Infotheory for Statistics and Learning

Lecture 8

e Selected recap

e Basics statistical decision theory [PW, Chap. 28]

e Variational representation of f-divergence [PW, Sect. 7.13]
e Statistical (lower) bounds [PW, Chap. 29]

e Hammersley-Chapman-Robbins bound
e Cramér-Rao bound
e Fisher information
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Framework of Statistical Decision Problem

Statistical experiment: Nature picks distribution with parameter 6
from the set of probability distributions defined on a common
probability space (X, F)

P:{Pgleé@}

e Data X ~ Py is observed
e can be a random variable, vector, process etc. depending on X

Estimator: We want to estimate 7°(f) which is defined on ),
which can be a @ itself, a relevant aspect or a function of 6.

e Decision rule: Compute T € Y based on observed data X
T:X — j}

o randomized estimator 7' = T'(X, U), external RV U or P x
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Choice of estimator depends on different factors including
estimator properties, but mostly on the performance objective.
e Loss function:

1:YxY =R, TxTw—ITT)
e example: T(#) = 6 and I(6,0) = ||6 — ]2

e Risk of estimator 7' at 0:

Ro = BT 1)) = [ UT(0).0)Ps (o) Pao) (. )

. PT‘X(t|x) denotes the likelihood of  after observing x

o log-likelihood function log PTlX(f\m) is sometimes numerically
beneficial, e.g, when = denotes a vector of iid observations

e converses correspond to lower bounds on the optimal loss/risk
(achievable results/implementations are upper bounds)
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Maximum Likelihood Estimator

e Maximum Likelihood (ML) estimator. Maximize the
likelihood (fct) over parameter 6 so that the observed data x
is most likely

e ecg T(0) =96

T(zx) = P,
() = argmax P(z)
e Gaussian Location Model (Additive Gaussian Noise)

o P={N(0,0%) : 0cR}

o X; =0+ 7 with Z; % N(0,0?)
e likelihood (fct) after observing 1, ..., x,:

i—0)2
Py(a}) =T~ Po(ws) = [T12, \/2;02 exp(— (z202) ) =
1 1 n 2
V2ra)n exp(— g,z 21 (@i — 0)7)
o Note that Py(z7) is maximized if we minimize >°7 | (i — )2
0= d% i (i — Q)Qn: > —2(zs — 0) so that the

e . _ 1 ]
minimizer is 0 = -~ > " | x;

n

= ML estimate T(zy,...,x,) = % Do T
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Fundamental limit — " Best estimator”

Performance is measured by the risk
Ry(6) = Eo[l(6,0)]
Approaches to identify a best estimator

o Naive method: Search for estimator § that is better than all
other estimator @’ for all § € ©, i.e. Ry(6) < Rp(0')VO'V0.

e often there does not exists one 6 that is uniformly the best
Standard approaches that reduce the candidate set

e Method 1: Limit the class of competitors of 6
e e.g. restricting to unbiased estimators or invariant estimators

e Method 2: Bayes (Bayesian) approach - average analysis

e Method 3: Minimax approach - worst-case analysis
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Bayes risk

Average risk analysis with prior probability distribution m on ©

Rr(0) = EgrRo(0) = Ey x[1(0,0)]

 Bayes risk: Minimum average risk Ry = inf; R.(0)
e Limitation: Need to know/assume the prior distribution
e Worst case Bayes risk: Rj; = sup, R.

Example:
e MMSE: Minimum mean square error R} = E[||0 — E[0]|X]||3]
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Minimax risk

Worst-case risk analysis is based on minimax risk

R* = inf sup Ry(f)
0 0co

Theorem (Minimax risk > worst-case Bayes risk)

R* > R} = sup R: = supinf R, (f)
™ s 6

Proof.

V0,7 : sup Ry(f) > Egx[Ry(A)] = Rr(), consider sup inf O
USS] ]

e key idea also later for lower bounds on minimax risk: Consider
Bayes risk with smart prior results in lower bound on R*.

e result is weak duality, minimax theorem is strong duality
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Variational representation of f-divergence

Legendre-Fenchel transform: Let f: X — R be a function (not
necessarily convex), then f*: X — R with

f*(a) = sup[{a, z) — f(z)]

zeX

is the conjugate of f (aka Legendre-Fenchel conjugate).
e f*is convex.
o If fis convex, then (f*)* = f (biconjugation)

Similarly, the convex conjugate for any convex functional ¥(P)
defined on the space of measures can be defined as

U (g) = sup / gdP — ¥(P)
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Biconjugation holds under certain conditions (e.g. domain of g is
finite)

U(P) = sgp/gdP — U*(P)

This can be applied to convex functional P — Dy (P|Q) which
provides variational representation of f-divergence,! where f*
denotes the convex conjugate of f

DPIQ) = Eo |f(G)] = sw  Erla(X]-Eqlr(o(x))

Q g:X—dom(f*)

where g is such that both expectations are finite.

!Generalization to infinite domains requires a technical partition argument,
for more details see

http://people.lids.mit.edu/yp/homepage/data/LN_fdiv.pdf
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e Total variation: f(x) = 3|2 — 1| with convex conjugate

+oo if |y| >
[*(y) = sup,{zy — 3|z — 1|} = .
2 y iffyl <

TV(P,Q) = sup_ Ep[9(X)] = Eq [9(X)]
g:l91<3

DO DO

e Relative entropy (aka KL divergence), f(x) = zlogx with
f (y) =exp(y—1)

D(P||Q) =1+ sup Ep[g(X)] — Eq [exp(g(X))]
g:X—R

e Donsker-Varadhan representation (proof see [PW, Sect. 3.3])

D(P||Q) = supy.x g Ep [9(X)] —log Eq [exp(g(X))] , which
is stronger since RHS is tighter for any g due to log(1+1t) <t
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o y>-divergence, f(z) = (x — 1)? with f*(y) =y + %yz (HW)

X*(P,Q) = sup Ep [9(X)] — Eq [9(X) + 19*(X)]

e with substitution h(z) = 1g(z) + 1 we get

X*(P,Q) = sup 2Ep [h(X)] - Eq [P*(X)] — 1,
h:X—R

Variational representations provide a systematic analytical

approach to obtain lower bounds: x?(P, Q) representation

restricted to affine functions h(x) = ax + b

Y2 (P,Q) > SI?GPRQ(CLEP [X]+b) — Eq [(aX +)*] —1
(HwW) (Ep [X] — Eq [X])? 1)
Varg[X]
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Hammersley-Chapman-Robbins lower bound

Setup: Data X ~ P, parameter of interest 6 € ©, estimator 6(X)
(possibly random), cost of prediction error 1(,0) = (6 — 6)2.
o Interested in lower bound on risk Rg(#) = Eg[( — 0)?] of
estimator 6 given the distribution of real parameter 6!

Ey[(0—0)%] = Ey[(0—Ey[0]+Eg[0]—0)?] = ... = Eg|(bias(0))?]+Varg[6]

Theorem (Hammersley-Chapman-Robbins lower bound)
For the quadratic loss 1(0,0) = (0 — 0)2, any estimator 6(X)
satisfies

N ~

Ro(d) > sup L0 10] = Bold]?

VO € ©
9'7&% x%(Py, Py)
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Proof Hammersley-Chapman-Robbins lower bound

Approach: Utilize derived bound (1) on x%(P, Q). Identify
distributions P and Q & data processing ineq. In more detail:

e In (1) set Q = Py. For P, suppose X was produced by Py
with 0 # 60" € ©.

e Let (5 and P denote the distributions on 0 generated by X
distributed according to Py and Py respectively.

e Estimator 0(X) acts a channel that transfers X into .
data proc.ineq. (1) Ey é — FEy é 2
X2<P9/,Pg) > XQ(Pé,Qé) > ( [ ] ” [ ])
Varg[ﬁ]

e Swap LHS with denominator and use Ry(6) > Vary[6].

A~

e Bound holds for all #” € © and Ry(6) does not depend on ¢,
thus tighten bound by taking supg:y provides desired result.

g
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Cramér-Rao lower bound

e Cramér-Rao lower bound can be derived from
Hammersley-Chapman-Robbins lower bound

A~

e Restricted to unbiased estimators, i.e., Ey[0(0)] = 6.

e Derivation requires regularity conditions to be satisfied

Theorem (Cramér-Rao lower bound)

dlDe(ﬂE))2
with 1(0) = [~/ dx, which is the Fisher information of
Py ()

the parametric family of densities {Py : 0 € ©} at 0 (if it exists).

o Interpretation: The Fisher information is a measure of
information in the data that is useful for the estimation task.
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Proof Cramér-Rao lower bound

e HCR bound for unbiased estimators and 8 — 8 becomes

Vary [é] H§R sup (Eo [é] — By [é])Q > 1 (@' —6)?

> lim ———~— V0 e€0O.
oo X*(Po, Py) 0—0 x*(Py, Pp)

e Taylor series expansion for Py — Py at 6’ for 6 close to 6':

d(Py — Py) dPy

Po—Py = (0-8) = ol (0-0')%) = (6-8) " +ol(0—0')?)

Py | o((9=0")?) 2
o With X2(P9/,P9) = f@ = (0/ — 9)2f¥

Py
(0 — 0)? , 1 1
m —— = y
0’60 X2(Pyr, Py)  0/—0 I (%JFO«Z:Z,)?)) &S (dpe
Py
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Fisher information

dPy() \ 2 o z)\?
I(@):/(P:(Hx)> Py(z)da = By <W>

e Regularity condition (HW): 1(6) = —E, [%} if Py is

twice differentiable and we have

d*Py(z d?
/ dg2( )dx = (W/Pg(:v)dx =0.

e Multiple samples (HW): Let X1, ..., X,, ~ Py iid, then
I,(0) = nI(0)

holds where I,,(0) and I() denote the vector-valued and
single-letter Fisher information.
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Multivariate HCR/CR lower bounds

Consider multi-dimensional case with 0,9’,9 and z defined on R?
e Multivariate version of HCR lower bound: V0,0 € ©

X2(P}, Py) > (Eg[0] — Egl0))" covgl0]) " (Eg (0] — E4[0])

with covg[f] = Ej [(é AN Eg[é])T} € RPXP
e Multivariate CR lower bound

e considering unbiased estimators 6, i.e. Ey[f] =6

covgll] = 1(0)~"

with Fisher information matrix I() = [ VGPG(xI)D(QYm")]D@(x))T dz

o I(0)=—Fy {3291?7%:9} if Hessian satisfies regularity condition
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Bayesian Cramér-Rao lower bound

e Bayesian approach: Parameter # € R with prior dist. w
e loss function 1(6, ) = (6 — 6)2

e consider unbiased estimators 0, i.e. Ey[d] =0
Theorem (Bayesian Cramér-Rao lower bound)

1

R: = ir}f R:(9) = ir}f Egr[1(6,0)] > Eor1(0)] + I(7)

with I(m) = [ (d” / ) 49 Fisher information of the prior given
that su:tab/e regular/ty conditions hold such as (*)

392<P9( )m(0))do = 5 2 [(Py(X)m(6))d6 = 0.

e Result can be derived with previous arguments deriving first
Bayesian HCR with clever choice of distribution in y2-term.
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Classical proof for Bayesian CR lower bound

e Due to the regulantg/ condition and |ntegrat|on by parts we
have f Dag = [ Py(x)x(0)dd and
[0(z) 2 (Py(z) (9))d6? = 0 so that

o ot

_ 5 O(Py(z)m(0)) Fy(x)m(0) _
_//(9(3:)—9) o P e =1

e Using Cauchy-Schwarz inequality on (LHS)? and rearrange

O

. (EGX [(é(X) - Q)BIOg(P%(;()W(H))] )2
< Epx [(é(X) _ 0)2] Eyx <8log(P08(éX)7r(9))>2]

=R (0) >
2 Eox [ 2 1og(Py (X)(6)) | =Eo1(9)]+1(m)
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