and
(n+ 1)MQn(T nP ) ≥ 2−nD(P ||Q) ≥ 2−n(D∗+δ) for P ∈ U1.

Prob{P̂Xn ∈ V|P̂Xn ∈ E} =
Qn(V ∩ E)

Qn(E)
≤ Qn(V)

Qn(U1)
=

∑
P∈V Q

n(T nP )∑
P∈U1

Qn(T nP )

≥

∑
P∈V

2−n(D∗+2δ)

∑
P∈U1

2−n(D∗+δ)

(n+1)M

≥ (n+ 1)M2−n(D∗+2δ)

1
(n+1)M

2−n(D∗+δ)
= (n+ 1)2M2−n(D∗+δ)︸ ︷︷ ︸

n→∞−→ 0

⇒ Prob{P̂Xn ∈ U2|P̂Xn ∈ E} → 1 as n→∞.
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• For all P ∈ U2 we have D(P ||Q) ≤ D∗ + 2δ so that

0 ≤ D(P ||P ∗) +D(P ∗||Q)
Pythagorean
≤ D(P ||Q) ≤ D∗ + 2δ

Since D(P ∗||Q) = D∗ we have D(P ||P ∗) ≤ 2δ.

• Since this all holds as well for P̂xn ∈ U2 we have for n→∞

Prob{D(P̂Xn ||P ∗) ≤ 2δ|P̂Xn ∈ E} = Prob{P̂Xn ∈ U2|P̂Xn ∈ E} → 1

• A small relative entropy implies a small L1-distance3 which
implies a small maxa∈A |P̂Xn(a)− P ∗(a)| so that we have

Prob{|P̂Xn(a)− P ∗(a)| ≥ ε|P̂Xn ∈ E} n→∞−→ 0 ∀a ∈ A,

alternatively we can write Prob{X1 = a|P̂Xn ∈ E} → P ∗(a)
as n→∞ in probability for all a ∈ A. �

3D(P1||P2) ≥ 1
2 log 2

||P1 − P2||21 see Lemma 11.6.1 [CT].
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Hypothesis Testing

• Observation of n independent drawings xi of random variable
Xi with an unknown distribution Q on A, i = 1, . . . , n.

• Decision maker needs to decide between hypotheses

H0 : Q = P0

H1 : Q = P1

• Let g : An → {H0, H1} denote a (non-)randomized test for
sample size n characterized by decision region D ⊆ An:

g(xn) =

{
H0, if xn ∈ D,
H1, if xn /∈ D,

• Error terminology
• Type 1 error: g(xn) = H1, i.e., xn /∈ D although Q = P0

• Type 1 error probability: α = Pn0 (Dc) with Dc = An \ D.

• Type 2 error: g(xn) = H0, i.e., xn ∈ D although Q = P1

• Type 2 error probability β = Pn1 (D).
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Neyman-Pearson Lemma

• Wish to find a test g that minimizes both probabilities of error
α and β, but there is a trade-off.

• Neyman-Pearson approach is the constraint optimization
problem:

min
D⊆An

Pn1 (D) subject to Pn0 (Dc) ≤ ε

• Ratio tests
Pn

0 (xn)
Pn

1 (xn)

H0

≷
H1

T will be sufficient for optimality since...

Neyman-Pearson Lemma: Let Xi
iid∼ Q defined on finite set A,

i = 1, . . . n. Consider the decision problem with hypothesis H0 :
Q = P0 and H1 : Q = P1. For T ≥ 0 define decision region

Dn(T ) =
{
xn ∈ An :

Pn0 (xn)

Pn1 (xn)
> T

}
with associated error probabilities α∗ = Pn0 (Dcn(T )) and
β∗ = Pn1 (Dn(T )). Let F be any other decision region with
associated error probabilities α and β. If α ≤ α∗, then β ≥ β∗.
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Proof Neyman-Pearson Lemma

• Let D = Dn(T ) and let F denote any other decision region.
Let 1D and 1F denote corresponding indicator functions

• For any xn ∈ An we have4(
1D(xn)− 1F (xn)

)(
P0(xn))− T · P1(xn)

)
≥ 0

• Summing over all xn ∈ An and expanding the product gives

0 ≤
∑(

1DP0 − T1DP1 − 1FP0 + T1FP1

)
=
∑
xn∈D

(P0 − TP1)︸ ︷︷ ︸
=(1−α∗)−Tβ∗

−
∑
xn∈F

(P0 − TP1)︸ ︷︷ ︸
=(1−α)−Tβ

= T (β − β∗)− (α∗ − α)

since T ≥ 0 it follows that if α ≤ α∗, then β ≥ β∗. �

4If xn ∈ D both factors are ≥ 0 and if xn /∈ D, then both factors are ≤ 0.
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• Q: What to expect if support(P0) ∩ support(P1) 6= ∅?

Theorem 3: Let P0 and P1 be any two distributions on A and
suppose a sequence of sets Bn ⊆ An that satisfies Pn0 (Bn) ≥ γ for
all n and a given positive γ > 0.5 Then

lim inf
n→∞

1

n
logPn1 (Bn) ≥ −D(P0||P1).

Proof: Let δn = |A| logn
n . Then 2−nδn = n−M so that we have(

n+M−1
M−1

)
2−nδn ≤ (n+1)M−1

nM
n→∞−→ 0. For a sample xn drawn

iid∼ P0,
from a previous corollary we have
Prob{D(P̂Xn ||P0) ≥ δn} ≤

(
n+M−1
M−1

)
2−nδn

n→∞−→ 0. Thus,

Prob{D(P̂Xn ||P0) < δn} =
∑

Q:D(Q||P0)<δn

Pn0 (T nQ )
n→∞−→ 1.

5If Bn is the decision region, then type 1 error is non-trivially bounded
Pn0 (Bcn) = 1− Pn0 (Bn) ≤ 1− γ < 1∀n.
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• From the assumption Pn0 (Bn) ≥ γ for all n it follows

∃n0 :
∑

Q:D(Q||P0)<δn

Pn0 (T nQ ∩ Bn) >
γ

2
∀n > n0.

• Consequently, there exists n-types Qn with D(Qn||P0) < δn
and Pn0 (T nQn ∩ Bn) ≥ γ

2P
n
0 (T nQn) for all n > n0.

• Since sequences of the same type are equiprobable, which
holds for any distribution P on A, the last inequality holds
also for P1. Thus, for n > n0 we have

Pn1 (Bn) ≥ Pn1 (T nQn∩Bn) ≥ γ

2
Pn1 (T nQn) ≥ γ

2

1(
n+M−1
M−1

)2−nD(Qn||P1)

• D(Qn||P0) < δn → 0 implies D(Qn||P1)
n→∞−→ D(P0||P1)

1

n
logPn1 (Bn) ≥ − 1

n
log
[2

γ

(
n+M − 1

M − 1

)]
︸ ︷︷ ︸

n→∞−→ 0

+ D(Qn||P1)︸ ︷︷ ︸
n→∞−→ D(P0||P1)

�
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Testing null-hypothesis formulation

• Observation of n independent drawings from an unknown
distribution P on A denoted by xn.

• Testing of null-hypothesis: unknown P belongs to a given set
of distributions Π on A

• (Non-)randomized test for samples size n is characterized by
critical region C ⊆ An:
• null-hypothesis is accepted if xn /∈ C and rejected otherwise

• Error terminology
• Type 1 error: Null-hypothesis rejected although P ∈ Π

• Type 1 error probability is given by Pn(C)
• Type 2 error: Null-hypothesis accepted although P /∈ Π

• Type 2 error probability Pn(Cc) with Cc = A \ C

• Since P ∈ Π is unknown we now may require tests with
desired performance for all P ∈ Π, e.g. bounded type 1 error
Pn(C) ≤ ε for all P ∈ Π and characterize the decaying type 2
error for all P /∈ Π!
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Theorem 4: Consider testing the null-hypothesis that P ∈ Π,
where Π ⊂ P is a closed set of distributions on A. Then tests with
critical region

Cn =
{
xn ∈ An : inf

P∈Π
D(P̂xn ||P ) ≥ δn

}
with δn =

|A| log n

n

have type 1 error probability Pn(Cn) not exceeding εn, where
εn → 0, and for each Q /∈ Π, the type 2 error probability Qn(Ccn)
goes to 0 with exponential rate D(Π||Q).

• Considering the previous hypothesis testing problem deciding
between distributions P0 and P1, the result above (with
Π = {P2}) shows the existence of sets Bn ⊂ An satisfying

Pn0 (Bn)→ 1
1

n
logPn1 (Bn)→ −D(P1||P2)

as n→∞. This result is known as Stein’s Lemma.6

6Stein’s Lemma can be also proved using a weak typicality argument so that
it applies to continuous distributions with finite relative entropy, see [CT].
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Proof of theorem:

• For type 1 error, same arguments as proof of previous corollary

Pn(Cn) =
∑

Q: inf
P∈Π

D(Q||P )≥δn

Pn(T nQ )︸ ︷︷ ︸
≤2−nD(Q||P )

≤
(
n+M − 1

M − 1

)
2−nδn = εn

n→∞−→ 0

• For type 2 error, for each Q /∈ Π we have

Qn(Ccn) =
∑

R: inf
P∈Π

D(R||P )<δn

Qn(T nR )︸ ︷︷ ︸
≤2−nD(R||Q)

≤
(
n+M − 1

M − 1

)
2−nξn

with ξn = infR: inf
P∈Π

D(R||P )<δn D(R||Q)

• Since lim
n→∞

ξn = infP∈ΠD(P ||Q) = D(Π||Q) so that

lim sup
n→∞

1

n
logQn(Ccn) ≤ −D(Π|Q) �
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Combining results
• Theorem 3 can be applied using Ccn defined in Theorem 4 as

sets Bn as follows: For any P ∈ Π
• we have Pn(Cn) ≤ εn < 1 with εn → 0 for the type 1 error.
⇒ There exists δ > 0 such that εn ≤ 1− δ so that

Pn(Ccn) = 1− Pn(Cn) ≥ 1− εn ≥ δ > 0

• Thus, Theorem 3 can be applied for any P1 /∈ Π so that

lim inf
n→∞

1

n
logPn1 (Ccn) ≥ −D(Π||P1) ∀P1 /∈ Π

• The combination of the previous with Theorem 4 results in

lim
n→∞

1

n
logPn1 (Ccn) = −D(Π||P1) ∀P1 /∈ Π

• Hence, the test related to Cn are asymptotically optimal.7

• Closedness of Π in Theorem 4 ensures D(Π||P1) > 0 if
P1 /∈ Π, i.e. exponential decay rate for all P2

7Criterion inf
P∈Π

D(P̂xn ||P ) ≥ δn ⇔ supP∈Π Pn(xn)

Q(xn)
≤ 2−nδn with Q = Pxn .
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Bayesian setting – Chernonff information
• Consider the two hypothesis setting with prior probabilities.

• X1, . . . , Xn
iid∼ Q with hypotheses H0 : Q = P0 and

H1 : Q = P1 with prior probabilities π0 and π1
• Objective is probability of error P

(n)
e = π0αn + π1βn with

D∗ = lim
n→∞

− 1

n
log min
Dn⊂An

P (n)
e

Theorem 5: (Chernoff) The best achievable exponent for the
Bayesian probability of error is given by

D∗ = D(Pλ∗ ||P1) = D(Pλ∗ ||P2)

with Pλ(x) =
Pλ0 (x)P 1−λ

1 (x)∑
a∈A

Pλ1 (a)P 1−λ
2 (a)

and λ∗ the value of λ such that

D(Pλ∗ ||P0) = D(Pλ∗ ||P1).

• It can be shown that D∗ is equivalent to the standard
definition of Chernoff information
C(P1, P2) = − min

0≤λ≤1
log
[∑

a∈A P
λ
0 (a)P 1−λ

1 (a)
]

Tobias Oechtering 18/19



Proof

• The Neyman-Pearson optimal test can be written as (HW):

D(P̂xn ||P1)−D(P̂xn ||P0)
H0

≷
H1

1

n
log T

• Let Dn denote the set of types associated with hypothesis H0

and Dcn is the set of types associated with hypothesis H1,
then we have αn = Pn0 (Dcn) and βn = Pn1 (Dn)

• minP D(P ||P1) subject to D(P ||P0)−D(P ||P1) ≥ 1
n log T

provides type P̂xn ∈ Dn closest to P1 but still deciding for H0

• Simple calculus shows that Pλ is minimizer [CT (11.200)]
where λ is chosen such that D(Pλ||P0)−D(Pλ||P1) = 1

n log T

• From Sanov’s theorem we have
• − 1

n logαn = − 1
n logPn0 (Dcn)

n→∞−→ D(Dcn||P0) = D(Pλ||P0)

• − 1
n log βn = − 1

n logPn1 (Dn)
n→∞−→ D(Dn||P1) = D(Pλ||P1)

lim
n→∞

− 1

n
logP (n)

e = min{D(Pλ||P0), D(Pλ||P1)}

⇒ The optimal T is where D(Pλ||P0) = D(Pλ||P1) ⇒ λ∗. �
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