Infotheory for Statistics and Learning Lecture 4

- Binary hypothesis testing [PW:14],[CT:11.7]
- The Neyman–Pearson lemma [PW:14]
- General theory [PW:28]
- Bayes and minimax [PW:28.3]
- The minimax theorem [PW:28.3]

Mikael Skoglund

Binary Hypothesis Testing

Consider P and Q on (Ω, \mathcal{A})

One of P and Q is the correct measure, i.e. the probability space is either (Ω,\mathcal{A},P) or (Ω,\mathcal{A},Q)

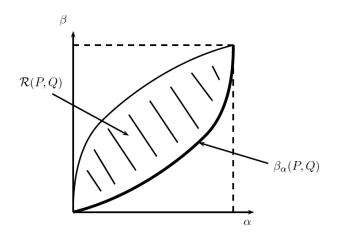
Based on observation ω we wish to decide P or Q, hypotheses $H_0: P$ and $H_1: Q$ A decision kernel $P_{Z|\omega}$ for $Z \in \{0, 1\}$; $Z = 0 \rightarrow H_0$, $Z = 1 \rightarrow H_1$

Define $P_Z = P_{Z|\omega} \circ P$, $Q_Z = P_{Z|\omega} \circ Q$ and

$$\alpha = P_Z(\{0\}), \quad \beta = Q_Z(\{0\}), \quad \pi = Q_Z(\{1\})$$

Tradeoff between α (correct negative) and β (false negative) $\pi = 1 - \beta$ power of the test (correct positive)

Mikael Skoglund



Define

$$\beta_{\alpha}(P,Q) = \inf_{P_{Z|\omega}: P_{Z}(\{0\}) \ge \alpha} Q_{Z}(\{0\})$$

and

$$\mathcal{R}(P,Q) = \bigcup_{P_{Z|\omega}} \{(\alpha,\beta)\}$$

Note that $(\alpha, \beta) \in \mathcal{R}(P, Q) \iff (1 - \alpha, 1 - \beta) \in \mathcal{R}(P, Q)$

Mikael Skoglund

Bounds on $\mathcal{R}(P,Q)$

Binary divergence for $0 \le x \le 1$, $0 \le y \le 1$,

$$d(x||y) = x \log \frac{x}{y} + (1-x) \log \frac{1-x}{1-y}$$

Then if $(\alpha, \beta) \in \mathcal{R}(P, Q)$

$$d(\alpha \| \beta) \le D(P \| Q), \quad d(\beta \| \alpha) \le D(Q \| P)$$

Also, for all $\gamma>0$ and $(\alpha,\beta)\in \mathcal{R}(P,Q)$

$$\begin{aligned} \alpha - \gamma \beta &\leq P\left(\left\{\log\frac{dP}{dQ} > \log\gamma\right\}\right)\\ \beta - \frac{\alpha}{\gamma} &\leq Q\left(\left\{\log\frac{dP}{dQ} < \log\gamma\right\}\right)\end{aligned}$$

Mikael Skoglund

Neyman–Pearson Lemma

Define the log-likelihood ratio (LLR),

$$L(\omega) = \log \frac{dP}{dQ}(\omega)$$

For any α , $\beta_{\alpha}(P,Q)$ is achieved by the LLR test

$$P_{Z|\omega}(\{0\}|\omega) = \begin{cases} 1 & L(\omega) > \tau \\ \lambda & L(\omega) = \tau \\ 0 & L(\omega) < \tau \end{cases}$$

where τ and $\lambda \in [0,1]$ solve

$$\alpha = P(\{L > \tau\}) + \lambda P(\{L = \tau\})$$

Mikael Skoglund

 $\Rightarrow L(\omega) \text{ is a sufficient statistic for } \{H_i\}$ $\Rightarrow \mathcal{R}(P,Q) \text{ is closed and convex, and}$

$$\mathcal{R}(P,Q) = \{(\alpha,\beta) : \beta_{\alpha}(P,Q) \le \beta \le 1 - \beta_{1-\alpha}(P,Q)\}$$

We have implicitly assumed $P \ll Q$ (and $Q \ll P$), if this is not the case we can define $F = \bigcup \{A \in \mathcal{A} : Q(A) = 0 \text{ while } P(A) > 0\}$ Then set $P_{Z|\omega}(\{0\}|\omega) = 1$ on F and use the LLR test on F^c

In the extreme P(F)=1 we can set $P_{Z|\omega}(\{0\}|\omega)=1$ on F and $P_{Z|\omega}(\{0\}|\omega)=0$ on F^c , to get

$$\alpha = P(F) = 1 \text{ and } \beta = Q(F) = 0$$

the test is singular, $P\perp Q$

Proof of optimality

Let $g(\omega) = P_{Z|\omega}(\{0\}|\omega)$ for any $P_{Z|\omega}$ such that $E_P[g(\omega)] \ge \alpha$ Let

$$f(\omega) = \begin{cases} 1 & L(\omega) > \tau \\ \lambda & L(\omega) = \tau \\ 0 & L(\omega) < \tau \end{cases}$$

and $t = \exp(\tau)$, where τ and λ are chosen so that $\alpha = E_P[f(\omega)]$ Note that

$$(f(\omega) - g(\omega))\left(\frac{dP}{dQ}(\omega) - t\right) \ge 0$$

Hence

$$t\int (f-g)dQ \le \int (f-g)dP \le 0$$

 $\Rightarrow E_Q[g(\omega)] \ge E_Q[f(\omega)]$

Mikael Skoglund

7	/	1	7

With probabilities on $\{H_i\}$: $\Pr(H_1 \text{ true}) = p$, $\Pr(H_0 \text{ true}) = 1 - p$ Let $g(\omega) = P_{Z|\omega}(\{0\}|\omega)$, then the average probability of error

$$P_e = (1-p)\left(1 - \int g(\omega)dP\right) + p\int g(\omega)dQ$$
$$= \int g(\omega)\left(p - (1-p)\frac{dP}{dQ}(\omega)\right)dQ + 1 - p$$

Thus the LLR test is optimal also for minimizing P_e , with

$$\tau = \log \frac{p}{1-p}$$

and with $\lambda \in [0,1]$ arbitrary (e.g. $\lambda = 1-p$)

For the total variation between P and Q, we have

$$\mathsf{TV}(P,Q) = \sup_{E \in \mathcal{A}} \left(P(E) - Q(E) \right)$$
$$= \sup_{E \in \mathcal{A}} \left\{ \int_{E} \left(\frac{dP}{dQ}(\omega) - 1 \right) dQ \right\}$$

achieved by $E = \{\omega : L(\omega) > 0\}$ (if $P \ll Q$)

Thus for the LLR test that minimizes P_e with $p = 1/2 \Rightarrow \tau = 0$ (and using $\lambda = 0$),

$$\mathsf{TV}(P,Q) = P(\{L(\omega) > 0\}) - Q(\{L(\omega) > 0\}) \\ = \alpha - \beta_{\alpha}(P,Q) = 1 - 2P_{e}$$

 $\Rightarrow P_e = (1 - \mathsf{TV}(P,Q))/2$

For
$$P \perp Q$$
, $E = F = \bigcup \{A \in \mathcal{A} : Q(A) = 0 \text{ while } P(A) > 0\}$,

$$TV(P,Q) = P(F) - Q(F) = 1$$
 and $P_e = 0$

Mikael Skoglund

9/17

General Decision Theory

Given (Ω, \mathcal{A}, P) and assume (E, \mathcal{E}) is a standard Borel space (i.e., there is a topology \mathcal{T} on E, (E, \mathcal{T}) is Polish, and $\mathcal{E} = \sigma(\mathcal{T})$)

 $X: \Omega \to E$ is measurable if $\{\omega: f(\omega) \in F\} \in \mathcal{A}$ for all $F \in \mathcal{E}$

A measurable X is a random

- variable if $(E, \mathcal{E}) = (\mathbb{R}, \mathcal{B})$
- vector if $(E, \mathcal{E}) = (\mathbb{R}^n, \mathcal{B}^n)$
- sequence if $(E, \mathcal{E}) = (\mathbb{R}^{\infty}, \mathcal{B}^{\infty})$
- object in general

Let T be arbitrary, but typically $T = \mathbb{R}$

Denote $E^T = \{$ functions from T to $E \}$, then X is a random

• process if $(E, \mathcal{E}) = (\mathbb{R}^T, \mathcal{B}^T)$

Given (Ω, \mathcal{A}, P) , (E, \mathcal{E}) and $X : \Omega \to E$ measurable

For a general parameter set Θ let $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ be a set of possible distributions for X on (E, \mathcal{E})

Assume we observe $X \sim P_{\theta}$ (i.e. P_{θ} is the correct distribution), and we are interested in knowing $T(\theta)$, for some $T: \Theta \to F$

A decision rule is a kernel $P_{\hat{T}|X=x}$ such that $P_{\hat{T}} = P_{\hat{T}|X} \circ P_X$ on $(\hat{F}, \hat{\mathcal{F}})$ (for $(\hat{F}, \hat{\mathcal{F}})$ standard Borel, typically $\hat{F} = F = \mathbb{R}$ and $\hat{\mathcal{F}} = \mathcal{B}$)

Define a loss function $\ell: F \times \hat{F} \to \mathbb{R}$ and the corresponding risk

$$R_{\theta}(\hat{T}) = \int \left\{ \int \ell(T(\theta), \hat{T}) dP_{\hat{T}|X=x} \right\} dP_{\theta} = E_{\theta}[\ell(T, \hat{T})]$$

Mikael Skoglund

Bayes Risk

Assume $\Theta = \mathbb{R}$ and $T(\theta) = \theta$ (for simplicity)

Postulate a prior distribution π for θ on $(\mathbb{R}, \mathcal{B})$

The average risk

$$R_{\pi}(\hat{\theta}) = \int R_{\theta}(\hat{\theta}) d\pi = \int \left\{ \int \ell(\theta, \hat{\theta}) d(P_{\hat{\theta}|X} \circ P_{\theta}) \right\} d\pi$$

and the Bayes risk

$$R_{\pi}^* = \inf_{P_{\hat{\theta}|X}} R_{\pi}(\hat{\theta})$$

achieved by the Bayes estimator $P^*_{\hat{\theta}|X=x}$

Define $P_{\theta|X}$ from $\pi = P_{\theta|X} \circ P_{\theta}$, then since $\theta \to X \to \hat{\theta}$

$$E_{\pi} \left[\int \left\{ \int \ell(\theta, \hat{\theta}) dP_{\hat{\theta}|X=x} \right\} dP_{\theta} \right]$$

=
$$\int \left\{ \int \left\{ \int \ell(\theta, \hat{\theta}) dP_{\hat{\theta}|X=x} \right\} dP_{\theta|X=x} \right\} d(P_{\theta} \circ \pi)$$

Hence we can define $\hat{\theta}(x)$ via $\ell(\theta, \hat{\theta}(x)) = \int \ell(\theta, \hat{\theta}) dP_{\hat{\theta}|X=x}$ and for each X = x minimize

$$\int \ell(\theta, \hat{\theta}(x)) dP_{\theta|X=x}$$

 \Rightarrow the Bayes estimator is always deterministic

- Thus we can always work with $\hat{ heta}(x)$ instead of $P_{\hat{ heta}|X}$
- Can also be proved more formally from the fact that $R_{\pi}(\hat{\theta})$ is linear in $P_{\hat{\theta}|X}$ and the set $\{P_{\hat{\theta}|X}\}$ is convex

Mikael Skoglund

Data processing inequality

Given a prior distribution π for θ , assume that

$$\theta \to X \to Y$$

and let $R^*_\pi(X)$ denote the Bayes risk based on observing X, and similarly $R^*_\pi(Y)$ based on Y. Then

$$R^*_{\pi}(X) \le R^*_{\pi}(Y)$$

Proof Define

$$f(x, u) = \sup\{v \in [0, 1] : P_{Y|X=x}([0, v]) < u\}$$

Let $U \sim \mathcal{U}([0,1])$ and independent of X, then $f(x,U) \sim P_{Y|X=x}$ and

$$R^*_{\pi}(X) = \inf_{\hat{\theta}(\cdot)} E[\ell(\theta, \hat{\theta}(X))] \le \inf_{u \in [0,1]} E[\ell(\theta, \hat{\theta}(f(X, u)))]$$
$$\le E[\ell(\theta, \tilde{\theta}(f(X, U)))] = E[\ell(\theta, \tilde{\theta}(Y))] = R^*_{\pi}(Y)$$

where $\tilde{\theta}(Y)$ is the Bayes estimator based on Y.

Mikael Skoglund

Minimax Risk

Let

$$R^* = \inf_{P_{\hat{\theta}|X}} \sup_{\theta \in \Theta} R_{\theta}(\hat{\theta}) = \inf_{P_{\hat{\theta}|X}} \sup_{\theta \in \Theta} \int \left\{ \int \ell(\theta, \hat{\theta}) dP_{\hat{\theta}|X=x} \right\} dP_{\theta}$$

denote the minimax risk

The problem is convex, and we can write

 $R^* = \inf t \; \text{ s.t. } \; E_{\theta}[\ell(\theta, \hat{\theta})] \leq t \; \text{ for all } \theta \in \Theta$

over $P_{\hat{\theta}|X}$ and t

Mikael Skoglund

15/17

Assuming Θ is finite for simplicity, we get the Lagrangian

$$L(P_{\hat{\theta}|X}, t, \{\lambda(\theta)\}) = t + \sum_{\theta} \lambda(\theta) (E_{\theta}[\ell(\theta, \hat{\theta})] - t)$$

and the dual function $g(\{\lambda(\theta)\}) = \inf_{P_{\hat{\theta}|X}, t} L(P_{\hat{\theta}|X}, t, \{\lambda(\theta)\})$ Note that unless $\sum_{\theta} \lambda(\theta) = 1$, we get $g(\{\lambda(\theta)\}) = -\infty$ Thus $\sup g(\{\lambda(\theta)\})$ is attained for $\lambda(\theta) = a$ pmf on θ , and

$$\sup_{\{\lambda(\theta)\}} g(\{\lambda(\theta)\}) = \sup_{\{\lambda(\theta)\}} \inf_{P_{\hat{\theta}|X}} \sum_{\theta} \lambda(\theta) E_{\theta}[\ell(\theta, \hat{\theta})] = \sup_{\pi} R_{\pi}^*$$

with $\pi(\theta)=\lambda(\theta)$ is the worst-case Bayes risk

Because of weak duality, we always have

$$\sup_{\pi} R_{\pi}^* \le R^*$$

and strong duality, i.e.

$$R^* = \sup_{\pi} R^*_{\pi}$$

holds if

- θ is finite and $\mathcal X$ is finite, or
- θ is finite and $\inf_{\theta,\hat{\theta}} \ell(\theta,\hat{\theta}) > -\infty$

and also under very general conditions (see [PW:28.3.4]...)

We have thus established the minimax theorem

When strong duality holds the minimax risk is obtained by a deterministic $\hat{\theta}(x)$

Mikael Skoglund