
Infotheory for Statistics and Learning
Lecture 14

• I-projections [CT:10.8], [CTu]

• Convergence of iterative projections [CTu], [C1]

• Maximum likelihood as a projection [C2]

• The EM algorithm [C2]
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I-projections

Assume P and Q are convex sets of probability measures on (Ω,A)
i.e., for P; P and P ′ in P ⇒ γP + (1− γ)P ′ ∈ P for any γ ∈ (0, 1)

For any R on (Ω,A), if there is a P ∗ ∈ P such that

inf
P∈P

D(P∥R) = D(P ∗∥R)

then P ∗ is an I-projection of R on P, notation P ∗ = ΠP(R)

Similarly, if there is a Q∗ ∈ Q such that

inf
Q∈Q

D(R∥Q) = D(R∥Q∗)

then Q∗ is a reverse I-projection of R on Q, notation Q∗ = Π̄Q(R)

We also define
d(P,Q) = inf

P∈P,Q∈Q
D(P∥Q)
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If P ∗ = ΠP(R) exists, then

D(P∥R) ≥ D(P∥P ∗) +D(P ∗∥R)

for every P ∈ P
If Q∗ = Π̄Q(R) exists, then

D(P∥Q∗) ≤ D(P∥R) +D(P∥Q)

for any P on (Ω,A) and every Q ∈ Q
For an arbitrary Q0 on (Ω,A), and with P1 = ΠP(Q0) and
Q1 = Π̄Q(P1), we get

D(P∥Q) +D(P∥Q0) ≥ D(P∥Q1) +D(P1∥Q1)

for every P ∈ P and Q ∈ Q
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Proof of the first inequality: Let

p(ω) =
dP ∗

dR
, q(ω) =

dP

dR

Since Pt = (1− t)P + tP ∗ ∈ P for each t ∈ (0, 1]

f(t) = D(Pt∥R)

is minimized at t = 1. Thus

0 ≥ f(1)− f(t)

1− t
=

∫
1

1− t
(p log p− pt log pt)dR

where pt = (1− t)q + tp. Letting t → 1 we get

0 ≥
∫
(1 + log p)(p− 1)dR = D(P ∗∥R)−D(P∥R) +D(P∥P ∗)

The proof of the second is similar, and the third follows from the
first two
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Lemma:

For real-valued sequences {an}∞n=0 and {bn}∞n=0 and a number
c < ∞ such that

c+ bn−1 ≥ bn + an, n = 1, 2, 3, . . .

it holds that
lim inf
n→∞

an ≤ c

If in addition ∞∑

n=0

max(c− an, 0) < ∞

we have
lim
n→∞

an = c

Mikael Skoglund 5/14

Iterative I- and reverse I-projections

Assume that D(P∥Q) < ∞ for all P ∈ P and Q ∈ Q, and that
d(P,Q) = D(P ∗∥Q∗) . . . can be generalized, see [CTu]

For an arbitrary P0 ∈ P, let

Q0 = Π̄Q(P0), P1 = ΠP(Q0), Q1 = Π̄Q(P1), . . .

then
lim

n→∞
D(Pn∥Qn) = d(P,Q)

Proof: For Pn+1 = ΠP(Qn) and Qn+1 = Π̄Q(Pn+1) we have

D(P∥Q) +D(P∥Qn) ≥ D(P∥Qn+1) +D(Pn+1∥Qn+1)

for all P ∈ P and Q ∈ Q
Apply the lemma with c = D(P ∗∥Q∗), bn−1 = D(P ∗∥Qn),

bn = D(P ∗∥Qn+1) and an = D(Pn+1∥Qn+1)
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I-projections for a finite Ω

Consider P ∗ = ΠP(R) for R on (Ω,A) and a convex P
If for every P ∈ P there is a γ ∈ (0, 1) and a P ′ ∈ P such that

P ∗ = γP + (1− γ)P ′

then
D(P∥R) = D(P∥P ∗) +D(P ∗∥R) < ∞

for every P ∈ P
For a finite Ω, the above is always true when P is linear in the
sense that Q = γP + (1− γ)P ′ ∈ P for any P and P ′ in P and all
γ such that Q is a probability measure
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For a finite Ω and with Pi, i = 1, . . . , k, linear for each i and
assuming P = ∩iPi ̸= ∅, let R be any measure on (Ω,A) such
that there is a P ∈ P for which P ≪ R. Define P1 = ΠP1(R) and
Pn+1 = ΠPi(Pn) for n = mk + i, m = 0, 1, 2, . . ., and 1 ≤ i ≤ k

Let P ∗ = ΠP(R), then limn→∞D(P ∗∥Pn) = 0 and hence also

lim
n→∞

TV(P ∗, Pn) = 0

by Pinsker’s inequality

Proof: We have D(P ∗∥Pn−1) = D(P ∗∥Pn) +D(Pn∥Pn−1) which
gives

D(P ∗∥R) = D(P ∗∥Pn) +

n∑

i=1

D(Pi∥Pi−1)

⇒ limn→∞D(Pn∥Pn−1) = 0. This then implies the result.
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Maximum Likelihood

Assume Xi ∼ iid P for i = 1, . . . , n, and Xi ∈ X with |X | < ∞
Take X = {1, . . . ,M} for simplicity

For Xn = (X1, . . . , Xn) let Txn(i) denote the type of Xn = xn

For the pmf p(i) = Pr(X = i) of P , note that

Pr(Xn = xn) = p(1)nTxn (1)p(2)nTxn (2) · · · p(M)nTxn (M)

= exp

(
n

M∑

i=1

Txn(i) ln p(i)

)

= exp
[
− n(H(Txn) +D(Txn∥p))

]

(with H(Txn) and D(Txn∥p) in nats)
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Assume p is unknown but it is known that p ∈ P for a convex and
closed P ⊂ RM (for example the set of all pmf’s)

Then, given Xn = xn the ML estimate of p is

p∗ = Π̄P(Txn)
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Expectation–Maximization (EM)

Consider X ∈ {1, 2, . . . ,K} and Y ∈ {1, 2, . . . ,M} jointly
distributed according to P with pmf p(i, j) = Pr(X = i, Y = j)

Assume we generate Xn and Y n jointly iid ∼ P but only observe
Y n = yn

• X is a latent or “hidden” variable

We wish to estimate P from Y n

Assume it is known that p ∈ P ⊂ RK×M for P convex and closed
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Let TXn,yn(i, j) be the joint type for random Xn and observed yn

Pick an arbitrary q0 ∈ P, let ℓ = 1

Expectation (E) step: Set

Tℓ = E[TXn,yn |Y n = yn]

assuming qℓ−1 is the correct p

Maximization (M) step: Set qℓ equal to the ML estimate of P
assuming Tℓ is the joint type, Txn,yn , for the full observation, i.e.

qℓ = Π̄P(Tℓ)

Repeat for ℓ = 2, 3, . . .
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Note that

Txn,yn(i, j) =
1

n

n∑

k=1

1({xk = i})1({yk = j})

Hence

E[TXn,yn(i, j)|Y n = yn] =
1

n

n∑

k=1

Pr(Xk = i|Y n = yn)1({yk = j})

=
p(i, j)

p(j)
Tyn(j)

where p(j) =
∑

i p(i, j) and Tyn(j) = n−1
∑

k 1({yk = j})
That is, for the E-step

Tℓ(i, j) =
qℓ−1(i, j)

qℓ−1(j)
Tyn(j)
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Since Tℓ(i, j)/Tyn(j) = Tℓ(i|j) = qℓ−1(i, j)/qℓ−1(j) = qℓ−1(i|j) we
get

D(Tℓ∥qℓ−1) =
∑

j

Tyn(j)
∑

i

Tℓ(i|j) ln
Tℓ(i|j)
qℓ−1(i|j)

+D(Tyn(j)∥qℓ−1(j))

= 0 +D(Tyn(j)∥qℓ−1(j)) = min
T∈T

D(T∥qℓ−1)

where qℓ−1(j) =
∑

i qℓ−1(i, j) and

T = { types T :
∑

i

T (i, j) = Tyn(j)}

i.e. Tℓ = ΠT (qℓ−1)

Consequently we have,

E-step: Tℓ = ΠT (qℓ−1)

M -step: qℓ = Π̄P(Tℓ)
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