Infotheory for Statistics and Learning

Lecture 3

- Conditional relative entropy, mutual information and f-divergence [PW:2.5,3.4,7],[CT:2]
- Data processing inequalities [PW:2.5,3.5,7.2],[CT:2.8]
- Sufficient statistics [PW:3.5],[CT:2.9]
- The information bottleneck [GP]

Conditional Relative Entropy

Given two random transformations $P_{Y \mid X=x}$ and $Q_{Y \mid X=x}$, define

$$
\begin{aligned}
D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right) & =\int D\left(P_{Y \mid X=x} \| Q_{Y \mid X=x}\right) d P_{X} \\
& =\int\left\{\int \log \frac{d P_{Y \mid X=x}}{d Q_{Y \mid X=x}} d P_{Y \mid X=x}\right\} d P_{X}
\end{aligned}
$$

For discrete $P_{X} \rightarrow p(x), P_{Y \mid X} \rightarrow p(y \mid x), Q_{Y \mid X} \rightarrow q(y \mid x)$,

$$
D(p(y \mid x) \| q(y \mid x) \mid p(x))=\sum_{x} p(x) \sum_{y} p(y \mid x) \log \frac{p(y \mid x)}{q(y \mid x)}
$$

For abs. continuous $P_{X} \rightarrow f(x), P_{Y \mid X} \rightarrow f(y \mid x), Q_{Y \mid X} \rightarrow g(y \mid x)$,

$$
D(f(y \mid x) \| g(y \mid x) \mid f(x))=\int f(x)\left\{\int f(y \mid x) \log \frac{f(y \mid x)}{g(y \mid x)} d y\right\} d x
$$

Equivalent definition

$$
D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)=D\left(P_{Y \mid X} \times P_{X} \| Q_{Y \mid X} \times P_{X}\right)
$$

Chain rule

$$
D\left(P_{X Y} \| Q_{X Y}\right)=D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)+D\left(P_{X} \| Q_{X}\right)
$$

Consequently, for $P_{Y}=P_{Y \mid X} \circ P_{X}$ and $Q_{Y}=Q_{Y \mid X} \circ P_{X}$

$$
\begin{aligned}
D\left(P_{Y \mid X} \times P_{X} \| Q_{Y \mid X} \times P_{X}\right) & =D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)+D\left(P_{X} \| P_{X}\right) \\
& =D\left(P_{X \mid Y} \| Q_{X \mid Y} \mid P_{Y}\right)+D\left(P_{Y} \| Q_{Y}\right)
\end{aligned}
$$

$\Rightarrow D\left(P_{Y} \| Q_{Y}\right) \leq D\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)$
with $=$ only if $D\left(P_{X \mid Y} \| Q_{X \mid Y} \mid P_{Y}\right)=0$

For instead $P_{Y}=P_{Y \mid X} \circ P_{X}$ and $Q_{Y}=P_{Y \mid X} \circ Q_{X}$, we get

$$
\begin{array}{r}
D\left(P_{Y \mid X} \times P_{X} \| Q_{Y \mid X} \times Q_{X}\right)=D\left(P_{Y \mid X} \| P_{Y \mid X} \mid P_{X}\right)+D\left(P_{X} \| Q_{X}\right) \\
=D\left(P_{X \mid Y} \| Q_{X \mid Y} \mid P_{Y}\right)+D\left(P_{Y} \| Q_{Y}\right) \\
\Rightarrow D\left(P_{Y} \| Q_{Y}\right) \leq D\left(P_{X} \| Q_{X}\right)
\end{array}
$$

Data processing inequality
Passing P_{X} and Q_{X} through the same transformation decreases the distance

We get
$I(X ; Y)=D\left(P_{X Y} \| P_{X} \otimes P_{Y}\right)=D\left(P_{Y \mid X} \| P_{Y} \mid P_{X}\right)=D\left(P_{X \mid Y} \| P_{X} \mid P_{Y}\right)$
Also define

$$
\begin{aligned}
I(X ; Y \mid Z) & =D\left(P_{X Y \mid Z} \| P_{X \mid Z} \otimes P_{Y \mid Z} \mid P_{Z}\right) \\
& =\int\left\{\int \log \frac{d P_{X Y \mid Z=z}}{d\left(P_{X \mid Z=z} \otimes P_{Y \mid Z=z}\right)} d P_{X Y \mid Z=z}\right\} d P_{Z} \\
& =\int I(X ; Y \mid Z=z) d P_{Z} \\
& =H(Y \mid Z)-H(Y \mid X, Z) \quad \text { [discrete] } \\
& =h(Y \mid Z)-h(Y \mid X, Z) \quad \text { [abs. cont.] }
\end{aligned}
$$

Note that $I(X ; Y \mid Z) \geq 0$ with $=$ only if $X \rightarrow Z \rightarrow Y$

Chain rule

$$
I(Y, Z ; X)=I(X ; Y)+I(X ; Z \mid Y)=I(X ; Z)+I(X ; Y \mid Z)
$$

Consequently, if $X \rightarrow Y \rightarrow Z$

$$
I(X ; Z)+I(X ; Y \mid Z)=I(X ; Y)+I(X ; Z \mid Y)=I(X ; Y)
$$

so $I(X ; Z) \leq I(X ; Y)$ with $=$ only if $I(X ; Y \mid Z)=0$
Follows also from $D\left(P_{Z \mid X} \| P_{Z} \mid P_{X}\right) \leq D\left(P_{Y \mid X} \| P_{Y} \mid P_{X}\right)$
Data processing inequality
Further processing/randomness decreases information

Given $P_{X}, P_{Y \mid X}$ and $P_{Y}=P_{Y \mid X} \circ P_{X}$, let Q_{Y} be any other output distribution, then

$$
I(X ; Y)=D\left(P_{Y \mid X} \| Q_{Y} \mid P_{X}\right)-D\left(P_{Y} \| Q_{Y}\right)
$$

Thus $I(X ; Y) \leq D\left(P_{Y \mid X} \| Q_{Y} \mid P_{X}\right)$ and

$$
I(X ; Y)=\min _{Q_{Y}} D\left(P_{Y \mid X} \| Q_{Y} \mid P_{X}\right)
$$

achieved at $Q_{Y}=P_{Y}$

Conditional f-divergence

Let

$$
D_{f}\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)=\int D_{f}\left(P_{Y \mid X=x} \| Q_{Y \mid X=x}\right) d P_{X}
$$

For $P_{Y}=P_{Y \mid X} \circ P_{X}$ and $Q_{Y}=Q_{Y \mid X} \circ P_{X}$,

$$
D_{f}\left(P_{Y} \| Q_{Y}\right) \leq D_{f}\left(P_{Y \mid X} \| Q_{Y \mid X} \mid P_{X}\right)
$$

and for $P_{Y}=P_{Y \mid X} \circ P_{X}$ and $Q_{Y}=P_{Y \mid X} \circ Q_{X}$,

$$
D_{f}\left(P_{Y} \| Q_{Y}\right) \leq D_{f}\left(P_{X} \| Q_{X}\right)
$$

(data processing inequality)

Let $P_{X}^{(\theta)}$ be parameterized by $\theta \in \mathbb{R}$
Map X to T via $P_{T \mid X}$, i.e. $P_{T}^{(\theta)}=P_{T \mid X} \circ P_{X}^{(\theta)}$
Given $P_{T \mid X}, T$ is a sufficient statistic of X for θ if there is a kernel $Q_{X \mid T}$ such that

$$
P_{T \mid X} \times P_{X}^{(\theta)}=Q_{X \mid T} \times P_{T}^{(\theta)}
$$

When interested in θ, if T is known one can forget X

For a random $\theta: P_{X}^{(\theta)} \rightarrow P_{X \mid \theta}$, and with some arbitrary P_{θ}
Given $P_{X \mid \theta}, P_{T \mid X}$ and $\theta \rightarrow X \rightarrow T$, the following are equivalent

1) T is a sufficient statistic of X for θ
2) $\theta \rightarrow T \rightarrow X$, for any P_{θ}
3) $I(\theta ; X \mid T)=0$, for any P_{θ}
4) $I(\theta ; X)=I(\theta ; T)$, for any P_{θ}

A sufficient statistic T^{*} is minimal if $\theta \rightarrow X \rightarrow T \rightarrow T^{*}$ for all sufficient T, i.e. $I\left(X ; T^{*}\right) \leq I(X ; T)$ for all T while

$$
I(\theta ; X)=I(\theta ; T)=I\left(\theta ; T^{*}\right)
$$

The Information Bottleneck

A minimal sufficient statistic may not exist
\Rightarrow consider instead the problem

$$
\inf _{P_{T \mid X}}(I(X ; T)-\lambda I(\theta ; T))
$$

for $\lambda \geq 0$
Varying λ traces out $(I(X ; T), I(\theta ; T))$, the information curve that separates achievable from non-achievable in the information plane

Equivalently, require $I(\theta ; T) \geq \alpha, 0 \leq \alpha \leq I(\theta ; X)$, and define

$$
d(\omega)=-\log \frac{d P_{T \mid \theta}}{d P_{T}}(\omega)
$$

Then we have

$$
R(\alpha)=\inf _{P_{T \mid X}: E[d(\omega)] \leq \alpha} I(X ; T)
$$

to get a rate-distortion characterization
$I(X ; T)$ can be interpreted as the complexity of the description T, versus relevance $I(\theta ; T)$ parameterized by α

When learning T from data: higher complexity \Rightarrow harder to learn $R(\alpha)=$ the complexity-relevance function

