Infotheory for Statistics and Learning
Lecture 11

Sparse denoising [PW:30.2]
Sparse linear regression [PW:30.2],[RWY]
Compressed sensing [CRT]

Almost lossless analog compression [WV]
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Notation for asymptotic behavior:

f(n) =0(g(n)) < thereis an ng > 0 and constants C1, Cs
such that for all n > ng, C1g(n) < f(n) < Cyg(n)

f(n) < g(n) <= thereis an ng > 0 and a constant C such that
for all n > ng, f(n) < Cig(n)

f(n) 2 g(n) <= thereis an ng > 0 and a constant C5 such that
for all n > ng, f(n) > Cag(n)

Thatis, f(n) =0(g(n)) < g(n) < f(n) < g(n)
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Sparse Denoising

Consider the GLM, Y; = 0 + Z;, where Z; ~ N (0,1,), i =1,...,n
i.i.d. and 6 € RP

Assume 0 is sparse in the sense ||0]|o < k < p, ||0]|o0 = |{i : 0; # 0}

Let T}, = {6 : [|0]|o < k} and consider the minimax risk for
06,0) =110 — 0|2 and n =1

R(T}) = inf sup Ep[[|6 — 6(Y)]|’]
0 0€Ty

where Ey denotes expectation over Y =0 + Z ~ N (6, I,)

For n > 1 we get
* 1 *
R, (Ti) = — By (Th)

because Y = n~! 37V, is a sufficient statistic
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Lower bound on R*(Ty) = R}(T}):

Since R < R* (Bayesian < minimax) for any prior 7 on 6, we can
choose 7 by drawing b uniformly from {b € {0,1}? : [[b[lo = k} and
settmg@-rbforsomeT>O$b%9—>Y—>0—>b

We have

1(0;0) < sup 1(0;Y) < sup DIN(0,Ip)||IN(,Ip)) < kr?
046/

Assume we use b = min |0 — 7b]|? over {b € {0,1}? : ||b||o = k},
then 72||b — b||o < 4]0 — |2 = T2E[||b — b||o] < 4R*

Thus I(b;b) > min / (b; b) where the min is over distributions on b
such that E[||b — b||lo] < 4R* /72, leading to the bound (in nats)

A P 4R*
I(b;b) >1 —ph
(’)_n(k) P (72p>

where h(z) = —xlnx — (1 — x)In(1 — z)
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Since E[||6 — 6]|?] < E[)|6]*] = k7 we can set R} = e(k)kT* with
e(k) € (0,1), and since 1(b;b) < I1(6;60) we get

() (5"

Now assume k = k(p) — oo as p — oo. Then Stirling =

D 1 P k
1 ~ —1 h| —
“(k) 2 Vkp—k2n ¥ (p>

Assuming ep < e(k) < (1 —€9)/4, for some 0 < g9 < 1, and
k/p<1/2=

> Bl“ o TP (%) —rh (%)l

th<§> > kIn 2
P k

Ry _ R
e(k) — e(k)

IN
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Upper bound on R*(T})
For Y = 6 + Z we study 0 = argminger, [|Y — ||

We get (with - = scalar product) A A
1Z=(0=0)F <Y =01 =Z|I° =110 - 0|I* < 2(6 - 0) - Z

Consequently, since also [|6 — 0||o < 2k,

1 N
—10—0|| < sup Z-u= max ||Z;]
2 ueSPNT5y | J|=2k

where SP = the unit sphere in RP, Z; the sub-vector defined by J
Because Z ~ N (0, I,,), it can now be shown that

k
Pr (HZJH2 > kln%) < exp (—%ln %)
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= for £ = klIn(p/k) and £ > 0, there is an L such that for £ > L
Pr (HZJ\F > kln%) <e

Hence for large ¢

— 0?21 < pe _ p
B0 —01%) < 4k m @(kln)

k
That is, »
R* <kln o
Consequently
R =6 (kln %)
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Sparse Linear Regression

Y=X0+2Z YR gecT, cRP*! n>p k<p,
Xi; ~N(0,1/n) and independent; Z ~ N (0, I,,)
For § = 0(X,Y) the minimax risk is

R* = R;(Tk) = inf sup Eyll60 — é(X7 Y)H2
0 0€Ty,

with Eg over X and Y ~ N(0, (]|0]|*/n + 1)I,,)

Bounding I(0;6) it can be shown that

p
R* Z kln=

for any n; i.e. the same lower bound as for n = p and X = I,
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To get an upper bound, consider § = arg minger, ||Y — X 6|2
= X (0 = 0)I* < 218 — 8]l supyesrrm, Z - (Xu)
For J = {i: (0 —0); # 0}, let X; be the corresponding part of X

Then with v = 6 — §
Xl

veloe V]| |J]<2k

where oyin (X s) is the smallest singular value of X

For £ = kIn(p/k), Pr(min jj<o Omin(Xs) <1/2) = 0 as £ — oo
= 1|0 — 0| < 2||X (0 — 0)]|| with high prob. as £ — oo

Now, similarly as for n = p and X = I,,, we can show that

sup  Z-(Xu) < y/klnL
uESPNT5y k

with high probability, so overall we have

p
R* Skln=
~ nk
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Compressed Sensing

Consider y=X0+z2, ye R, 0T, cRP*! kE<pandn<p
(or n < p); the system is seemingly underdetermined, but 6 € Ty,

The elements of y are linearly compressed measurements of 6,
disturbed by z

All variables are deterministic and it is known that ||z|| < ¢

For ¢ = 0 a brute force approach to recovering 6 from y is to try to
solve all possible systems y = X ;05 for all J s.t. |J| <k

=> an integer program of exponential complexity

However, it turns out that we can instead solve the convex program
min ||| st. XO0=y

where ||f]|; = 3" ]6i|. Let 6 denote the solution
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Uniform uncertainty or restricted isometry:

Define §x = 0 (X) as the smallest 6 > 0 such that
(L= )bll* < [IX6]% < (1 + )|l

forall J  {1,...,p}, |J| <k, and b € RV
For ¢ = 0, it has been shown! that 0 =0 as long as X fulfills

O + 0o, + 031 < 1
In the case € > 0 we can instead solve the convex program
min ||0]]; s.t. || X0 —y| <e

Let @ denote the solution

1Candes & Tao, “Decoding by linear programming,” IEEE Trans. IT, Dec. 2005
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We have the following result (see [CRT]):
As long as s + 304 < 2, 0 fulfills

16— 6]l < C(0ar)e

Av=Axy

£y ball

FIGURE 2.1. Geometry in R?. Here, the point x is a vertex of the ¢-
ball, and the shaded area represents the set of points obeying both the
tube and the cone constraints. By showing that every vector in the cone
of descent at xq is approximately orthogonal to the null space of A, we

will ensure that x¥ is not too far from x. lllustration from [CRT]

0 =0+h= || Xh| <2eand |||y <|lhs||li, J = support of 0, |.J| < k
Restricted isometry = || Xh|| =~ ||A||
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Almost Lossless Analog Compression

In compressed sensing we had linear encoding = dimensionality
reduction, p — n

The general case (stochastic setting): Consider a stochastic
process { X;} with X; € & for a given measurable space (X, F)

Given another space (), G), an (n, k)-code for {X;} is, for each
1 <k <n < oo, defined by

® an encoder f, : X" — Yk
® a decoder g, : Yk xn

where f,, is measurable in the sense f, 1(G) € F" for all G € G*, and ¢,
is measurable in the sense g, }(F) € G for all F € F™

Let 7(e) = infimum of all = such that there is a sequence of
(n, [rn])-codes that fulfills

lim sup Pr(g, (fn(X")) # X") <€

n—oo
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Assume X =) =R and F = G = B (the Borel sets), then without
further restrictions on (f,,, g»n) we have r(g) =0 for all € € [0, 1]

...since (R™,B™) and (R, B) are Borel equivalent

However the corresponding encoders and decoders are in general
highly irregular = hard to describe and non-robust to disturbances

Assume that {X;} is iid with Px = aP, + (1 — «) Py where P, is
abs. continuous and Py is discrete

Then, with regularity constraints we get (see [WV]):

In dn 7’(8)
linear general Q
continuous | continuous | 0
general Lipschitz Q
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The decoder g, is Lipschitz <= for every z and y in R” there is
an L < oo such that [|g, () — gn(v)|| < L||z — v

Note that imposing that f,, and g, be continuous does not affect
r(¢) (also note that continuous <% Lipschitz)

A model for sparsity
Px = aPFP. + (1 — 04)50

where dg is the Dirac measure, i.e. for B € B

5a;(B)—{1 reB

0 ow

Then with linear encoding r(¢) = «
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