
Infotheory for Statistics and Learning
Lecture 1

• Entropy [PW:1],[CT:2,8]

• Relative entropy [PW:2], [CT:2]

• Mutual information [PW:3], [CT:2]

• f -divergence [PW:7]
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Entropy

Over (R,B), consider a discrete RV X with all probability in a
countable set X ∈ B, the alphabet of X

Let pX(x) be the pmf of X for x ∈ X
The (Shannon) entropy of X

H(X) = −
∑

x∈X
pX(x) log pX(x)

• the logarithm is base-2 if not declared otherwise

• sometimes denoted H(pX) to emphasize the pmf pX
• H(X) ≥ 0 with = only if pX(x) = 1 for some x ∈ X
• H(X) ≤ log |X | (for |X | <∞) with = only if pX(x) = 1/|X |
• H(pX) is concave in pX
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For two discrete RVs X and Y , with alphabets X and Y and a
joint pmf pXY (x, y), we have the joint entropy

H(X,Y ) = −
∑

x∈X ,y∈Y
pXY (x, y) log pXY (x, y)

Conditional entropy

H(Y |X) = −
∑

x

pX(x)
∑

y

pY |X(y|x) log pY |X(y|x)

=
∑

x

pX(x)H(Y |X = x)

= H(X,Y )−H(X)

Extension to > 2 variables straightforward
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Relative Entropy

Assume P and Q are two prob. measures over (Ω,A)

Emphasize expectation w.r.t. P (or Q) as EP [·] (or EQ[·])
The relative entropy between P and Q

D(P‖Q) = EP

[
log

dP

dQ

]

if P � Q and D(P‖Q) =∞ otherwise

• D(P‖Q) ≥ 0 with = only if P = Q on A
• D(P‖Q) is convex in (P,Q), i.e.

D(λP1+(1−λ)P2‖λQ1+(1−λ)Q2) ≤ λD(P1‖Q1)+(1−λ)D(P2‖Q2)

Also known as divergence, or Kullback–Leibler (KL) divergence

D(P‖Q) is not a metric (why?), but is still generally considered a
measure of “distance” between P and Q
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For discrete RVs: P → pX and Q→ pY ,

D(pX‖pY ) =
∑

x

pX(x) log
pX(x)

pY (x)

For abs. continuous RVs : P → PX → fX and Q→ PY → fY ,

D(PX‖PY ) = D(fX‖fY ) =

∫
fX(x) log

fX(x)

fY (x)
dx

For a discrete RV X (with |X | <∞), note that

H(X) = log |X | −
∑

x

pX(x) log
pX(x)

1/|X |

⇒ H(pX) is concave in pX , entropy is negative distance to uniform
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Mutual Information

Two variables X and Y with joint distribution PXY on (R2,B2)
and marginals PX and PY on (R,B)

Mutual information

I(X;Y ) = D(PXY ‖PX ⊗ PY )

where PX ⊗ PY is the product distribution on (R2,B2)
Discrete:

I(X;Y ) =
∑

x,y

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)

Abs. continuous:

I(X;Y ) =

∫
fXY (x, y) log

fXY (x, y)

fX(x)fY (y)
dxdy
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For discrete RVs, we see that

I(X;Y ) = H(X) +H(Y )−H(X,Y )

= H(X)−H(X|Y ) = H(Y )−H(Y |X)

For abs. continuous PX define differential entropy as

h(X) = −D(PX‖λ) = −
∫
fX(x) log fX(x)dλ

where λ is Lebesgue measure on (R,B), then we get

I(X;Y ) = h(X) + h(Y )− h(X,Y )

= h(X)− h(X|Y ) = h(Y )− h(Y |X)

Saying h(X) = −D(PX‖λ) is a slight abuse, since λ is not a probability
measure. Still, h(X) can be interpreted as negative distance to “uniform”
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Since
I(X;Y ) = D(PXY ‖PX ⊗ PY )

I(X;Y ) ≥ 0 with = only if PXY = PX ⊗ PY , i.e. X and Y indep.

Furthermore, since

I(X;Y ) = H(Y )−H(Y |X) or I(X;Y ) = h(Y )− h(Y |X)

we get H(Y |X) ≤ H(Y ) and h(Y |X) ≤ h(Y ),
conditioning reduces entropy
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f -divergence

f : (0,∞)→ R convex, strictly convex at x = 1 and f(1) = 0

Two probability measures P and Q on (Ω,A)

µ any measure on (Ω,A) such that both P � µ and Q� µ

Let

p(ω) =
dP

dµ
(ω), q(ω) =

dQ

dµ
(ω)

The f -divergence between P and Q

Df (P‖Q) =

∫
f

(
p(ω)

q(ω)

)
dQ = EQ

[
f

(
p(ω)

q(ω)

)]

When P � Q we have

p(ω)

q(ω)
=
dP

dQ
(ω) and thus Df (P‖Q) = EQ

[
f

(
dP

dQ
(ω)

)]
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When both P and Q are discrete, i.e. there is a countable set
K ∈ A such that P (K) = Q(K) = 1, let µ = counting measure
on K, i.e. µ(F ) = |F | for F ⊂ K. Then p and q are pmf’s and

Df (P‖Q) =
∑

ω∈K
q(ω)f

(
p(ω)

q(ω)

)

When (Ω,A) = (R,B) and both P and Q have R–N derivatives
w.r.t. Lebesgue measure µ = λ on B, then p and q are pdfs and

Df (P‖Q) =

∫
q(x)f

(
p(x)

q(x)

)
dx

In general, Df (P‖Q) ≥ 0 with = only for P = Q on A
Also, Df (P‖Q) is convex in (P,Q)
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Examples (assuming P � Q):

Relative entropy, f(x) = x log x

Df (P‖Q) = D(P‖Q) = EQ

[
dP

dQ
log

dP

dQ

]
= EP

[
log

dP

dQ

]

Total variation, f(x) = 1
2 |x− 1|

Df (P‖Q) = TV(P,Q) =
1

2
EQ

∣∣∣∣
dP

dQ
− 1

∣∣∣∣ = sup
A∈A

(P (A)−Q(A))

• discrete
TV(P,Q) =

1

2

∑

x

|p(x)− q(x)|

• abs. continuous

TV(P,Q) =
1

2

∫
|p(x)− q(x)|dx
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χ2-divergence, χ2(P,Q), f(x) = (x− 1)2

Squared Hellinger distance, H2(P,Q), f(x) = (1−√x)2

Hellinger distance, H(P,Q) =
√
H2(P,Q)

Le Cam distance, LC(P‖Q), f(x) = (1− x)/(2x+ 2)

Jensen–Shannon symmetrized divergence,

f(x) = x log
2x

x+ 1
+ log

2

x+ 1

JS(P‖Q) = D

(
P

∥∥∥∥
P +Q

2

)
+D

(
Q

∥∥∥∥
P +Q

2

)
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Inequalities for f -divergences

Consider Df (P‖Q) and Dg(P‖Q) for P and Q on (Ω,A)

Let
R(f, g) = {(Df , Dg) : over P and Q}

and R2(f, g) = R(f, g) for the special case Ω = {0, 1} and
A = σ({0, 1}) = {∅, {0}, {1}, {0, 1}}
Theorem: For any (Ω,A), R = the convex hull of R2

Let
F (x) = inf{y : (x, y) ∈ R(f, g)}

then
Dg(P‖Q) ≥ F (Df (P‖Q))
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Example: For g(x) = x lnx and f(x) = |x− 1|, it can be proved1

that (x, F (x)) is obtained from

x = t

(
1− (coth(t)− 1

t
)2
)

F = log

(
t

sinh(t)

)
+ t coth(t)− t2

sinh2(t)

by varying t ∈ (0,∞)

That is, given a t, resulting in (x, F ), we have

Dg(P‖Q) = D(P‖Q) ≥ F for Df (P‖Q) = 2TV(P,Q) = x

(with D(P‖Q) in nats, i.e. based on lnx)

1See A. A. Fedotov, P. Harremoës and F. Topsøe, “Refinements of Pinsker’s
inequality,” IEEE Trans. IT, 2003. The paper uses V (P‖Q) = 2TV(P‖Q)
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Blue: The curve (x(t), F (t)) for t > 0

Green: The function x2/2

Thus we have Pinsker’s inequality

D(P‖Q) ≥ 1

2
(Df (P‖Q))2 = 2 (TV(P,Q))2

Or, for D(P‖Q) in bits: D(P‖Q) ≥ 2 log e (TV(P,Q))2
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Other inequalities between f -divergences:

1

2
H2(P,Q) ≤ TV(P,Q) ≤ H(P,Q)

√
1−H2(P,Q)/4

D(P‖Q) ≥ 2 log
2

2−H2(P,Q)

D(P‖Q) ≤ log(1 + χ2(P‖Q))

1

2
H2(P,Q) ≤ LC(P,Q) ≤ H2(P,Q)

χ2(P‖Q) ≥ 4 (TV(P,Q))2

For discrete p and q, “reverse Pinsker”

D(p‖q) ≤ log

(
1 +

2

minx q(x)
(TV(p, q))2

)
≤ 2 log e

minx q(x)
(TV(p, q))2
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