
Infotheory for Statistics and Learning
Lecture 11

• Sparse denoising [PW:30.2]

• Sparse linear regression [PW:30.2],[RWY]

• Compressed sensing [CRT]

• Almost lossless analog compression [WV]
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Notation for asymptotic behavior:

f(n) = Θ(g(n)) ⇐⇒ there is an n0 > 0 and constants C1, C2

such that for all n > n0, C1g(n) ≤ f(n) ≤ C2g(n)

f(n) ≲ g(n) ⇐⇒ there is an n0 > 0 and a constant C1 such that
for all n > n0, f(n) ≤ C1g(n)

f(n) ≳ g(n) ⇐⇒ there is an n0 > 0 and a constant C2 such that
for all n > n0, f(n) ≥ C2g(n)

That is, f(n) = Θ(g(n)) ⇐⇒ g(n) ≲ f(n) ≲ g(n)
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Sparse Denoising

Consider the GLM, Yi = θ + Zi, where Zi ∼ N (0, Ip), i = 1, . . . , n
i.i.d. and θ ∈ Rp

Assume θ is sparse in the sense ∥θ∥0 ≤ k < p, ∥θ∥0 = |{i : θi ̸= 0}|
Let Tk = {θ : ∥θ∥0 ≤ k} and consider the minimax risk for
ℓ(θ, θ̂) = ∥θ − θ̂∥2 and n = 1

R∗
1(Tk) = inf

θ̂
sup
θ∈Tk

Eθ[∥θ − θ̂(Y )∥2]

where Eθ denotes expectation over Y = θ + Z ∼ N (θ, Ip)

For n > 1 we get

R∗
n(Tk) =

1

n
R∗

1(Tk)

because Ȳ = n−1
∑

i Yi is a sufficient statistic
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Lower bound on R∗(Tk) = R∗
1(Tk):

Since R∗
π ≤ R∗ (Bayesian ≤ minimax) for any prior π on θ, we can

choose π by drawing b uniformly from {b ∈ {0, 1}p : ∥b∥0 = k} and
setting θ = τb for some τ > 0 ⇒ b → θ → Y → θ̂ → b̂

We have

I(θ; θ̂) ≤ sup
π

I(θ;Y ) ≤ sup
θ ̸=θ′

D(N (θ, IP )∥N (θ′, IP )) ≤ kτ2

Assume we use b̂ = min ∥θ̂ − τb∥2 over {b ∈ {0, 1}p : ∥b∥0 = k},
then τ2∥b− b̂∥0 ≤ 4∥θ − θ̂∥2 ⇒ τ2E[∥b− b̂∥0] ≤ 4R∗

Thus I(b; b̂) ≥ min I(b; b̂) where the min is over distributions on b
such that E[∥b− b̂∥0] ≤ 4R∗/τ2, leading to the bound (in nats)

I(b; b̂) ≥ ln

(
p

k

)
− p h

(
4R∗

τ2p

)

where h(x) = −x lnx− (1− x) ln(1− x)
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Since E[∥θ− θ̂∥2] ≤ E[∥θ∥2] = kτ2 we can set R∗
π = ε(k)kτ2 with

ε(k) ∈ (0, 1), and since I(b; b̂) ≤ I(θ; θ̂) we get

ln

(
p

k

)
− p h

(
4ε(k)k

p

)
≤ R∗

π

ε(k)
≤ R∗

ε(k)

Now assume k = k(p) → ∞ as p → ∞. Then Stirling ⇒

ln

(
p

k

)
≈ 1

2
ln

p

k(p− k)2π
+ p h

(
k

p

)

Assuming ε0 < ε(k) < (1− ε0)/4, for some 0 < ε0 ≪ 1, and
k/p < 1/2 ⇒

R∗ > ε0

[
1

2
ln

p

k(p− k)2π
+ p h

(
k

p

)
− p h

(
(1− ε0)k

p

)]

≳ p h

(
k

p

)
≳ k ln

p

k

Mikael Skoglund 5/15

Upper bound on R∗(Tk)

For Y = θ + Z we study θ̂ = argminθ∈Tk
∥Y − θ∥2

We get (with · = scalar product)
∥Z − (θ̂ − θ)∥2 ≤ ∥Y − θ∥2 = ∥Z∥2 ⇒ ∥θ − θ̂∥2 ≤ 2(θ − θ̂) · Z
Consequently, since also ∥θ − θ̂∥0 ≤ 2k,

1

2
∥θ − θ̂∥ ≤ sup

u∈Sp∩T2k

Z · u = max
|J |=2k

∥ZJ∥

where Sp = the unit sphere in Rp, ZJ the sub-vector defined by J

Because Z ∼ N (0, Ip), it can now be shown that

Pr
(
∥ZJ∥2 ≥ k ln

pe

k

)
≤ exp

(
−ck

2
ln

p

k

)
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⇒ for ℓ = k ln(p/k) and ε > 0, there is an L such that for ℓ > L

Pr
(
∥ZJ∥2 ≥ k ln

pe

k

)
≤ ε

Hence for large ℓ

E[∥θ − θ̂∥2] ≤ 4k ln
pe

k
= Θ

(
k ln

p

k

)

That is,
R∗ ≲ k ln

p

k

Consequently

R∗ = Θ
(
k ln

p

k

)
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Sparse Linear Regression

Y = Xθ + Z, Y ∈ Rn×1, θ ∈ Tk ⊂ Rp×1, n ≥ p, k < p,

Xij ∼ N (0, 1/n) and independent; Z ∼ N (0, In)

For θ̂ = θ̂(X,Y ) the minimax risk is

R∗ = R∗
n(Tk) = inf

θ̂
sup
θ∈Tk

Eθ∥θ − θ̂(X,Y )∥2

with Eθ over X and Y ∼ N (0, (∥θ∥2/n+ 1)In)

Bounding I(θ; θ̂) it can be shown that

R∗ ≳ k ln
p

k

for any n; i.e. the same lower bound as for n = p and X = Ip
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To get an upper bound, consider θ̂ = argminθ∈Tk
∥Y −Xθ∥2

⇒ ∥X(θ − θ̂)∥2 ≤ 2∥θ − θ̂∥ supu∈Sp∩T2k
Z · (Xu)

For J = {i : (θ − θ̂)i ̸= 0}, let XJ be the corresponding part of X

Then with v = θ − θ̂

inf
v∈T2k

∥Xv∥
∥v∥ = min

|J |≤2k
σmin(XJ)

where σmin(XJ) is the smallest singular value of XJ

For ℓ = k ln(p/k), Pr(min|J |≤2k σmin(XJ) < 1/2) → 0 as ℓ → ∞
⇒ ∥θ − θ̂∥ < 2∥X(θ − θ̂)∥ with high prob. as ℓ → ∞
Now, similarly as for n = p and X = Ip, we can show that

sup
u∈Sp∩T2k

Z · (Xu) ≲
√
k ln

ep

k

with high probability, so overall we have

R∗ ≲ k ln
p

k
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Compressed Sensing

Consider y = Xθ + z, y ∈ Rn×1, θ ∈ Tk ⊂ Rp×1, k < p and n < p
(or n ≪ p); the system is seemingly underdetermined, but θ ∈ Tk

The elements of y are linearly compressed measurements of θ,
disturbed by z

All variables are deterministic and it is known that ∥z∥ ≤ ε

For ε = 0 a brute force approach to recovering θ from y is to try to
solve all possible systems y = XJθJ for all J s.t. |J | ≤ k

⇒ an integer program of exponential complexity

However, it turns out that we can instead solve the convex program

min ∥θ∥1 s.t. Xθ = y

where ∥θ∥1 =
∑ |θi|. Let θ̃ denote the solution
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Uniform uncertainty or restricted isometry:

Define δk = δk(X) as the smallest δ > 0 such that

(1− δ)∥b∥2 ≤ ∥XJb∥2 ≤ (1 + δ)∥b∥2

for all J ⊂ {1, . . . , p}, |J | ≤ k, and b ∈ R|J |

For ε = 0, it has been shown1 that θ̃ = θ as long as X fulfills

δk + δ2k + δ3k < 1

In the case ε > 0 we can instead solve the convex program

min ∥θ∥1 s.t. ∥Xθ − y∥ ≤ ε

Let θ̂ denote the solution

1Candès & Tao, “Decoding by linear programming,” IEEE Trans. IT, Dec. 2005
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We have the following result (see [CRT]):

As long as δ3k + 3δ4k < 2, θ̂ fulfills

∥θ̂ − θ∥ ≤ C(δ4k)ε

Illustration from [CRT]

θ̂ = θ+ h ⇒ ∥Xh∥ ≤ 2ε and ∥hJc∥1 ≤ ∥hJ∥1, J = support of θ, |J | ≤ k

Restricted isometry ⇒ ∥Xh∥ ≈ ∥h∥
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Almost Lossless Analog Compression

In compressed sensing we had linear encoding = dimensionality
reduction, p → n

The general case (stochastic setting): Consider a stochastic
process {Xi} with Xi ∈ X for a given measurable space (X ,F)

Given another space (Y,G), an (n, k)-code for {Xi} is, for each
1 ≤ k ≤ n < ∞, defined by

• an encoder fn : X n → Yk

• a decoder gn : Yk → X n

where fn is measurable in the sense f−1
n (G) ∈ Fn for all G ∈ Gk, and gn

is measurable in the sense g−1
n (F ) ∈ Gk for all F ∈ Fn

Let r(ε) = infimum of all r such that there is a sequence of
(n, ⌊rn⌋)-codes that fulfills

lim sup
n→∞

Pr(gn(fn(X
n)) ̸= Xn) ≤ ε
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Assume X = Y = R and F = G = B (the Borel sets), then without
further restrictions on (fn, gn) we have r(ε) = 0 for all ε ∈ [0, 1]

. . . since (Rn,Bn) and (R,B) are Borel equivalent

However the corresponding encoders and decoders are in general
highly irregular ⇒ hard to describe and non-robust to disturbances

Assume that {Xi} is iid with PX = αPc + (1− α)Pd where Pc is
abs. continuous and Pd is discrete

Then, with regularity constraints we get (see [WV]):

fn gn r(ε)

linear general α
continuous continuous 0
general Lipschitz α
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The decoder gn is Lipschitz ⇐⇒ for every x and y in Rk there is
an L < ∞ such that ∥gn(x)− gn(y)∥ ≤ L∥x− y∥
Note that imposing that fn and gn be continuous does not affect
r(ε) (also note that continuous ⇍⇒ Lipschitz)

A model for sparsity

PX = αPc + (1− α)δ0

where δ0 is the Dirac measure, i.e. for B ∈ B

δx(B) =

{
1 x ∈ B

0 o.w

Then with linear encoding r(ε) = α
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