Infotheory for Statistics and Learning

Lecture 1

- Entropy [PW:1],[CT:2,8]
- Relative entropy [PW:2], [CT:2]
- Mutual information [PW:3], [CT:2]
- f-divergence [PW:7]

Entropy

Over $(\mathbb{R}, \mathcal{B})$, consider a discrete $\mathrm{RV} X$ with all probability in a countable set $\mathcal{X} \in \mathcal{B}$, the alphabet of X
Let $p_{X}(x)$ be the pmf of X for $x \in \mathcal{X}$
The (Shannon) entropy of X

$$
H(X)=-\sum_{x \in \mathcal{X}} p_{X}(x) \log p_{X}(x)
$$

- the logarithm is base-2 if not declared otherwise
- sometimes denoted $H\left(p_{X}\right)$ to emphasize the pmf p_{X}
- $H(X) \geq 0$ with $=$ only if $p_{X}(x)=1$ for some $x \in \mathcal{X}$
- $H(X) \leq \log |\mathcal{X}|$ (for $|\mathcal{X}|<\infty)$ with $=$ only if $p_{X}(x)=1 /|\mathcal{X}|$
- $H\left(p_{X}\right)$ is concave in p_{X}

For two discrete $\mathrm{RVs} X$ and Y, with alphabets \mathcal{X} and \mathcal{Y} and a joint pmf $p_{X Y}(x, y)$, we have the joint entropy

$$
H(X, Y)=-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p_{X Y}(x, y) \log p_{X Y}(x, y)
$$

Conditional entropy

$$
\begin{aligned}
H(Y \mid X) & =-\sum_{x} p_{X}(x) \sum_{y} p_{Y \mid X}(y \mid x) \log p_{Y \mid X}(y \mid x) \\
& =\sum_{x} p_{X}(x) H(Y \mid X=x) \\
& =H(X, Y)-H(X)
\end{aligned}
$$

Extension to >2 variables straightforward

Relative Entropy

Assume P and Q are two prob. measures over (Ω, \mathcal{A})
Emphasize expectation w.r.t. $P($ or $Q)$ as $E_{P}[\cdot]$ (or $\left.E_{Q}[\cdot]\right)$
The relative entropy between P and Q

$$
D(P \| Q)=E_{P}\left[\log \frac{d P}{d Q}\right]
$$

if $P \ll Q$ and $D(P \| Q)=\infty$ otherwise

- $D(P \| Q) \geq 0$ with $=$ only if $P=Q$ on \mathcal{A}
- $D(P \| Q)$ is convex in (P, Q), i.e.

$$
D\left(\lambda P_{1}+(1-\lambda) P_{2} \| \lambda Q_{1}+(1-\lambda) Q_{2}\right) \leq \lambda D\left(P_{1} \| Q_{1}\right)+(1-\lambda) D\left(P_{2} \| Q_{2}\right)
$$

Also known as divergence, or Kullback-Leibler (KL) divergence $D(P \| Q$) is not a metric (why?), but is still generally considered a measure of "distance" between P and Q

For discrete RVs: $P \rightarrow p_{X}$ and $Q \rightarrow p_{Y}$,

$$
D\left(p_{X} \| p_{Y}\right)=\sum_{x} p_{X}(x) \log \frac{p_{X}(x)}{p_{Y}(x)}
$$

For abs. continuous RVs: $P \rightarrow P_{X} \rightarrow f_{X}$ and $Q \rightarrow P_{Y} \rightarrow f_{Y}$,

$$
D\left(P_{X} \| P_{Y}\right)=D\left(f_{X} \| f_{Y}\right)=\int f_{X}(x) \log \frac{f_{X}(x)}{f_{Y}(x)} d x
$$

For a discrete RV X (with $|\mathcal{X}|<\infty$), note that

$$
H(X)=\log |\mathcal{X}|-\sum_{x} p_{X}(x) \log \frac{p_{X}(x)}{1 /|\mathcal{X}|}
$$

$\Rightarrow H\left(p_{X}\right)$ is concave in p_{X}, entropy is negative distance to uniform

Mutual Information

Two variables X and Y with joint distribution $P_{X Y}$ on $\left(\mathbb{R}^{2}, \mathcal{B}^{2}\right)$ and marginals P_{X} and P_{Y} on $(\mathbb{R}, \mathcal{B})$
Mutual information

$$
I(X ; Y)=D\left(P_{X Y} \| P_{X} \otimes P_{Y}\right)
$$

where $P_{X} \otimes P_{Y}$ is the product distribution on $\left(\mathbb{R}^{2}, \mathcal{B}^{2}\right)$
Discrete:

$$
I(X ; Y)=\sum_{x, y} p_{X Y}(x, y) \log \frac{p_{X Y}(x, y)}{p_{X}(x) p_{Y}(y)}
$$

Abs. continuous:

$$
I(X ; Y)=\int f_{X Y}(x, y) \log \frac{f_{X Y}(x, y)}{f_{X}(x) f_{Y}(y)} d x d y
$$

For discrete RV s, we see that

$$
\begin{aligned}
I(X ; Y) & =H(X)+H(Y)-H(X, Y) \\
& =H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
\end{aligned}
$$

For abs. continuous P_{X} define differential entropy as

$$
h(X)=-D\left(P_{X} \| \lambda\right)=-\int f_{X}(x) \log f_{X}(x) d \lambda
$$

where λ is Lebesgue measure on $(\mathbb{R}, \mathcal{B})$, then we get

$$
\begin{aligned}
I(X ; Y) & =h(X)+h(Y)-h(X, Y) \\
& =h(X)-h(X \mid Y)=h(Y)-h(Y \mid X)
\end{aligned}
$$

Saying $h(X)=-D\left(P_{X} \| \lambda\right)$ is a slight abuse, since λ is not a probability measure. Still, $h(X)$ can be interpreted as negative distance to "uniform"

Since

$$
I(X ; Y)=D\left(P_{X Y} \| P_{X} \otimes P_{Y}\right)
$$

$I(X ; Y) \geq 0$ with $=$ only if $P_{X Y}=P_{X} \otimes P_{Y}$, i.e. X and Y indep. Furthermore, since

$$
I(X ; Y)=H(Y)-H(Y \mid X) \quad \text { or } \quad I(X ; Y)=h(Y)-h(Y \mid X)
$$

we get $H(Y \mid X) \leq H(Y)$ and $h(Y \mid X) \leq h(Y)$, conditioning reduces entropy
$f:(0, \infty) \rightarrow \mathbb{R}$ convex, strictly convex at $x=1$ and $f(1)=0$
Two probability measures P and Q on (Ω, \mathcal{A})
μ any measure on (Ω, \mathcal{A}) such that both $P \ll \mu$ and $Q \ll \mu$
Let

$$
p(\omega)=\frac{d P}{d \mu}(\omega), \quad q(\omega)=\frac{d Q}{d \mu}(\omega)
$$

The f-divergence between P and Q

$$
D_{f}(P \| Q)=\int f\left(\frac{p(\omega)}{q(\omega)}\right) d Q=E_{Q}\left[f\left(\frac{p(\omega)}{q(\omega)}\right)\right]
$$

When $P \ll Q$ we have

$$
\frac{p(\omega)}{q(\omega)}=\frac{d P}{d Q}(\omega) \text { and thus } D_{f}(P \| Q)=E_{Q}\left[f\left(\frac{d P}{d Q}(\omega)\right)\right]
$$

When both P and Q are discrete, i.e. there is a countable set $K \in \mathcal{A}$ such that $P(K)=Q(K)=1$, let $\mu=$ counting measure on K, i.e. $\mu(F)=|F|$ for $F \subset K$. Then p and q are pmf's and

$$
D_{f}(P \| Q)=\sum_{\omega \in K} q(\omega) f\left(\frac{p(\omega)}{q(\omega)}\right)
$$

When $(\Omega, \mathcal{A})=(\mathbb{R}, \mathcal{B})$ and both P and Q have $\mathrm{R}-\mathrm{N}$ derivatives w.r.t. Lebesgue measure $\mu=\lambda$ on \mathcal{B}, then p and q are pdfs and

$$
D_{f}(P \| Q)=\int q(x) f\left(\frac{p(x)}{q(x)}\right) d x
$$

In general, $D_{f}(P \| Q) \geq 0$ with $=$ only for $P=Q$ on \mathcal{A}
Also, $D_{f}(P \| Q)$ is convex in (P, Q)

Examples (assuming $P \ll Q$):
Relative entropy, $f(x)=x \log x$

$$
D_{f}(P \| Q)=D(P \| Q)=E_{Q}\left[\frac{d P}{d Q} \log \frac{d P}{d Q}\right]=E_{P}\left[\log \frac{d P}{d Q}\right]
$$

Total variation, $f(x)=\frac{1}{2}|x-1|$

$$
D_{f}(P \| Q)=\operatorname{TV}(P, Q)=\frac{1}{2} E_{Q}\left|\frac{d P}{d Q}-1\right|=\sup _{A \in \mathcal{A}}(P(A)-Q(A))
$$

- discrete

$$
\operatorname{TV}(P, Q)=\frac{1}{2} \sum_{x}|p(x)-q(x)|
$$

- abs. continuous

$$
\operatorname{TV}(P, Q)=\frac{1}{2} \int|p(x)-q(x)| d x
$$

χ^{2}-divergence, $\chi^{2}(P, Q), f(x)=(x-1)^{2}$
Squared Hellinger distance, $H^{2}(P, Q), f(x)=(1-\sqrt{x})^{2}$
Hellinger distance, $H(P, Q)=\sqrt{H^{2}(P, Q)}$
Le Cam distance, $\mathrm{LC}(P \| Q), f(x)=(1-x) /(2 x+2)$
Jensen-Shannon symmetrized divergence,

$$
\begin{aligned}
f(x) & =x \log \frac{2 x}{x+1}+\log \frac{2}{x+1} \\
\mathrm{JS}(P \| Q) & =D\left(P \| \frac{P+Q}{2}\right)+D\left(Q \| \frac{P+Q}{2}\right)
\end{aligned}
$$

Consider $D_{f}(P \| Q)$ and $D_{g}(P \| Q)$ for P and Q on (Ω, \mathcal{A})
Let

$$
\mathcal{R}(f, g)=\left\{\left(D_{f}, D_{g}\right): \text { over } P \text { and } Q\right\}
$$

and $\mathcal{R}_{2}(f, g)=\mathcal{R}(f, g)$ for the special case $\Omega=\{0,1\}$ and $\mathcal{A}=\sigma(\{0,1\})=\{\emptyset,\{0\},\{1\},\{0,1\}\}$
Theorem: For any $(\Omega, \mathcal{A}), \mathcal{R}=$ the convex hull of \mathcal{R}_{2}
Let

$$
F(x)=\inf \{y:(x, y) \in \mathcal{R}(f, g)\}
$$

then

$$
D_{g}(P \| Q) \geq F\left(D_{f}(P \| Q)\right)
$$

Example: For $g(x)=x \ln x$ and $f(x)=|x-1|$, it can be proved ${ }^{1}$ that $(x, F(x))$ is obtained from

$$
\begin{aligned}
x & =t\left(1-\left(\operatorname{coth}(t)-\frac{1}{t}\right)^{2}\right) \\
F & =\log \left(\frac{t}{\sinh (t)}\right)+t \operatorname{coth}(t)-\frac{t^{2}}{\sinh ^{2}(t)}
\end{aligned}
$$

by varying $t \in(0, \infty)$
That is, given a t, resulting in (x, F), we have

$$
D_{g}(P \| Q)=D(P \| Q) \geq F \text { for } D_{f}(P \| Q)=2 \operatorname{TV}(P, Q)=x
$$

(with $D(P \| Q)$ in nats, i.e. based on $\ln x$)

[^0]

Blue: The curve $(x(t), F(t))$ for $t>0$
Green: The function $x^{2} / 2$
Thus we have Pinsker's inequality

$$
D(P \| Q) \geq \frac{1}{2}\left(D_{f}(P \| Q)\right)^{2}=2(\operatorname{TV}(P, Q))^{2}
$$

Or, for $D(P \| Q)$ in bits: $D(P \| Q) \geq 2 \log e(\operatorname{TV}(P, Q))^{2}$

Other inequalities between f-divergences:

$$
\begin{gathered}
\frac{1}{2} H^{2}(P, Q) \leq \mathrm{TV}(P, Q) \leq H(P, Q) \sqrt{1-H^{2}(P, Q) / 4} \\
D(P \| Q) \geq 2 \log \frac{2}{2-H^{2}(P, Q)} \\
D(P \| Q) \leq \log \left(1+\chi^{2}(P \| Q)\right) \\
\frac{1}{2} H^{2}(P, Q) \leq \mathrm{LC}(P, Q) \leq H^{2}(P, Q) \\
\chi^{2}(P \| Q) \geq 4(\operatorname{TV}(P, Q))^{2}
\end{gathered}
$$

For discrete p and q, "reverse Pinsker"

$$
D(p \| q) \leq \log \left(1+\frac{2}{\min _{x} q(x)}(\operatorname{TV}(p, q))^{2}\right) \leq \frac{2 \log e}{\min _{x} q(x)}(\operatorname{TV}(p, q))^{2}
$$

[^0]: ${ }^{1}$ See A. A. Fedotov, P. Harremoës and F. Topsøe, "Refinements of Pinsker's inequality," IEEE Trans. IT, 2003. The paper uses $V(P \| Q)=2$ TV $(P \| Q)$

