Infotheory for Statistics and Learning
Lecture 13

e Method of types in action®
Recap

Conditional limit theorem
Hypothesis testing
Neyman Pearson’'s Lemma
Stein's Lemma

Chernoff information

'based on material in [CS] and [CT].
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Recap: Sanov's Theorem

o Let 2" = (x1, 22 ..., x,) € A" denote a sequence of length n
defined on finite set A = {a1,as,...ap} with empirical
distribution Pyn, which is also the type of the sequence.

e The probability that a sequence drawn iid ~ @ will have type
Pxn depends exponentially on the distance D(Pxn||Q) - n.

e Sanov's Theorem asks for the probability that the type Pxn
will be in a set £ C P. We again observe an exponential decay
rate, but the decay depends on the smallest distance between
@ and distributions P € £, i.e. D(&||Q) = ]ijréng(PHQ).

Sanov's Theorem: Let £ be a set of distribution whose closure is
equal to it closure of its interior. Then for the empirical
distribution P,» of a sample sequence iid of strictly positive
distribution @ on A we have

1 A n e.9]
——log Prob{Pxn € £} = D(E]Q).
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Recap: Proof of Sanov's Theorem

Let IT,, = IIN P, be the set of possible n-types in II, then
e Prob{P, € I,} = P"(Ugen, T3) = Y gen, P"(T3) and
° Z Pn(Tn) < Z 9—nD(IL||P) « (nﬂj\‘/[]\{;l)Q—nD(HnHP)

QEeIl, QEell,
since P"(75) <27 nD(QIIP) < 9—nD(In||P) gnd

o > PUTY) =X e 27 PQIP) > L _o-nD(L||P)
Qell, QEHH( M-1 ) ( M—1 )

Result follows taking the limit of —% log of the RHS and LHS. O
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Pythagorean theorem

e D(P||Q) is not a metric, but it behaves like an Euclidean
metric

Theorem 1: For a closed convex set of distributions £ C P and
distribution @ ¢ £.

D(P*(|Q) = in D(PIIQ)

then
D(P||Q) = D(P||P*) + D(P'(|Q) VP €.

e The result implies if you have a sequence P,, € £ with
D(P,||Q) =% D(P*||Q), then D(P,||P*) =3 o,
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Proof of Pythagorean theorem

o Let P\ = AP+ (1 — \)P* € &, since £ is convex, P 220 pr
o Since D(P*||Q) < D(P)||Q) = Dy, we have 452, ¢ <0.

Py(z)

since ) P(x) — P*(x) = 0. For A = 0 we have Py = P* and
0 < I oo = D _(P(x) = P*(x))log g(%)
P*(x) P(x . P*(x
= ZP(JC) log Q(;)) PEZL’; - ZP (x)log Q((x))
= D(P[|Q) — D(P||P") — D(P*|Q)
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Conditional Limit Theorem

Consider a set of distributions £, e.g. satisfying a condition.

e Sanov: For sequence generated by distribution @ ¢ &, the
probability that the sequence has a type in £ is asymptotically
dominated by the distribution in £ that is closest to Q.

e The next theorem states that conditional probability of each
random variable in the sequences asymptotically in probability
also behaves as the dominating distribution.

Theorem 2: Let £ C P be a closed and convex set of distributions
on A and @ ¢ £ a distribution on A. Let sequence 2" € A" be a
realization of independently drawn random variables X; ~ @ and
P* achieve minpcg D(P||Q) = D(P*||Q). Then

Prob{X| = a|Px» € £} =3 P*(a)

in probability (with respect to X™).2

2Convergence in probability: lim, e Prob{|Z, — Z| > €} =0 for e > 0.
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Proof of Conditional Limit Theorem

e Let D* = D(P*||Q) = minpeg D(P||Q) with P* unique
since D(P||Q) is strictly convex in P and convex set
={P € P : D(P||Q) < t}. Therewith define

Uy =Sp1sNE Uy = SpriasNE VZS\Z/[Q.

o For P €V we have Q"(Tp) < 27 "PPlIQ) < o=n(D*+20) 3pnd
(n+DMQMTE) > 27 mPPIQ) > 2=n(P™+0) for P e Uy,

Q'VNE) _ Q'(V) _ Tpey@(TP)
QE) T Q) T Cpe, @(TE)

Prob{Pxn € V|Pxn € £} =

Z 9—n n(D*4-26) .

Py (n+ MmO (n + 1)2Mon(D7+9)
AU S — — T R n 5

pe, Y (D) "2%%

= Prob{Pxn € Us|Pxn € £} — 1 as n — 0.
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e For all P € Uy we have D(P||Q) < D* + 26 so that

Pythagorean

0<D(P|P)+D(PTQ) < D(P||Q) < D +25

Since D(P*||Q) = D* we have D(P||P*) < 26.

e Since this all holds as well for Pxn € Uy we have for n — oo
Prob{D(Pxn||P*) < 26|Pxn € £} = Prob{Pxn € Us|Pxn € £} = 1

e A small relative entropy implies a small L1-distance3 which
implies a small max,ec 4 |Pxn(a) — P*(a)| so that we have

Prob{|Px=(a) — P*(a)| > ¢|Pxn € £} =30  Va e A,

alternatively we can write Prob{X| = a|Px» € £} — P*(a)
as n — oo in probability for all a € A. O

*D(P1||P2) > 557511Py — Pel[f see Lemma 11.6.1 [CT].
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Hypothesis Testing

e Observation of n independent drawings x; of random variable

X; with an unknown distribution Q on A, i =1,...,n.
e Decision maker needs to decide between hypotheses

Hy: Q=P

Hl : Q = P1

o Let g: A" — {Hp, H;} denote a (non-)randomized test for
sample size n characterized by decision region D C A™:

. Hy, if2" €D,
g(a") = .
Hy, ifa"¢D,

e Error terminology
e Type 1 error: g(a™) = Hy, i.e., 2" ¢ D although Q = Py
e Type 1 error probability: o = P§'(D) with D¢ = A™ \ D.
e Type 2 error: g(a") = Hy, i.e., " € D although Q = P,
e Type 2 error probability 5 = P[*(D).
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Neyman-Pearson Lemma

e Wish to find a test g that minimizes both probabilities of error
« and (3, but there is a trade-off.

e Neyman-Pearson approach is the constraint optimization
problem:

in P"(D bject to P (D) <
min F(D) subjectto Fy(D) < ¢

e Ratio tests P"E ; T will be sufficient for optimality since..

Neyman-Pearson Lemma: Let Xi ~ Q defined on finite set A,
i =1,...n. Consider the decision problem with hypothesis Hy :
Q = Fyand H; : Q = P,. For T' > 0 define decision region

y'(z")
D, (T n . T
(1) ={"ea N roke }
with associated error probabilities o* = P (D, (1")) and
p* = P"(D,(T)). Let F be any other decision region with

associated error probabilities a and 5. If o < ¥, then 5 > §*.
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Proof Neyman-Pearson Lemma

e Let D =D,(T) and let F denote any other decision region.
Let 1p and 1 denote corresponding indicator functions

e For any 2" € A™ we have*
(Ip(a") = 1r(2")) (Po(z™) = T - P1(2")) > 0
e Summing over all " € A™ and expanding the product gives
0<> (IpPR —TlpP — 17Py + T1rPy)
= > (P —TP)= > (P —TP)=T(B—-p")—(a" —a)

zneD zneF
=(1—a*)-Tp* =(1—a)-T8
since T' > 0 it follows that if o < a*, then g > 5. O

4If 2™ € D both factors are > 0 and if 2" ¢ D, then both factors are < 0.
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e Q: What to expect if support(Py) N support(Py) # 07

Theorem 3: Let Py and P; be any two distributions on A and
suppose a sequence of sets BB,, C A" that satisfies Pj'(B,) > v for
all » and a given positive 7 > 0.> Then

hmlnff log Pl'(B,,) > —D(F||P1).

n—oo 1
Proof: Let 4, = A Sg" Then 27 = =M 55 that we have
M-1 iid
("LMll)Q non < % "2 0. For a sample 2" drawn ~ P,

from a previous corollary we have
Prob{D(Pxn||Py) > 6.} < ("+M1)27 "= 0. Thus,

Prob{D(Px»||P)) <} = > P13 =31
Q:D(QI|Po) <8

®If B" is the decision region, then type 1 error is non-trivially bounded
Py(Br)=1—-P3(B,) <1—7y<1Vn.
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e From the assumption P§(B,) > v for all n it follows

Ing : Z Py (T4 N By) > % Vn > ng.
Q:D(Q||Po)<6n
e Consequently, there exists n-types @, with D(Q,||Py) < oy,
and P (75, N By) > 3F3(T4,) for all n > ng.
e Since sequences of the same type are equiprobable, which
holds for any distribution P on A, the last inequality holds
also for P;. Thus, for n > ng we have

n n Y y 1 n Py
Py(By) = PI'(T5,MBy) 2 5 P1'(T3,) = 5@2 D(Qnl|P1)

M-1

D(Qn||Py) < 6 — 0 implies D(Q,||P1) =3 D(BRy||P1)

M-1

n—oo
—

l1ogP{b<t’>’>>—31 2" )o@y o
n n Y N————

n—Q0

— D(PoHPl)

0
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Testing null-hypothesis formulation

Observation of n independent drawings from an unknown
distribution P on A denoted by z".

Testing of null-hypothesis: unknown P belongs to a given set
of distributions IT on A
(Non-)randomized test for samples size n is characterized by
critical region C C A™:
o null-hypothesis is accepted if " ¢ C and rejected otherwise
Error terminology
e Type 1 error: Null-hypothesis rejected although P € 11
e Type 1 error probability is given by P™(C)
e Type 2 error: Null-hypothesis accepted although P ¢ II
e Type 2 error probability P™(C¢) with C°= A\ C
Since P € Il is unknown we now may require tests with
desired performance for all P € 11, e.g. bounded type 1 error
P"(C) < e for all P € II and characterize the decaying type 2
error for all P ¢ II!
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Theorem 4: Consider testing the null-hypothesis that P € 1II,
where IT C P is a closed set of distributions on A. Then tests with
critical region

_ |Allogn

Cn:{x"EA": mf D(Py||P) > 6, } with dy, -

have type 1 error probability P"(C,,) not exceeding €,, where
€n — 0, and for each @ ¢ TI, the type 2 error probability Q"(C)
goes to 0 with exponential rate D(II]|Q).

e Considering the previous hypothesis testing problem deciding
between distributions Py and Pj, the result above (with
IT = {P}) shows the existence of sets B,, C A" satisfying

1
Py (B,) — 1 - log P'(B,,) = —D(P1||P)

as n — oco. This result is known as Stein's Lemma.®

bStein’s Lemma can be also proved using a weak typicality argument so that

it applies to continuous distributions with finite relative entropy, see [CT].
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Proof of theorem:
e For type 1 error, same arguments as proof of previous corollary

M-—-1 n—00
R DI L/ ] G B

inf D(Q||P)>§ .
Q: jnf D(QI|P)2 " <9-nD(Q|P)

e For type 2 error, for each @ ¢ II we have

re= Y QR < ("*M*)Q-ngn

. M1
Rz inf D(RI[P)<én o _np (/)

with &, = infR:};reli;ID(R\\P)<6n D(R||Q)
e Since li_>m &n = infpenn D(P||Q) = D(11]|Q) so that

limsup log Q"(C5) < ~D(MQ) O

n—oo
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Combining results

e Theorem 3 can be applied using C; defined in Theorem 4 as
sets B, as follows: For any P € 11
e we have P"(C,) < €, < 1 with €, — 0 for the type 1 error.
= There exists § > 0 such that ¢,, <1 — § so that

PY(CS) =1-P™"(Co)>1—€, >8>0

e Thus, Theorem 3 can be applied for any P; ¢ II so that

hmlnfflogP1 (C)>—D(I||P) VP ¢TI

n—oo

e The combination of the previous with Theorem 4 results in

1
lim —log P'(C;)) = —D(Il||P) VP ¢1I
n—oo n
e Hence, the test related to C,, are asymptotically optimal.’
e Closedness of II in Theorem 4 ensures D(II||P;) > 0 if
Py ¢ 11, i.e. exponential decay rate for all P,

"Criterion mf D(Pyn||P) > 6, % < 27" with Q = Pyn.
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Bayesian setting — Chernonff information

e Consider the two hypothesis setting with prior probabilities.

e Xi,..., X, % Q with hypotheses Hy : Q = P, and
H; : Q Py with prior probabilities my and
e Objective is probability of error Pe(n) = Mgy, + 718, with

1
D* = lim —=log min P
n—oo N D, CA"

Theorem 5: (Chernoff) The best achievable exponent for the
Bayesian probability of error is given by

D* = D(Py«||Py) = D(Py-

Py)

with Py\(x) = _Le@h @) and \* the value of A such that
TS P @R

D(Px-||Po) = (PA*HPl)
e It can be shown that D* is equivalent to the standard

definition of Chernoff information

C(P1, P) =— m;gl log [ Y aca Pé\(a)Pf_)‘(a)}
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Proof

e The Neyman-Pearson optimal test can be written as (HW):

] . H
D(Bun||P) — D(Bon||P) 2 log T
H, 1
e Let D, denote the set of types associated with hypothesis Hy
and D, is the set of types associated with hypothesis Hj,
then we have o, = P§(D5) and 5, = P['(D»,)
e minp D(P||Py) subject to D(P||Py) — D(P||Py) > 1 logT
provides type f’mn € D, closest to P; but still deciding for Hy
e Simple calculus shows that Py is minimizer [CT (11.200)]
where X is chosen such that D(Py||Py) — D(Py||Py) = Llog T
e From Sanov's theorem we have
o —iloga, = 1 log P(D5) "3 D(D;||Py) = D(Py|| o)

n—oo

° —%log,é’n = —%longL(Dn) — D(Dy||P1) = D(Py||P1)
1
lim —— log P = min{D(Py|| ), D(P:||P1)}

n—oo n
= The optimal T" is where D(Py||Py) = D(Py||P1) = A*. O
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