
Infotheory for Statistics and Learning
Lecture 9

• Minimax bounds1

• From estimation to testing
• Packing and metric entropy
• Fano’s method
• Yang-Barron method

1based on notes by J. Duchi and Y. Wu and book by M. Wainwright
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Generalized Framework of Statistical Decision Problem

• P denotes class of distributions defined on sample space X .

• θ : P → Θ denotes function that maps distribution P on θ(P )
• A generalized framework, since θ(P ) might not uniquely

determine P (i.e. θ(P1) = θ(P2) iff P1 = P2). Previously, θ
parametrized the family of distributions P = {Pθ : θ ∈ Θ}.

• IID data: xn = (x1, . . . , xn) are n iid observations Xi ∼ P
• Estimator: measurable function θ̂ : X n → Θ

Minimax risk: Let ρ : Θ×Θ→ R+ be a metric and Φ : R+ → R+

a non-decreasing function (e.g. ρ(θ, θ′)) = |θ − θ′| and Φ(t) = t2).
The minimax risk2 Mn(θ(P),Φ ◦ ρ) is defined as

Mn(θ(P),Φ ◦ ρ) = inf
θ̂

sup
P∈P

EP
[
Φ(ρ(θ̂(Xn), θ(P )))

]
2Notation θ(P) means we consider θ(P ) for P ∈ P; Mn(θ(P),Φ ◦ ρ)

corresponds to R∗ previously and will be abbreviated with Mn.
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From estimation to testing
Key idea: Reduce estimation problem to testing problem which
allows to lower bound estimation risk by testing error probability!

Construction of hypothesis testing problem:

1 Let {Pv}v∈V denote finite set of distributions Pv ∈ P for all
v ∈ V with finite index set V.
• Induced {θ(Pv)}v∈V parameter set is called a 2δ-packing if

ρ(θ(Pv), θ(Pv′)) > 2δ ∀v 6= v′

2 Assume RV V uniformly distributed over V that chooses Pv if
V = v; samples xn = (x1, . . . , xn) are then iid drawn Xi ∼ Pv

3 Let Ψ : X n → V denote an arbitrary but fixed test function to
guess v given xn with error probability P[Ψ(Xn) 6= V ].

Theorem
Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf

Ψ
P[Ψ(Xn) 6= V ] (1)
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Proof

• For arbitrary but fixed P , θ and θ̂ we have

E
[
Φ(ρ(θ̂, θ))

]
≥ E

[
Φ(δ)1{ρ(θ̂, θ) ≥ δ}

]
= Φ(δ)P

[
ρ(θ̂, θ) ≥ δ

]
• For testing fct Ψ(θ̂) = arg min

v∈V
{ρ(θ̂, θv)} with θv = θ(Pv)

• if ρ(θ̂, θv) < δ, then Ψ(θ̂) = v since ∆-ineq & 2δ-packing

implies ρ(θ̂, θv′) ≥ ρ(θv, θv′)− ρ(θ̂, θv) > 2δ − δ = δ, ∀v′ 6= v

• equivalently Ψ(θ̂) 6= v implies ρ(θ̂, θv) ≥ ρ so that we have

P[ρ(θ̂, θv) ≥ δ|V = v] ≥ P[Ψ(θ̂) 6= v|V = v]

sup
P∈P

E
[
Φ(ρ(θ̂, θ(P )))

]
≥ 1

|V|
∑
v∈V

Φ(δ)P
[
ρ(θ̂, θv) ≥ δ

∣∣V = v
]

≥ Φ(δ)
1

|V|
∑
v∈V

P
[
Ψ(θ̂) 6= v

∣∣V = v
]
≥ Φ(δ) inf

Ψ
P
[
Ψ(θ̂) 6= V

]
• Result follows taking the infimum over all estimators θ̂. �
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Remaining challenge and outlook

Mn(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
Ψ

P[Ψ(Xn) 6= V ]

Remaining challenges for minimax lower bound:

1 Find a good 2δ-packing
• larger δ results in larger factor Φ(δ)

2 Find a good lower bound on the error probability
• packing with uniform error probability seems desirable

Outlook

• Packing: metric entropy and packing numbers

• Fano’s method: |V| ≥ 2 and multiple hypothesis test

• Le Cam’s method: |V| = 2 and binary hypothesis test (lect
10)

• Assouad’s method:|V| = 2d and multiple binary hypothesis
tests (lect 10)
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Covering - Metric entropy

Q: How many balls of radius δ are needed to cover the space Θ?

Definition
The set {θ1, . . . , θN} is a δ-cover of the non-empty set Θ with
respect to metric ρ if for any point θ ∈ Θ there exists a
v ∈ {1, . . . , N} such that ρ(θ, θv) ≤ δ. The δ-covering number is

N(δ,Θ, ρ) = inf{N ∈ N : ∃ δ-cover{θ1, . . . , θN} of Θ}.

Then the metric entropy of Θ is defined as logN(δ, θ, ρ).

Example: Unit cubes in R: N(δ, [−1, 1], | · |) ≤ 1
δ + 1

• Let Θ be interval [−1, 1] ⊂ R and metric ρ(θ, θ′) = |θ − θ′|.
• Divide interval in L = b1

δ c+ 1 sub-intervals with center-points
θi = −1 + 2(i− 1)δ for all i = 1, . . . , L gives result.

• HW: N(δ, [−1, 1]d, ‖ · ‖∞) ≤ (1
δ + 1)d for unit cubes in Rd.
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Packing
Q: How many balls of radius δ can be disjointly placed in space Θ?

Definition
The set {θ1, . . . , θM} is a δ-packing of the non-empty set Θ with
respect to metric ρ if for all distinct v, v′ ∈ {1, 2, . . . ,M} such
that ρ(θv, θv′) > δ. The δ-packing number is

M(δ,Θ, ρ) = sup{M ∈ N : ∃ δ-packing{θ1, . . . , θM} of Θ}.

Lemma

M(2δ,Θ, ρ) ≤ N(δ,Θ, ρ) ≤M(δ,Θ, ρ)

Proof: HW!

• Example: Unit cubes in R: M(2δ, [−1, 1], | · |) ≥ b1
δ c since

|θi − θj | ≥ 2δ > δ for all i 6= j (θi defined as before).
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Example: Covering of a parametric function family

• Consider function class P = {fθ : [0, 1]→ R : θ ∈ [0, 1]} with
fθ(x) = 1− e−θx and norm ‖f − g‖∞ = sup

x∈[0,1]
|f(x)− g(x)|.

1 +

⌊
1− 1/e

2δ

⌋
≤ N(δ,P, ‖ · ‖∞) ≤ 1

2δ
+ 2

• Upper bound: Set T = b 1
2δ c and θk = 2δk, for k = 0, 1, . . . , T

and θT+1 = 1. Then {fθ0 , . . . , fθT+1
} forms a δ-cover of P.

• For any fθ ∈ P there exists θk such that |θk − θ| ≤ δ
⇒ ‖fθk − fθ‖∞ = maxx∈[0,1] |e−θkx − e−θx| ≤ |θk − θ| ≤ δ
⇒ N(δ,P, ‖ · ‖∞) ≤ T + 2 ≤ 1

2δ + 2

• Lower bound: Construct a packing as follows; set θ0 = 0 and
θk = − log(1− δk) for k as long as − log(1− δk) ≤ 1

• i.e., k ≤ T for 1
e = 1− δT . Note that T ≥ b 1−1/e

δ c.
• We have ‖fθs − fθt‖∞ ≥ |fθs(1)− fθt(1)| ≥ δ ∀s 6= t

⇒ M(δ,P, ‖ · ‖∞) ≥ b 1−1/e
δ c+ 1 so that by the previous Lemma

N(δ,P, ‖ · ‖∞) ≥M(2δ,P, ‖ · ‖∞) ≥ b 1−1/e
2δ c+ 1.
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Volume ratios and metric entropy

Obviously, the volume of the set Θ governs the metric entropy.
This can be made more precise if the set Θ is a unit `q-ball:

B
d
q = {x ∈ Rd : ‖x‖q ≤ 1}

Lemma (
1

δ

)d
≤ N(δ,Bd

q , ‖ · ‖q) ≤
(

1 +
2

δ

)d

• Thus, the metric entropy logN(δ,Bd
q , ‖ · ‖q) scales linearly

with the dimension d and logarithmically with 1/δ.

•
(

1
δ

)d vol(Bdq)

vol(Bdp)
≤ N(δ,Bd

q , ‖ · ‖p} ≤
vol( 2

δ
B
d
q+Bdp)

vol(Bdp)
actually holds.
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Proof of Lemma

• Lower bound: Let {v1 . . . vN} be a δ-cover of Bd
q , then

vol(Bd
q) ≤

N∑
i=1

vol(δBd
q + vi) = Nvol(δBd

q) = Nvol(Bd
q)δ

d

• Upper bound: Let V be δ/2-packing with maximal
cardinality. Then N(δ,Bdq , ‖ · ‖dq) ≥M(δ,Bdq , ‖ · ‖dq) = |V|.
The balls { δ2B

d
q + vi}Mi=1 are all disjoint and are contained in

Bdq + δ
2B

d
q .

M∑
i=1

vol( δ2B
d
q + vi) = M

(
δ
2

)d
vol(Bdq)

≤ vol
(
Bdq + δ

2B
d
q

)
=
(
1 + δ

2

)d
vol(Bdq)

• Divide both sides by vol(Bdq) give the bounds. �
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Fano’s method - Testing on packings with |V| > 2

• Fano’s inequality: For any Markov chain V −X − V̂ we have

h2(P(V 6= V̂ )) + P(V 6= V̂ ) log(|V| − 1) ≥ H(V |V̂ )

• For V uniformly distributed Fano’s ineq implies

P(V 6= V̂ ) ≥ 1− I(V ;X) + log 2

log(|V|)
(2)

since h2(P(V 6= V̂ )) ≤ log 2, log(|V| − 1) ≤ log(|V|) = H(V ),
H(V |V̂ ) = H(V )− I(V ; V̂ ) and I(V ; V̂ ) ≤ I(V ;X) due to
the data processing inequality.

• Fano’s method: Let {θ(Pv)}v∈V be a 2δ-packing. Assume V
is uniformly distributed over V and data X ∼ Pv for V = v.

M(θ(P),Φ◦ρ) ≥ Φ(δ) inf
Ψ

P(Ψ(X) 6= V )
(2)

≥ Φ(δ)

[
1− I(V ;X) + log 2

log(|V|)

]

Tobias Oechtering 11/18



Discussion on Fano’s method

M(θ(P),Φ ◦ ρ) ≥ Φ(δ)

[
1− I(V ;X) + log 2

log(|V|)

]
• With decreasing δ,

• Φ(δ) decreases (lower bound becomes worse), and
• the minimum between different Pv becomes smaller which

makes the hypothesis testing more challenging (error prob
increases). H(V |X) and |V| will increase so that
I(V ;X)/ log(|V|) decreases (lower bound becomes better).

• Practical attempt on how to deal with tradeoff: Pick
2δ-packing with δ as small as possible but keeping the mutual

information sufficiently small, e.g such that I(V ;X)+log 2
log(|V|) ≤ 1

2 .

• Mixture representation of mutual information I(V ;X)
• mixture distribution: P̄ =

∑
v π(v)Pv (= PX marginal)

I(V ;X) = D(PXV ||PXPV ) =
∑
v

π(v)D(PX|V=v︸ ︷︷ ︸
=Pv

|| PX︸︷︷︸
=P̄

)
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Local Fano method (aka generalized 3 Fano method )

• V is uniformly distributed, i.e. π(v) = 1
|V|

• Since − log(·) is convex, Jensen’s inequality implies

I(V ;X) =
1

|V|
∑
v∈V

D(Pv||P̄ ) ≤ 1

|V|2
∑
v,v′∈V

D(Pv||Pv′)

• Local packing is a 2δ-packing {Pv}v∈V , i.e. we have
ρ(θ(Pv), θ(Pv′)) ≥ 2δ for all v 6= v′, that additionally satisfies

D(Pv||Pv′) ≤ κ2δ2 ∀v, v′ ∈ V for some κ > 0.

• Local Fano method. Find a local packing which additionally
satisfies log |V| ≥ 2(κ2δ2 + log 2), then

M(θ(P),Φ ◦ ρ) ≥ 1

2
Φ(δ)

• Remaining difficulty is to construct such a packing.
3Commonly used name is misleading since approach is based on a weak

bound on the mutual information and not a generalization.
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Yang-Barron method

• What to do if we cannot construct a concrete local packing?
• Idea: Upper bound I(V ;X) that holds for any packing!

Lemma (Yang-Barron method)

Let NKL(ε,P) denote the ε-covering of P using the square-root of
the KL-divergence as metric (while it is not a metric), then

I(V ;X) ≤ inf
ε>0

(
ε2 + logNKL(ε,P)

)
Bound can be then used in Fano’s method given a suitable δ.

• Aim I(V ;X)+log(2)
log |V| ≤ 1

2 and log |V| ≤ logM(2δ,Θ(P), ρ)

results in condition to be satisfied for a choice of (ε, δ):
logM(2δ,Θ(P), ρ) ≥ 2(ε2 + logNKL(ε,P) + log 2).

• Practical approach: First choose εn such that
εn ≥ NKL(εn,P), then choose largest δn > 0 such that
logM(2δ,Θ(P), ρ) ≥ 4ε2n + 2 log 2.
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Proof Yang-Barron method

• We have P̄ = 1
|V|
∑

v Pv, then for any P ∈ P we have4

I(V ;X) =
1

|V|
∑
v∈V

D(Pv||P̄ ) ≤ 1

|V|
∑
v∈V

D(Pv||P ) ≤ max
v∈V

D(Pv||P )

• Let {Pκ1 , . . . , PκN } be an ε-covering of P using
√
D(·||·), i.e.

for each Pv there exists Pκn such that D(Pv||Pκn) ≤ ε2.

• Set P = 1
N

∑N
i=1 Pκi , then

D(Pv||P ) = EPv

[
log

dPv
1
N

∑N
i=1 dPκi

]
≤ EPv

[
log

dPv
1
N dPκn

]
≤ D(Pv||Pκn) + logN ≤ ε2 + logN

• The result follows since the previous holds for all v ∈ V and
ε > 0. �

4Reminder, P̄ is minimizer of minP∈P
1
|V|

∑
v∈V D(Pv||P ).
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Reminder

Theorem

I(X;Y ) = min
Q

D(PY |X ||Q|PX)

Proof:

I(X;Y ) = D(PY |X ||PY |PX) = E log
PY |X

Q

Q

PY

= D(PY |X ||Q|PX)−D(PY ||Q) ≤ D(PY |X ||Q|PX)

since D(PY ||Q) ≥ 0. �
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Non-parametric problem: Density estimation

• Given X1, . . . , Xn
iid∼ pθ ∈ P for some θ ∈ Θ and estimate

p̂ = p̂(·|x1, . . . , xn)

• Consider KL divergence D(pθ||p̂) as loss fct and average risk

EpθD(pθ||p̂) =

∫
D(pθ||p̂(·|Xn = xn))p⊗nθ (dxn)

• An upper bound for minimax risk:

Theorem (Yang-Barron)

inf
p̂

sup
θ∈Θ

EpθD(pθ||p̂) ≤ inf
ε>0

1

n
logNKL(ε,P) + ε
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Proof
• Choose estimator p̂(·|xn) = 1

n

∑n
i=1 pXi|Xi−1(·|xi−1) with

pXi|Xi−1(xi|xi−1) =
∫ ∏i

j=1 pκ(xj)π(dκ)∫ ∏i−1
j=1 pκ(xj)π(dκ)

.

• Note, prior π(κ) is used for the definition of the estimator only.

• Due to convexity (a), chain rule of KL divergence (b) we have

EpθD(pθ‖p̂) = EpθD
(
pθ

∥∥∥ 1

n

n∑
i=1

pXi|Xi−1

)
(a)

≤ 1

n

n∑
i=1

EpθD(pθ‖pXi|Xi−1
)

(b)
=

1

n
EpθD(p⊗nθ ‖pXn)

• Fix ε > 0, let {pκ1 , . . . pκN } be an optimal ε-covering of P

EpθD(p⊗nθ ‖pXn) ≤ EpθD
(
p⊗nθ

∥∥∥ 1

N

N∑
i=1

p⊗nκi

)
= E log

[ p⊗nθ
1
N

∑N
i=1 p

⊗n
κi

]
≤ E log

[ p⊗nθ
1
N p
⊗n
κk

]
≤ logN + nε since ∃k : D(pθ‖pκk) ≤ ε �

Tobias Oechtering 18/18


