Infotheory for Statistics and Learning

Lecture 14

- I-projections [CT:10.8], [CTu]
- Convergence of iterative projections [CTu], [C1]
- Maximum likelihood as a projection [C2]
- The EM algorithm [C2]

I-projections

Assume \mathcal{P} and \mathcal{Q} are convex sets of probability measures on (Ω, \mathcal{A})
i.e., for $\mathcal{P} ; P$ and P^{\prime} in $\mathcal{P} \Rightarrow \gamma P+(1-\gamma) P^{\prime} \in \mathcal{P}$ for any $\gamma \in(0,1)$

For any R on (Ω, \mathcal{A}), if there is a $P^{*} \in \mathcal{P}$ such that

$$
\inf _{P \in \mathcal{P}} D(P \| R)=D\left(P^{*} \| R\right)
$$

then P^{*} is an I-projection of R on \mathcal{P}, notation $P^{*}=\Pi_{\mathcal{P}}(R)$
Similarly, if there is a $Q^{*} \in \mathcal{Q}$ such that

$$
\inf _{Q \in \mathcal{Q}} D(R \| Q)=D\left(R \| Q^{*}\right)
$$

then Q^{*} is a reverse I-projection of R on \mathcal{Q}, notation $Q^{*}=\bar{\Pi}_{\mathcal{Q}}(R)$
We also define

$$
d(\mathcal{P}, \mathcal{Q})=\inf _{P \in \mathcal{P}, \mathcal{Q} \in \mathcal{Q}} D(P \| Q)
$$

If $P^{*}=\Pi_{\mathcal{P}}(R)$ exists, then

$$
D(P \| R) \geq D\left(P \| P^{*}\right)+D\left(P^{*} \| R\right)
$$

for every $P \in \mathcal{P}$
If $Q^{*}=\bar{\Pi}_{\mathcal{Q}}(R)$ exists, then

$$
D\left(P \| Q^{*}\right) \leq D(P \| R)+D(P \| Q)
$$

for any P on (Ω, \mathcal{A}) and every $Q \in \mathcal{Q}$
For an arbitrary Q_{0} on (Ω, \mathcal{A}), and with $P_{1}=\Pi_{\mathcal{P}}\left(Q_{0}\right)$ and $Q_{1}=\bar{\Pi}_{\mathcal{Q}}\left(P_{1}\right)$, we get

$$
D(P \| Q)+D\left(P \| Q_{0}\right) \geq D\left(P \| Q_{1}\right)+D\left(P_{1} \| Q_{1}\right)
$$

for every $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$

Proof of the first inequality: Let

$$
p(\omega)=\frac{d P^{*}}{d R}, q(\omega)=\frac{d P}{d R}
$$

Since $P_{t}=(1-t) P+t P^{*} \in \mathcal{P}$ for each $t \in(0,1]$

$$
f(t)=D\left(P_{t} \| R\right)
$$

is minimized at $t=1$. Thus

$$
0 \geq \frac{f(1)-f(t)}{1-t}=\int \frac{1}{1-t}\left(p \log p-p_{t} \log p_{t}\right) d R
$$

where $p_{t}=(1-t) q+t p$. Letting $t \rightarrow 1$ we get

$$
0 \geq \int(1+\log p)(p-1) d R=D\left(P^{*} \| R\right)-D(P \| R)+D\left(P \| P^{*}\right)
$$

The proof of the second is similar, and the third follows from the first two

Lemma:

For real-valued sequences $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ and a number $c<\infty$ such that

$$
c+b_{n-1} \geq b_{n}+a_{n}, \quad n=1,2,3, \ldots
$$

it holds that

$$
\liminf _{n \rightarrow \infty} a_{n} \leq c
$$

If in addition

$$
\sum_{n=0}^{\infty} \max \left(c-a_{n}, 0\right)<\infty
$$

we have

$$
\lim _{n \rightarrow \infty} a_{n}=c
$$

Iterative I - and reverse I-projections
Assume that $D(P \| Q)<\infty$ for all $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$, and that $d(\mathcal{P}, \mathcal{Q})=D\left(P^{*} \| Q^{*}\right) \quad \ldots$ can be generalized, see [CTu]
For an arbitrary $P_{0} \in \mathcal{P}$, let

$$
Q_{0}=\bar{\Pi}_{\mathcal{Q}}\left(P_{0}\right), P_{1}=\Pi_{\mathcal{P}}\left(Q_{0}\right), Q_{1}=\bar{\Pi}_{\mathcal{Q}}\left(P_{1}\right), \ldots
$$

then

$$
\lim _{n \rightarrow \infty} D\left(P_{n} \| Q_{n}\right)=d(\mathcal{P}, \mathcal{Q})
$$

Proof: For $P_{n+1}=\Pi_{\mathcal{P}}\left(Q_{n}\right)$ and $Q_{n+1}=\bar{\Pi}_{\mathcal{Q}}\left(P_{n+1}\right)$ we have

$$
D(P \| Q)+D\left(P \| Q_{n}\right) \geq D\left(P \| Q_{n+1}\right)+D\left(P_{n+1} \| Q_{n+1}\right)
$$

for all $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$
Apply the lemma with $c=D\left(P^{*} \| Q^{*}\right), b_{n-1}=D\left(P^{*} \| Q_{n}\right)$,

$$
b_{n}=D\left(P^{*} \| Q_{n+1}\right) \text { and } a_{n}=D\left(P_{n+1} \| Q_{n+1}\right)
$$

I-projections for a finite Ω
Consider $P^{*}=\Pi_{\mathcal{P}}(R)$ for R on (Ω, \mathcal{A}) and a convex \mathcal{P}
If for every $P \in \mathcal{P}$ there is a $\gamma \in(0,1)$ and a $P^{\prime} \in \mathcal{P}$ such that

$$
P^{*}=\gamma P+(1-\gamma) P^{\prime}
$$

then

$$
D(P \| R)=D\left(P \| P^{*}\right)+D\left(P^{*} \| R\right)<\infty
$$

for every $P \in \mathcal{P}$
For a finite Ω, the above is always true when \mathcal{P} is linear in the sense that $Q=\gamma P+(1-\gamma) P^{\prime} \in \mathcal{P}$ for any P and P^{\prime} in \mathcal{P} and all γ such that Q is a probability measure

For a finite Ω and with $\mathcal{P}_{i}, i=1, \ldots, k$, linear for each i and assuming $\mathcal{P}=\cap_{i} \mathcal{P}_{i} \neq \emptyset$, let R be any measure on (Ω, \mathcal{A}) such that there is a $P \in \mathcal{P}$ for which $P \ll R$. Define $P_{1}=\Pi_{\mathcal{P}_{1}}(R)$ and $P_{n+1}=\Pi_{\mathcal{P}_{i}}\left(P_{n}\right)$ for $n=m k+i, m=0,1,2, \ldots$, and $1 \leq i \leq k$
Let $P^{*}=\Pi_{\mathcal{P}}(R)$, then $\lim _{n \rightarrow \infty} D\left(P^{*} \| P_{n}\right)=0$ and hence also

$$
\lim _{n \rightarrow \infty} \operatorname{TV}\left(P^{*}, P_{n}\right)=0
$$

by Pinsker's inequality
Proof: We have $D\left(P^{*} \| P_{n-1}\right)=D\left(P^{*} \| P_{n}\right)+D\left(P_{n} \| P_{n-1}\right)$ which gives

$$
D\left(P^{*} \| R\right)=D\left(P^{*} \| P_{n}\right)+\sum_{i=1}^{n} D\left(P_{i} \| P_{i-1}\right)
$$

$\Rightarrow \lim _{n \rightarrow \infty} D\left(P_{n} \| P_{n-1}\right)=0$. This then implies the result.

Assume $X_{i} \sim$ iid P for $i=1, \ldots, n$, and $X_{i} \in \mathcal{X}$ with $|\mathcal{X}|<\infty$
Take $\mathcal{X}=\{1, \ldots, M\}$ for simplicity
For $X^{n}=\left(X_{1}, \ldots, X_{n}\right)$ let $T_{x^{n}}(i)$ denote the type of $X^{n}=x^{n}$
For the pmf $p(i)=\operatorname{Pr}(X=i)$ of P, note that

$$
\begin{aligned}
\operatorname{Pr}\left(X^{n}=x^{n}\right) & =p(1)^{n T_{x^{n}}(1)} p(2)^{n T_{x^{n}}(2)} \cdots p(M)^{n T_{x^{n}}(M)} \\
& =\exp \left(n \sum_{i=1}^{M} T_{x^{n}}(i) \ln p(i)\right) \\
& =\exp \left[-n\left(H\left(T_{x^{n}}\right)+D\left(T_{x^{n}} \| p\right)\right)\right]
\end{aligned}
$$

(with $H\left(T_{x^{n}}\right)$ and $D\left(T_{x^{n}} \| p\right)$ in nats)

Assume p is unknown but it is known that $p \in \mathcal{P}$ for a convex and closed $\mathcal{P} \subset \mathbb{R}^{M}$ (for example the set of all pmf's)
Then, given $X^{n}=x^{n}$ the ML estimate of p is

$$
p^{*}=\bar{\Pi}_{\mathcal{P}}\left(T_{x^{n}}\right)
$$

Consider $X \in\{1,2, \ldots, K\}$ and $Y \in\{1,2, \ldots, M\}$ jointly distributed according to P with pmf $p(i, j)=\operatorname{Pr}(X=i, Y=j)$
Assume we generate X^{n} and Y^{n} jointly iid $\sim P$ but only observe $Y^{n}=y^{n}$

- X is a latent or "hidden" variable

We wish to estimate P from Y^{n}
Assume it is known that $p \in \mathcal{P} \subset \mathbb{R}^{K \times M}$ for \mathcal{P} convex and closed

Let $T_{X^{n}, y^{n}}(i, j)$ be the joint type for random X^{n} and observed y^{n} Pick an arbitrary $q_{0} \in \mathcal{P}$, let $\ell=1$

Expectation (E) step: Set

$$
T_{\ell}=E\left[T_{X^{n}, y^{n}} \mid Y^{n}=y^{n}\right]
$$

assuming $q_{\ell-1}$ is the correct p
Maximization (M) step: Set q_{ℓ} equal to the ML estimate of P assuming T_{ℓ} is the joint type, $T_{x^{n}, y^{n}}$, for the full observation, i.e.

$$
q_{\ell}=\bar{\Pi}_{\mathcal{P}}\left(T_{\ell}\right)
$$

Repeat for $\ell=2,3, \ldots$

Note that

$$
T_{x^{n}, y^{n}}(i, j)=\frac{1}{n} \sum_{k=1}^{n} \mathbb{1}\left(\left\{x_{k}=i\right\}\right) \mathbb{1}\left(\left\{y_{k}=j\right\}\right)
$$

Hence

$$
\begin{aligned}
E\left[T_{X^{n}, y^{n}}(i, j) \mid Y^{n}=y^{n}\right] & =\frac{1}{n} \sum_{k=1}^{n} \operatorname{Pr}\left(X_{k}=i \mid Y^{n}=y^{n}\right) \mathbb{1}\left(\left\{y_{k}=j\right\}\right) \\
& =\frac{p(i, j)}{p(j)} T_{y^{n}}(j)
\end{aligned}
$$

where $p(j)=\sum_{i} p(i, j)$ and $T_{y^{n}}(j)=n^{-1} \sum_{k} \mathbb{1}\left(\left\{y_{k}=j\right\}\right)$
That is, for the E-step

$$
T_{\ell}(i, j)=\frac{q_{\ell-1}(i, j)}{q_{\ell-1}(j)} T_{y^{n}}(j)
$$

Since $T_{\ell}(i, j) / T_{y^{n}}(j)=T_{\ell}(i \mid j)=q_{\ell-1}(i, j) / q_{\ell-1}(j)=q_{\ell-1}(i \mid j)$ we get

$$
\begin{aligned}
D\left(T_{\ell} \| q_{\ell-1}\right) & =\sum_{j} T_{y^{n}}(j) \sum_{i} T_{\ell}(i \mid j) \ln \frac{T_{\ell}(i \mid j)}{q_{\ell-1}(i \mid j)}+D\left(T_{y^{n}}(j) \| q_{\ell-1}(j)\right) \\
& =0+D\left(T_{y^{n}}(j) \| q_{\ell-1}(j)\right)=\min _{T \in \mathcal{T}} D\left(T \| q_{\ell-1}\right)
\end{aligned}
$$

where $q_{\ell-1}(j)=\sum_{i} q_{\ell-1}(i, j)$ and

$$
\mathcal{T}=\left\{\text { types } T: \sum_{i} T(i, j)=T_{y^{n}}(j)\right\}
$$

i.e. $T_{\ell}=\Pi_{\mathcal{T}}\left(q_{\ell-1}\right)$

Consequently we have,

$$
\begin{gathered}
E \text {-step: } T_{\ell}=\Pi_{\mathcal{T}}\left(q_{\ell-1}\right) \\
M \text {-step: } q_{\ell}=\bar{\Pi}_{\mathcal{P}}\left(T_{\ell}\right)
\end{gathered}
$$

