Infotheory for Statistics and Learning Lecture 4

- Binary hypothesis testing [PW:14],[CT:11.7]
- The Neyman-Pearson lemma [PW:14]
- General theory [PW:28]
- Bayes and minimax [PW:28.3]
- The minimax theorem [PW:28.3]

Binary Hypothesis Testing

Consider P and Q on (Ω, \mathcal{A})
One of P and Q is the correct measure, i.e. the probability space is either (Ω, \mathcal{A}, P) or (Ω, \mathcal{A}, Q)

Based on observation ω we wish to decide P or Q,
hypotheses $H_{0}: P$ and $H_{1}: Q$
A decision kernel $P_{Z \mid \omega}$ for $Z \in\{0,1\} ; Z=0 \rightarrow H_{0}, Z=1 \rightarrow H_{1}$
Define $P_{Z}=P_{Z \mid \omega} \circ P, Q_{Z}=P_{Z \mid \omega} \circ Q$ and

$$
\alpha=P_{Z}(\{0\}), \quad \beta=Q_{Z}(\{0\}), \quad \pi=Q_{Z}(\{1\})
$$

Tradeoff between α (correct negative) and β (false negative)
$\pi=1-\beta$ power of the test (correct positive)

Define

$$
\beta_{\alpha}(P, Q)=\inf _{P_{Z \mid \omega}: P_{Z}(\{0\}) \geq \alpha} Q_{Z}(\{0\})
$$

and

$$
\mathcal{R}(P, Q)=\bigcup_{P_{Z \mid \omega}}\{(\alpha, \beta)\}
$$

Note that $(\alpha, \beta) \in \mathcal{R}(P, Q) \Longleftrightarrow(1-\alpha, 1-\beta) \in \mathcal{R}(P, Q)$

Bounds on $\mathcal{R}(P, Q)$

Binary divergence for $0 \leq x \leq 1,0 \leq y \leq 1$,

$$
d(x \| y)=x \log \frac{x}{y}+(1-x) \log \frac{1-x}{1-y}
$$

Then if $(\alpha, \beta) \in \mathcal{R}(P, Q)$

$$
d(\alpha \| \beta) \leq D(P \| Q), \quad d(\beta \| \alpha) \leq D(Q \| P)
$$

Also, for all $\gamma>0$ and $(\alpha, \beta) \in \mathcal{R}(P, Q)$

$$
\begin{aligned}
& \alpha-\gamma \beta \leq P\left(\left\{\log \frac{d P}{d Q}>\log \gamma\right\}\right) \\
& \beta-\frac{\alpha}{\gamma} \leq Q\left(\left\{\log \frac{d P}{d Q}<\log \gamma\right\}\right)
\end{aligned}
$$

Neyman-Pearson Lemma

Define the log-likelihood ratio (LLR),

$$
L(\omega)=\log \frac{d P}{d Q}(\omega)
$$

For any $\alpha, \beta_{\alpha}(P, Q)$ is achieved by the LLR test

$$
P_{Z \mid \omega}(\{0\} \mid \omega)= \begin{cases}1 & L(\omega)>\tau \\ \lambda & L(\omega)=\tau \\ 0 & L(\omega)<\tau\end{cases}
$$

where τ and $\lambda \in[0,1]$ solve

$$
\alpha=P(\{L>\tau\})+\lambda P(\{L=\tau\})
$$

$\Rightarrow L(\omega)$ is a sufficient statistic for $\left\{H_{i}\right\}$
$\Rightarrow \mathcal{R}(P, Q)$ is closed and convex, and

$$
\mathcal{R}(P, Q)=\left\{(\alpha, \beta): \beta_{\alpha}(P, Q) \leq \beta \leq 1-\beta_{1-\alpha}(P, Q)\right\}
$$

We have implicitly assumed $P \ll Q$ (and $Q \ll P$), if this is not the case we can define $F=\cup\{A \in \mathcal{A}: Q(A)=0$ while $P(A)>0\}$ Then set $P_{Z \mid \omega}(\{0\} \mid \omega)=1$ on F and use the LLR test on F^{c} In the extreme $P(F)=1$ we can set $P_{Z \mid \omega}(\{0\} \mid \omega)=1$ on F and $P_{Z \mid \omega}(\{0\} \mid \omega)=0$ on F^{c}, to get

$$
\alpha=P(F)=1 \text { and } \beta=Q(F)=0
$$

Proof of optimality

Let $g(\omega)=P_{Z \mid \omega}(\{0\} \mid \omega)$ for any $P_{Z \mid \omega}$ such that $E_{P}[g(\omega)] \geq \alpha$ Let

$$
f(\omega)= \begin{cases}1 & L(\omega)>\tau \\ \lambda & L(\omega)=\tau \\ 0 & L(\omega)<\tau\end{cases}
$$

and $t=\exp (\tau)$, where τ and λ are chosen so that $\alpha=E_{P}[f(\omega)]$
Note that

$$
(f(\omega)-g(\omega))\left(\frac{d P}{d Q}(\omega)-t\right) \geq 0
$$

Hence

$$
\begin{aligned}
& \quad t \int(f-g) d Q \leq \int(f-g) d P \leq 0 \\
& \Rightarrow E_{Q}[g(\omega)] \geq E_{Q}[f(\omega)]
\end{aligned}
$$

With probabilities on $\left\{H_{i}\right\}: \operatorname{Pr}\left(H_{1}\right.$ true $)=p, \operatorname{Pr}\left(H_{0}\right.$ true $)=1-p$ Let $g(\omega)=P_{Z \mid \omega}(\{0\} \mid \omega)$, then the average probability of error

$$
\begin{aligned}
P_{e} & =(1-p)\left(1-\int g(\omega) d P\right)+p \int g(\omega) d Q \\
& =\int g(\omega)\left(p-(1-p) \frac{d P}{d Q}(\omega)\right) d Q+1-p
\end{aligned}
$$

Thus the LLR test is optimal also for minimizing P_{e}, with

$$
\tau=\log \frac{p}{1-p}
$$

and with $\lambda \in[0,1]$ arbitrary (e.g. $\lambda=1-p$)

For the total variation between P and Q, we have

$$
\begin{aligned}
\operatorname{TV}(P, Q) & =\sup _{E \in \mathcal{A}}(P(E)-Q(E)) \\
& =\sup _{E \in \mathcal{A}}\left\{\int_{E}\left(\frac{d P}{d Q}(\omega)-1\right) d Q\right\}
\end{aligned}
$$

achieved by $E=\{\omega: L(\omega)>0\}$ (if $P \ll Q$)
Thus for the LLR test that minimizes P_{e} with $p=1 / 2 \Rightarrow \tau=0$ (and using $\lambda=0$),

$$
\begin{aligned}
\operatorname{TV}(P, Q) & =P(\{L(\omega)>0\})-Q(\{L(\omega)>0\}) \\
& =\alpha-\beta_{\alpha}(P, Q)=1-2 P_{e}
\end{aligned}
$$

$\Rightarrow P_{e}=(1-\mathrm{TV}(P, Q)) / 2$
For $P \perp Q, E=F=\cup\{A \in \mathcal{A}: Q(A)=0$ while $P(A)>0\}$,

$$
\operatorname{TV}(P, Q)=P(F)-Q(F)=1 \quad \text { and } \quad P_{e}=0
$$

General Decision Theory

Given (Ω, \mathcal{A}, P) and assume (E, \mathcal{E}) is a standard Borel space (i.e., there is a topology \mathcal{T} on $E,(E, \mathcal{T})$ is Polish, and $\mathcal{E}=\sigma(\mathcal{T})$) $X: \Omega \rightarrow E$ is measurable if $\{\omega: f(\omega) \in F\} \in \mathcal{A}$ for all $F \in \mathcal{E}$
A measurable X is a random

- variable if $(E, \mathcal{E})=(\mathbb{R}, \mathcal{B})$
- vector if $(E, \mathcal{E})=\left(\mathbb{R}^{n}, \mathcal{B}^{n}\right)$
- sequence if $(E, \mathcal{E})=\left(\mathbb{R}^{\infty}, \mathcal{B}^{\infty}\right)$
- object in general

Let T be arbitrary, but typically $T=\mathbb{R}$
Denote $E^{T}=\{$ functions from T to $E\}$, then X is a random

- process if $(E, \mathcal{E})=\left(\mathbb{R}^{T}, \mathcal{B}^{T}\right)$

Given $(\Omega, \mathcal{A}, P),(E, \mathcal{E})$ and $X: \Omega \rightarrow E$ measurable
For a general parameter set Θ let $\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta\right\}$ be a set of possible distributions for X on (E, \mathcal{E})

Assume we observe $X \sim P_{\theta}$ (i.e. P_{θ} is the correct distribution), and we are interested in knowing $T(\theta)$, for some $T: \Theta \rightarrow F$
A decision rule is a kernel $P_{\hat{T} \mid X=x}$ such that $P_{\hat{T}}=P_{\hat{T} \mid X} \circ P_{X}$ on $(\hat{F}, \hat{\mathcal{F}})($ for $(\hat{F}, \hat{\mathcal{F}})$ standard Borel, typically $\hat{F}=F=\mathbb{R}$ and $\hat{\mathcal{F}}=\mathcal{B})$ Define a loss function $\ell: F \times \hat{F} \rightarrow \mathbb{R}$ and the corresponding risk

$$
R_{\theta}(\hat{T})=\int\left\{\int \ell(T(\theta), \hat{T}) d P_{\hat{T} \mid X=x}\right\} d P_{\theta}=E_{\theta}[\ell(T, \hat{T})]
$$

Bayes Risk

Assume $\Theta=\mathbb{R}$ and $T(\theta)=\theta$ (for simplicity)
Postulate a prior distribution π for θ on $(\mathbb{R}, \mathcal{B})$
The average risk

$$
R_{\pi}(\hat{\theta})=\int R_{\theta}(\hat{\theta}) d \pi=\int\left\{\int \ell(\theta, \hat{\theta}) d\left(P_{\hat{\theta} \mid X} \circ P_{\theta}\right)\right\} d \pi
$$

and the Bayes risk

$$
R_{\pi}^{*}=\inf _{P_{\hat{\theta} \mid X}} R_{\pi}(\hat{\theta})
$$

achieved by the Bayes estimator $P_{\hat{\theta} \mid X=x}^{*}$

Define $P_{\theta \mid X}$ from $\pi=P_{\theta \mid X} \circ P_{\theta}$, then since $\theta \rightarrow X \rightarrow \hat{\theta}$

$$
\begin{aligned}
E_{\pi} & {\left[\int\left\{\int(\theta, \hat{\theta}) d P_{\hat{\theta} \mid X=x}\right\} d P_{\theta}\right] } \\
& =\int\left\{\int\left\{\int \ell(\theta, \hat{\theta}) d P_{\hat{\theta} \mid X=x}\right\} d P_{\theta \mid X=x}\right\} d\left(P_{\theta} \circ \pi\right)
\end{aligned}
$$

Hence we can define $\hat{\theta}(x)$ via $\ell(\theta, \hat{\theta}(x))=\int \ell(\theta, \hat{\theta}) d P_{\hat{\theta} \mid X=x}$ and for each $X=x$ minimize

$$
\int \ell(\theta, \hat{\theta}(x)) d P_{\theta \mid X=x}
$$

\Rightarrow the Bayes estimator is always deterministic

- Thus we can always work with $\hat{\theta}(x)$ instead of $P_{\hat{\theta} \mid X}$
- Can also be proved more formally from the fact that $R_{\pi}(\hat{\theta})$ is linear in $P_{\hat{\theta} \mid X}$ and the set $\left\{P_{\hat{\theta} \mid X}\right\}$ is convex

Data processing inequality
Given a prior distribution π for θ, assume that

$$
\theta \rightarrow X \rightarrow Y
$$

and let $R_{\pi}^{*}(X)$ denote the Bayes risk based on observing X, and similarly $R_{\pi}^{*}(Y)$ based on Y. Then

$$
R_{\pi}^{*}(X) \leq R_{\pi}^{*}(Y)
$$

Proof Define

$$
f(x, u)=\sup \left\{v \in[0,1]: P_{Y \mid X=x}([0, v])<u\right\}
$$

Let $U \sim \mathcal{U}([0,1])$ and independent of X, then $f(x, U) \sim P_{Y \mid X=x}$ and

$$
\begin{aligned}
R_{\pi}^{*}(X) & =\inf _{\hat{\theta}(\cdot)} E[\ell(\theta, \hat{\theta}(X))] \leq \inf _{u \in[0,1]} E[\ell(\theta, \tilde{\theta}(f(X, u)))] \\
& \leq E[\ell(\theta, \tilde{\theta}(f(X, U)))]=E[\ell(\theta, \tilde{\theta}(Y))]=R_{\pi}^{*}(Y)
\end{aligned}
$$

where $\tilde{\theta}(Y)$ is the Bayes estimator based on Y.

Let

$$
R^{*}=\inf _{P_{\hat{\theta} \mid X}} \sup _{\theta \in \Theta} R_{\theta}(\hat{\theta})=\inf _{P_{\hat{\theta} \mid X}} \sup _{\theta \in \Theta} \int\left\{\int \ell(\theta, \hat{\theta}) d P_{\hat{\theta} \mid X=x}\right\} d P_{\theta}
$$

denote the minimax risk
The problem is convex, and we can write

$$
R^{*}=\inf t \text { s.t. } E_{\theta}[\ell(\theta, \hat{\theta})] \leq t \text { for all } \theta \in \Theta
$$

over $P_{\hat{\theta} \mid X}$ and t

Assuming Θ is finite for simplicity, we get the Lagrangian

$$
L\left(P_{\hat{\theta} \mid X}, t,\{\lambda(\theta)\}\right)=t+\sum_{\theta} \lambda(\theta)\left(E_{\theta}[\ell(\theta, \hat{\theta})]-t\right)
$$

and the dual function $g(\{\lambda(\theta)\})=\inf _{P_{\hat{\theta} \mid X}, t} L\left(P_{\hat{\theta} \mid X}, t,\{\lambda(\theta)\}\right)$
Note that unless $\sum_{\theta} \lambda(\theta)=1$, we get $g(\{\lambda(\theta)\})=-\infty$
Thus $\sup g(\{\lambda(\theta)\})$ is attained for $\lambda(\theta)=$ a pmf on θ, and

$$
\sup _{\{\lambda(\theta)\}} g(\{\lambda(\theta)\})=\sup _{\{\lambda(\theta)\}} \inf _{P_{\hat{\theta} \mid X}} \sum_{\theta} \lambda(\theta) E_{\theta}[\ell(\theta, \hat{\theta})]=\sup _{\pi} R_{\pi}^{*}
$$

with $\pi(\theta)=\lambda(\theta)$ is the worst-case Bayes risk

Because of weak duality, we always have

$$
\sup _{\pi} R_{\pi}^{*} \leq R^{*}
$$

and strong duality, i.e.

$$
R^{*}=\sup _{\pi} R_{\pi}^{*}
$$

holds if

- θ is finite and \mathcal{X} is finite, or
- θ is finite and $\inf _{\theta, \hat{\theta}} \ell(\theta, \hat{\theta})>-\infty$
and also under very general conditions (see [PW:28.3.4]...)
We have thus established the minimax theorem
When strong duality holds the minimax risk is obtained by a deterministic $\hat{\theta}(x)$

