Infotheory for Statistics and Learning

Lecture 11

- Sparse denoising [PW:30.2]
- Sparse linear regression [PW:30.2],[RWY]
- Compressed sensing [CRT]
- Almost lossless analog compression [WV]

Notation for asymptotic behavior:
$f(n)=\Theta(g(n)) \Longleftrightarrow$ there is an $n_{0}>0$ and constants C_{1}, C_{2} such that for all $n>n_{0}, C_{1} g(n) \leq f(n) \leq C_{2} g(n)$
$f(n) \lesssim g(n) \Longleftrightarrow$ there is an $n_{0}>0$ and a constant C_{1} such that for all $n>n_{0}, f(n) \leq C_{1} g(n)$
$f(n) \gtrsim g(n) \Longleftrightarrow$ there is an $n_{0}>0$ and a constant C_{2} such that for all $n>n_{0}, f(n) \geq C_{2} g(n)$

That is, $f(n)=\Theta(g(n)) \Longleftrightarrow g(n) \lesssim f(n) \lesssim g(n)$

Sparse Denoising

Consider the GLM, $Y_{i}=\theta+Z_{i}$, where $Z_{i} \sim \mathcal{N}\left(0, I_{p}\right), i=1, \ldots, n$ i.i.d. and $\theta \in \mathbb{R}^{p}$

Assume θ is sparse in the sense $\|\theta\|_{0} \leq k<p,\|\theta\|_{0}=\left|\left\{i: \theta_{i} \neq 0\right\}\right|$
Let $T_{k}=\left\{\theta:\|\theta\|_{0} \leq k\right\}$ and consider the minimax risk for $\ell(\theta, \hat{\theta})=\|\theta-\hat{\theta}\|^{2}$ and $n=1$

$$
R_{1}^{*}\left(T_{k}\right)=\inf _{\hat{\theta}} \sup _{\theta \in T_{k}} E_{\theta}\left[\|\theta-\hat{\theta}(Y)\|^{2}\right]
$$

where E_{θ} denotes expectation over $Y=\theta+Z \sim \mathcal{N}\left(\theta, I_{p}\right)$
For $n>1$ we get

$$
R_{n}^{*}\left(T_{k}\right)=\frac{1}{n} R_{1}^{*}\left(T_{k}\right)
$$

because $\bar{Y}=n^{-1} \sum_{i} Y_{i}$ is a sufficient statistic

Lower bound on $R^{*}\left(T_{k}\right)=R_{1}^{*}\left(T_{k}\right)$:
Since $R_{\pi}^{*} \leq R^{*}$ (Bayesian \leq minimax) for any prior π on θ, we can choose π by drawing b uniformly from $\left\{b \in\{0,1\}^{p}:\|b\|_{0}=k\right\}$ and setting $\theta=\tau b$ for some $\tau>0 \Rightarrow b \rightarrow \theta \rightarrow Y \rightarrow \hat{\theta} \rightarrow \hat{b}$
We have

$$
I(\theta ; \hat{\theta}) \leq \sup _{\pi} I(\theta ; Y) \leq \sup _{\theta \neq \theta^{\prime}} D\left(\mathcal{N}\left(\theta, I_{P}\right) \| \mathcal{N}\left(\theta^{\prime}, I_{P}\right)\right) \leq k \tau^{2}
$$

Assume we use $\hat{b}=\min \|\hat{\theta}-\tau b\|^{2}$ over $\left\{b \in\{0,1\}^{p}:\|b\|_{0}=k\right\}$, then $\tau^{2}\|b-\hat{b}\|_{0} \leq 4\|\theta-\hat{\theta}\|^{2} \Rightarrow \tau^{2} E\left[\|b-\hat{b}\|_{0}\right] \leq 4 R^{*}$
Thus $I(b ; \hat{b}) \geq \min I(b ; \hat{b})$ where the \min is over distributions on b such that $E\left[\|b-\hat{b}\|_{0}\right] \leq 4 R^{*} / \tau^{2}$, leading to the bound (in nats)

$$
I(b ; \hat{b}) \geq \ln \binom{p}{k}-p h\left(\frac{4 R^{*}}{\tau^{2} p}\right)
$$

where $h(x)=-x \ln x-(1-x) \ln (1-x)$

Since $E\left[\|\theta-\hat{\theta}\|^{2}\right] \leq E\left[\|\theta\|^{2}\right]=k \tau^{2}$ we can set $R_{\pi}^{*}=\varepsilon(k) k \tau^{2}$ with $\varepsilon(k) \in(0,1)$, and since $I(b ; \hat{b}) \leq I(\theta ; \hat{\theta})$ we get

$$
\ln \binom{p}{k}-p h\left(\frac{4 \varepsilon(k) k}{p}\right) \leq \frac{R_{\pi}^{*}}{\varepsilon(k)} \leq \frac{R^{*}}{\varepsilon(k)}
$$

Now assume $k=k(p) \rightarrow \infty$ as $p \rightarrow \infty$. Then Stirling \Rightarrow

$$
\ln \binom{p}{k} \approx \frac{1}{2} \ln \frac{p}{k(p-k) 2 \pi}+p h\left(\frac{k}{p}\right)
$$

Assuming $\varepsilon_{0}<\varepsilon(k)<\left(1-\varepsilon_{0}\right) / 4$, for some $0<\varepsilon_{0} \ll 1$, and $k / p<1 / 2 \Rightarrow$

$$
\begin{aligned}
R^{*} & >\varepsilon_{0}\left[\frac{1}{2} \ln \frac{p}{k(p-k) 2 \pi}+p h\left(\frac{k}{p}\right)-p h\left(\frac{\left(1-\varepsilon_{0}\right) k}{p}\right)\right] \\
& \gtrsim p h\left(\frac{k}{p}\right) \gtrsim k \ln \frac{p}{k}
\end{aligned}
$$

Upper bound on $R^{*}\left(T_{k}\right)$
For $Y=\theta+Z$ we study $\hat{\theta}=\arg \min _{\theta \in T_{k}}\|Y-\theta\|^{2}$
We get (with $\cdot=$ scalar product)
$\|Z-(\hat{\theta}-\theta)\|^{2} \leq\|Y-\theta\|^{2}=\|Z\|^{2} \Rightarrow\|\theta-\hat{\theta}\|^{2} \leq 2(\theta-\hat{\theta}) \cdot Z$
Consequently, since also $\|\theta-\hat{\theta}\|_{0} \leq 2 k$,

$$
\frac{1}{2}\|\theta-\hat{\theta}\| \leq \sup _{u \in S^{P} \cap T_{2 k}} Z \cdot u=\max _{|J|=2 k}\left\|Z_{J}\right\|
$$

where $S^{p}=$ the unit sphere in \mathbb{R}^{p}, Z_{J} the sub-vector defined by J Because $Z \sim \mathcal{N}\left(0, I_{p}\right)$, it can now be shown that

$$
\operatorname{Pr}\left(\left\|Z_{J}\right\|^{2} \geq k \ln \frac{p e}{k}\right) \leq \exp \left(-\frac{c k}{2} \ln \frac{p}{k}\right)
$$

\Rightarrow for $\ell=k \ln (p / k)$ and $\varepsilon>0$, there is an L such that for $\ell>L$

$$
\operatorname{Pr}\left(\left\|Z_{J}\right\|^{2} \geq k \ln \frac{p e}{k}\right) \leq \varepsilon
$$

Hence for large ℓ

$$
E\left[\|\theta-\hat{\theta}\|^{2}\right] \leq 4 k \ln \frac{p e}{k}=\Theta\left(k \ln \frac{p}{k}\right)
$$

That is,

$$
R^{*} \lesssim k \ln \frac{p}{k}
$$

Consequently

$$
R^{*}=\Theta\left(k \ln \frac{p}{k}\right)
$$

Sparse Linear Regression

$Y=X \theta+Z, Y \in \mathbb{R}^{n \times 1}, \theta \in T_{k} \subset \mathbb{R}^{p \times 1}, n \geq p, k<p$,
$X_{i j} \sim \mathcal{N}(0,1 / n)$ and independent; $Z \sim \mathcal{N}\left(0, I_{n}\right)$
For $\hat{\theta}=\hat{\theta}(X, Y)$ the minimax risk is

$$
R^{*}=R_{n}^{*}\left(T_{k}\right)=\inf _{\hat{\theta}} \sup _{\theta \in T_{k}} E_{\theta}\|\theta-\hat{\theta}(X, Y)\|^{2}
$$

with E_{θ} over X and $Y \sim \mathcal{N}\left(0,\left(\|\theta\|^{2} / n+1\right) I_{n}\right)$
Bounding $I(\theta ; \hat{\theta})$ it can be shown that

$$
R^{*} \gtrsim k \ln \frac{p}{k}
$$

for any n; i.e. the same lower bound as for $n=p$ and $X=I_{p}$

To get an upper bound, consider $\hat{\theta}=\arg \min _{\theta \in T_{k}}\|Y-X \theta\|^{2}$
$\Rightarrow\|X(\theta-\hat{\theta})\|^{2} \leq 2\|\theta-\hat{\theta}\| \sup _{u \in S^{p} \cap T_{2 k}} Z \cdot(X u)$
For $J=\left\{i:(\theta-\hat{\theta})_{i} \neq 0\right\}$, let X_{J} be the corresponding part of X Then with $v=\theta-\hat{\theta}$

$$
\inf _{v \in T_{2 k}} \frac{\|X v\|}{\|v\|}=\min _{|J| \leq 2 k} \sigma_{\min }\left(X_{J}\right)
$$

where $\sigma_{\min }\left(X_{J}\right)$ is the smallest singular value of X_{J}
For $\ell=k \ln (p / k), \operatorname{Pr}\left(\min _{|J| \leq 2 k} \sigma_{\min }\left(X_{J}\right)<1 / 2\right) \rightarrow 0$ as $\ell \rightarrow \infty$
$\Rightarrow\|\theta-\hat{\theta}\|<2\|X(\theta-\hat{\theta})\|$ with high prob. as $\ell \rightarrow \infty$
Now, similarly as for $n=p$ and $X=I_{p}$, we can show that

$$
\sup _{u \in S^{p} \cap T_{2 k}} Z \cdot(X u) \lesssim \sqrt{k \ln \frac{e p}{k}}
$$

with high probability, so overall we have

$$
R^{*} \lesssim k \ln \frac{p}{k}
$$

Compressed Sensing

Consider $y=X \theta+z, y \in \mathbb{R}^{n \times 1}, \theta \in T_{k} \subset \mathbb{R}^{p \times 1}, k<p$ and $n<p$ (or $n \ll p$); the system is seemingly underdetermined, but $\theta \in T_{k}$

The elements of y are linearly compressed measurements of θ, disturbed by z

All variables are deterministic and it is known that $\|z\| \leq \varepsilon$
For $\varepsilon=0$ a brute force approach to recovering θ from y is to try to solve all possible systems $y=X_{J} \theta_{J}$ for all J s.t. $|J| \leq k$
\Rightarrow an integer program of exponential complexity
However, it turns out that we can instead solve the convex program

$$
\min \|\theta\|_{1} \quad \text { s.t. } \quad X \theta=y
$$

where $\|\theta\|_{1}=\sum\left|\theta_{i}\right|$. Let $\tilde{\theta}$ denote the solution

Uniform uncertainty or restricted isometry:
Define $\delta_{k}=\delta_{k}(X)$ as the smallest $\delta>0$ such that

$$
(1-\delta)\|b\|^{2} \leq\left\|X_{J} b\right\|^{2} \leq(1+\delta)\|b\|^{2}
$$

for all $J \subset\{1, \ldots, p\},|J| \leq k$, and $b \in \mathbb{R}^{|J|}$
For $\varepsilon=0$, it has been shown ${ }^{1}$ that $\tilde{\theta}=\theta$ as long as X fulfills

$$
\delta_{k}+\delta_{2 k}+\delta_{3 k}<1
$$

In the case $\varepsilon>0$ we can instead solve the convex program

$$
\min \|\theta\|_{1} \quad \text { s.t. }\|X \theta-y\| \leq \varepsilon
$$

Let $\hat{\theta}$ denote the solution
${ }^{1}$ Candès \& Tao, "Decoding by linear programming," IEEE Trans. IT, Dec. 2005

We have the following result (see [CRT]):
As long as $\delta_{3 k}+3 \delta_{4 k}<2, \hat{\theta}$ fulfills

$$
\|\hat{\theta}-\theta\| \leq C\left(\delta_{4 k}\right) \varepsilon
$$

Figure 2.1. Geometry in \mathbb{R}^{2}. Here, the point x_{0} is a vertex of the ℓ_{1} ball, and the shaded area represents the set of points obeying both the tube and the cone constraints. By showing that every vector in the cone of descent at x_{0} is approximately orthogonal to the null space of A, we will ensure that x^{\sharp} is not too far from x_{0}.
$\hat{\theta}=\theta+h \Rightarrow\|X h\| \leq 2 \varepsilon$ and $\left\|h_{J^{c}}\right\|_{1} \leq\left\|h_{J}\right\|_{1}, J=$ support of $\theta,|J| \leq k$ Restricted isometry $\Rightarrow\|X h\| \approx\|h\|$

Almost Lossless Analog Compression

In compressed sensing we had linear encoding $=$ dimensionality reduction, $p \rightarrow n$
The general case (stochastic setting): Consider a stochastic process $\left\{X_{i}\right\}$ with $X_{i} \in \mathcal{X}$ for a given measurable space $(\mathcal{X}, \mathcal{F})$
Given another space $(\mathcal{Y}, \mathcal{G})$, an (n, k)-code for $\left\{X_{i}\right\}$ is, for each $1 \leq k \leq n<\infty$, defined by

- an encoder $f_{n}: \mathcal{X}^{n} \rightarrow \mathcal{Y}^{k}$
- a decoder $g_{n}: \mathcal{Y}^{k} \rightarrow \mathcal{X}^{n}$
where f_{n} is measurable in the sense $f_{n}^{-1}(G) \in \mathcal{F}^{n}$ for all $G \in \mathcal{G}^{k}$, and g_{n} is measurable in the sense $g_{n}^{-1}(F) \in \mathcal{G}^{k}$ for all $F \in \mathcal{F}^{n}$

Let $r(\varepsilon)=$ infimum of all r such that there is a sequence of ($n,\lfloor r n\rfloor$)-codes that fulfills

$$
\limsup _{n \rightarrow \infty} \operatorname{Pr}\left(g_{n}\left(f_{n}\left(X^{n}\right)\right) \neq X^{n}\right) \leq \varepsilon
$$

Assume $\mathcal{X}=\mathcal{Y}=\mathbb{R}$ and $\mathcal{F}=\mathcal{G}=\mathcal{B}$ (the Borel sets), then without further restrictions on $\left(f_{n}, g_{n}\right)$ we have $r(\varepsilon)=0$ for all $\varepsilon \in[0,1]$ \ldots since $\left(\mathbb{R}^{n}, \mathcal{B}^{n}\right)$ and $(\mathbb{R}, \mathcal{B})$ are Borel equivalent However the corresponding encoders and decoders are in general highly irregular \Rightarrow hard to describe and non-robust to disturbances Assume that $\left\{X_{i}\right\}$ is iid with $P_{X}=\alpha P_{c}+(1-\alpha) P_{d}$ where P_{c} is abs. continuous and P_{d} is discrete

Then, with regularity constraints we get (see [WV]):

f_{n}	g_{n}	$r(\varepsilon)$
linear	general	α
continuous	continuous	0
general	Lipschitz	α

The decoder g_{n} is Lipschitz \Longleftrightarrow for every x and y in \mathbb{R}^{k} there is an $L<\infty$ such that $\left\|g_{n}(x)-g_{n}(y)\right\| \leq L\|x-y\|$
Note that imposing that f_{n} and g_{n} be continuous does not affect $r(\varepsilon)$ (also note that continuous \Longleftrightarrow Lipschitz)

A model for sparsity

$$
P_{X}=\alpha P_{c}+(1-\alpha) \delta_{0}
$$

where δ_{0} is the Dirac measure, i.e. for $B \in \mathcal{B}$

$$
\delta_{x}(B)= \begin{cases}1 & x \in B \\ 0 & \text { o.w }\end{cases}
$$

Then with linear encoding $r(\varepsilon)=\alpha$

