Infotheory for Statistics and Learning

Lecture 9

e Minimax bounds!

e From estimation to testing
e Packing and metric entropy
e Fano's method
e Yang-Barron method

based on notes by J. Duchi and Y. Wu and book by M. Wainwright
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Generalized Framework of Statistical Decision Problem

e P denotes class of distributions defined on sample space X.
e 0 : P — O denotes function that maps distribution P on 6(P)

e A generalized framework, since (P) might not uniquely
determine P (i.e. 8(P) = 0(F,) iff P, = P,). Previously, 6
parametrized the family of distributions P = {Py : 6 € O}.

e IID data: 2" = (x1,...,x,) are n iid observations X; ~ P

o Estimator: measurable function 6 : X" — ©
Minimax risk: Let p: © x © — R, be a metricand & : R, — R
a non-decreasing function (e.g. p(#,6')) = |0 — ¢’| and ®(t) = t2).
The minimax risk? 9, (0(P), ® o p) is defined as

M (6(P). @ 0 p) = inf sup Ep [2(p(B(X"), 6(P)

2Notation 8(P) means we consider §(P) for P € P; M, (6(P),® o p)
corresponds to R* previously and will be abbreviated with 0t,,.
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From estimation to testing

Key idea: Reduce estimation problem to testing problem which
allows to lower bound estimation risk by testing error probability!

Construction of hypothesis testing problem:

® Let {P,},cy denote finite set of distributions P, € P for all
v € V with finite index set V.

e Induced {6(P,)},cy parameter set is called a 25-packing if
p(0(P,),0(Py)) > 26 Yo # '

® Assume RV V uniformly distributed over V that chooses P, if
V = v; samples 2" = (x1,...,x,) are then iid drawn X; ~ P,

© Let U : X" — V denote an arbitrary but fixed test function to
guess v given z™ with error probability P[¥(X") # V].

Theorem
Mo (6(P), B 0 p) > B(8) inf B{U(X") £ V] (1)
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Proof

e For arbitrary but fixed P, 6 and 0 we have
E[0(p(8,0)| > E |@(0)1{p(0,0) = 6}] = ®(3)P |p(0,0) > ¢|

o For testing fct () = arg milrjl{p(é, 0,)} with 6, = 0(P,)
ve

o if p(0,0,) <&, then W(0) = v since A-ineq & 25-packing
implies p(0, 6, 1) = p(0u, 00r) — (é9)>25—5:5,VU’7€v
e equivalently W(0) # v implies p(@ 6,) > p so that we have
Plp(8,6,) > 8|V = o] > P[¥(0) # vV =]

. 1 .
supE [q»(p(e, 9(P)))} > =Y ()P [p(@, 0,) > 5|V = v}
Pep VI =,
> @(5)‘)1} SR [w(d) # 0|V =] > 8()inf P [w(d) # V]
veEY
e Result follows taking the infimum over all estimators 6. O
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Remaining challenge and outlook

M, (0(P), @ 0 p) = @(3) inf PIY(X™) # V]

Remaining challenges for minimax lower bound:
@ Find a good 26-packing
e larger ¢ results in larger factor ®(0)
® Find a good lower bound on the error probability
e packing with uniform error probability seems desirable

Outlook
e Packing: metric entropy and packing numbers
e Fano’'s method: |V| > 2 and multiple hypothesis test
e Le Cam’s method: |V| =2 and binary hypothesis test (lect
10)
e Assouad's method:|V| = 27 and multiple binary hypothesis
tests (lect 10)
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Covering - Metric entropy

Q: How many balls of radius ¢ are needed to cover the space ©7

Definition

The set {0;,...,0n} is a d-cover of the non-empty set © with
respect to metric p if for any point § € © there exists a
ve{l,...,N} such that p(6,6,) < 6. The d-covering number is

N(4,0,p) =inf{N € N: 3 §-cover{fy,...,0n} of O}.
Then the metric entropy of © is defined as log N (4,0, p).

Example: Unit cubes in R: N(4,[—1,1],|-|) < 1 +1
e Let © be interval [—1,1] C R and metric p(6,60") = |0 — ¢'|.
e Divide interval in L = [$] + 1 sub-intervals with center-points
0; =—1+4+2(i—1) forall i =1,..., L gives result.

o HW: N(6,[—1,1]%, || - [loc) < (3 4+ 1)¢ for unit cubes in RY.
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Packing
Q: How many balls of radius ¢ can be disjointly placed in space ©7
Definition
The set {01,...,0x} is a d-packing of the non-empty set © with

respect to metric p if for all distinct v, v' € {1,2,..., M} such
that p(6,,0,) > 6. The d-packing number is

M(6,0,p) =sup{M € N: 3 s-packing{b1,...,0p} of ©}.

Lemma
M(26,0,p) < N(4,0,p) < M(5,0,p)
Proof: HW!

e Example: Unit cubes in R: M(26,[—1,1],|-[) > |}] since

|6; — 0;] > 26 > 0 for all i # j (6; defined as before).

Tobias Oechtering 7/18



Example: Covering of a parametric function family

e Consider function class P = {fy : [0,1] = R : 6 € [0,1]} with

fo(z) =1 —¢% and norm || f — glloc = . |f(z) — g(z)|.
x€|0,

1-1/e 1
1 < N(6 . < — 42
| P = NEP ) < g5+
e Upper bound: Set T = L%j and 0 = 20k, for k =0,1,...,T
and 0741 = 1. Then {fy,,..., for,, } forms a d-cover of P.
e For any fp € P there exists 6, such that |6, — 0] < ¢
= [ for, — folloo = maxgepo1) [ — e <[, — 0] <6
= NPl lloe) ST +2 < 55 +2
e Lower bound: Construct a packing as follows; set §p = 0 and
0 = —log(1 — 0k) for k as long as —log(1 — 0k) < 1
o ie, k<Tforl=1-06T. Notethat T > [1=}°|,
e We have || fo, = fo,lloo > |fo.(1) = fo,(1)| = 0 Vs #
= M, P, o) > [1751/‘1 + 1 so that by the previous Lemma
NP - lloe) 2 M(25,P, | - lloo) > [155°) + 1.
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Volume ratios and metric entropy

Obviously, the volume of the set © governs the metric entropy.
This can be made more precise if the set O is a unit £,-ball:

={zeR: |zl <1}

Lemma

1\¢ p 2\ ¢
(5) = vesil < (1+3)

e Thus, the metric entropy log N (9, IBg, || - llq) scales linearly
with the dimension d and logarithmically with 1/0.

d vol(IB vol +B
o (3)1UBD o N(g B |-} < GBI ED

vol(BY) voI(I5g) actually holds.
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Proof of Lemma

e Lower bound: Let {v;...vy} be a d-cover of IBg, then

N
vol(BY) <) " vol(6BY + v;) = Nvol(6BY) = Nvol(Bf)s“
i=1
e Upper bound: Let V be §/2-packing with maximal
cardinality. Then N(8,BS, |- [|4) > M(6, B, || - |9) = [V|.
The balls {%Bg +v;}M, are all disjoint and are contained in
d_ | omd
B¢ + SBY.

M

d
> vol(§BY + v;) = M (3)° vol(BY)
=1

d
< vol (B + 3B ) = (1 + §)" vol(B)

e Divide both sides by vol(IB%g) give the bounds. O
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Fano's method - Testing on packings with |V| > 2

e Fano's inequality: For any Markov chain V — X — V we have
ha(P(V # V) +B(V # V) log(|V| - 1) > H(V|V)

e For V uniformly distributed Fano’s ineq implies

- I(V;X) +1og2
PV#AV)>21— —————i—
VAV = )
since hy (P(V # V) <log?2, log(|V| — 1) < log(|V|) = H(V),
HWV|V)=HWV)-I(V;V)and I(V;V) < I(V; X) due to
the data processing inequality.
e Fano's method: Let {0(P,)},cy be a 20-packing. Assume V'
is uniformly distributed over V and data X ~ P, for V = v.

O(P), op) 2 2(5) gt P(U(X) £ V) 2 2(6) 1 - I(Vl;j;g\;;ow

(2)
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Discussion on Fano's method

I(V; X) 4 log2

MOP), o p) = B) |1 - =

e With decreasing 4,

e O(0) decreases (lower bound becomes worse), and

e the minimum between different P, becomes smaller which
makes the hypothesis testing more challenging (error prob
increases). H(V|X) and |V| will increase so that
I(V; X)/log(]V|) decreases (lower bound becomes better).

e Practical attempt on how to deal with tradeoff: Pick
2§-packing with § as small as possible but keeping the mutual

. . . I(V;X)+log2 _ 1
information sufficiently small, e.g such that e S 3

e Mixture representation of mutual information I(V; X)
e mixture distribution: P =3 m(v)P, (= Px marginal)

I(V: X) = D(Pyv||PxPy) = D(Pyiy—y|| P
( ) (Pxv||PxPy) ZJ:W(U) (Px|v=yll )f)
_p, =h
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Local Fano method (aka generalized® Fano method )

e V is uniformly distributed, i.e. m(v) = ﬁ
e Since —log(-) is convex, Jensen's inequality implies

)= SPEIP < b 3 DiRIR
veY v’ €V

e Local packing is a 25-packing {P,},cy, i.e. we have
p(6(Py),0(P,)) > 26 for all v # o', that additionally satisfies

D(P,||Py) < k*§* Yu,v' €V  for some k > 0.

e Local Fano method. Find a local packing which additionally
satisfies log [V| > 2(k262 + log 2), then

MO(P), @ 0 p) > S8 (5)

e Remaining difficulty is to construct such a packing.

3Commonly used name is misleading since approach is based on a weak

bound on the mutual information and not a generalization.
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Yang-Barron method

e What to do if we cannot construct a concrete local packing?
e ldea: Upper bound I(V; X) that holds for any packing!

Lemma (Yang-Barron method)

Let Nk (e, P) denote the e-covering of P using the square-root of
the KL-divergence as metric (while it is not a metric), then

. <3 2
I(V;X) < inf (¢* 4+ log Nk (e, P))

Bound can be then used in Fano's method given a suitable §.

e Aim %ﬁ?g@ < £ and log |V| < log M (26,0(P), p)
results in condition to be satisfied for a choice of (e, ):
log M (26,0(P), p) > 2(e? + log Nk 1.(e, P) + log 2).

e Practical approach: First choose €, such that
€n > Nir(€n, P), then choose largest d,, > 0 such that
log M (25,0(P), p) > 4€2 + 21og 2.
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Proof Yang-Barron method

e We have P = ‘—\14 ZU P,, then for any P € P we have?

I(V;X) = MZDPHP HZDP||P)<maXD(PHP)
veY

o Let {P.,,...,P.y} be an e-covering of P using \/D(:||-), i.e
for each P, there exists Py, such that D(P,||Py,) < €
e Set P = % Zf\il P,,, then
dP, dpP,
D(P,||P) = Ep, |1 7”] Ep, |1 |
(RIP) = B [log i o o8 i
< D(P,||P.,) +log N < €* +log N

e The result follows since the previous holds for all v € V and
e> 0. Il

*Reminder, P is minimizer of minpep \V\ > vy D(P]|P).
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Reminder

Theorem
I(X;Y) = innD(PY|X||Q‘PX)
Proof:
Pyix @
I(X;Y) = D(Py|x||Py|Px) = Elog —— Q0 Py
= D(Py|x||Q|Px) — D(Py||Q) < D(Py|x||Q|Px)
since D(Py||Q) > 0. O
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Non-parametric problem: Density estimation

. jid .
e Given X1,..., X, ~ py € P for some 0 € © and estimate

p=p(lr1,...,2n)
e Consider KL divergence D(pyl||p) as loss fct and average risk

B, Dlpallp) = [ Doallp(1X" = a")p"(da")
e An upper bound for minimax risk:

Theorem (Yang-Barron)

1
inf sup Ep,, D(pg||p) < inf —log Nk (e, P) + €
P 9O e0n
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Proof
e Choose estimator p(-|z") = L 377" | px, xi-1(-]z""1) with
) . IHJ 1pn(1’1)7"(d”§)
pX‘|X"*1(x7,|x ) H; 1pn(xj)ﬂ'(d:‘€)
e Note, prior m(k) is used for the definition of the estimator only.
e Due to convexity (a), chain rule of KL divergence (b) we have

) 1 ¢
Ey, D(pallp) = Ep, D (pa| — > pxcjxi)
i=1

1

n

=~

(
< *Z D(psllpxix, 1) = ~Epe D(0g" [ px7)

e Fix e >0, let {pm, ...Dry } be an optimal e-covering of P

L O e
N i=1 % Dim1 pE"

Ri

By, D(p" Ipx) < D (p5"

py"
< Elog |: 1 6®n
Np"‘ik
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] <log N + ne since 3k : D(pg||px,) < € O



