Infotheory for Statistics and Learning

Lecture 4

Binary hypothesis testing [PW:14],[CT:11.7]
The Neyman—Pearson lemma [PW:14]
General theory [PW:28]

Bayes and minimax [PW:28.3]

The minimax theorem [PW:28.3]
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Binary Hypothesis Testing

Consider P and @ on (2,.A)

One of P and () is the correct measure, i.e. the probability space is
either (2, A, P) or (2, A,Q)

Based on observation w we wish to decide P or @,
hypotheses Hy : P and Hy : ()

A decision kernel Py, for Z € {0,1}; Z=0— Hy, Z =1— H;
Define Pz = Pz, 0 P, Qz = Pz, 0 and
a=Pz({0}), B=Qz({0}), 7=Qz({1})

Tradeoff between « (correct negative) and [ (false negative)

m =1 — 3 power of the test (correct positive)
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«

Define
ﬁa(Pa Q) - inf QZ({O})

Pz1,:Pz({0})2a

and

R(P,Q) = | {(a,8)}

PZ|w

Note that (o, 8) € R(P,Q) < (1—a,1— ) € R(P,Q)
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Bounds on R(P, Q)

Binary divergence for 0 <z <1, 0<y <1,

1—=x
I—y

aﬂw>=ng§+<r—@kg

Then if (o, 5) € R(P, Q)

d(e||B) < D(P|Q), d(Blla) < D(@Q||P)

Also, for all v > 0 and («, 8) € R(P,Q)

a—vB8 <P ({log % > log'y})
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Neyman—Pearson Lemma

Define the log-likelihood ratio (LLR),

L(w) = log j—gw

For any «, 5,(P, Q) is achieved by the LLR test
1 T

Pr,({0}|w) = ¢ A L(w) =7

0 T

where 7 and X € [0, 1] solve

a=P{L>71})+AP{L=r1})
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= L(w) is a sufficient statistic for {H;}

= R(P, Q) is closed and convex, and

R(P,Q) ={(a,B) : Bo(P,Q) < B <1—Pi_a(P,Q)}

We have implicitly assumed P < @ (and @ < P), if this is not the
case we can define F'=U{A € A: Q(A) = 0 while P(A) > 0}

Then set Pz,,({0}|w) =1 on F and use the LLR test on F*

In the extreme P(F) =1 we can set Py, ({0}|w) =1 on F and
Py,({0}w) = 0 on F¢, to get

a=PF)=1 and 0=Q(F)=0

the test is singular, P 1 @
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Proof of optimality
Let g(w) = Py,({0}|w) for any Py, such that Eplg(w)] >
Let

and t = exp(7), where 7 and A are chosen so that a = Ep[f(w)]

Note that
dP

(1)~ 90D (G5 ) —t) 20

Hence

¢ [r-gie< [(-gar <o

= Eglg(w)] > Eglf(w)]
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With probabilities on {H;}: Pr(H; true) = p, Pr(Hp true) =1 —p
Let g(w) = Pz,({0}|w), then the average probability of error

P=(1-p) (1 -/ g(w)dP) +1 [ g1

= [ gt (p—<1—p>%<w>) Q1 p

Thus the LLR test is optimal also for minimizing P, with

T = log
l1—p

and with A € [0, 1] arbitrary (e.g. A\=1—p)
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For the total variation between P and (), we have

TV(P,Q) = EEB(HE) - Q(R))

= s [ (e -1) e}

achieved by £ = {w: L(w) > 0} (if P < Q)
Thus for the LLR test that minimizes P, with p=1/2=7=0
(and using A = 0),

TV(P,Q) = P({L(w) > 0}) = Q({L(w) > 0})
=a—fu(P,Q)=1-2F,
= P = (1-TV(P.Q))/2
For P L Q, E=F=U{A€ A:Q(A) =0 while P(A) > 0},
TV(P,Q) = P(F) — Q(F) =1 and P.=0
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General Decision Theory

Given (2,4, P) and assume (E, &) is a standard Borel space
(i.e., there is a topology 7 on E, (E,T) is Polish, and £ = (7))

X : Q — E is measurable if {w: f(w) € F} € Aforall F €&

A measurable X is a random
e variable if (E,&) = (R, B)
e vector if (E,&) = (R",B")
® sequence if (F,&) = (R*°, B®)

® object in general

Let 1" be arbitrary, but typically T'=R

Denote E7" = {functions from T to E}, then X is a random
® process if (E,&) = (RT, BT)
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Given (2, A, P), (E,€) and X : Q — E measurable

For a general parameter set © let P = {Py : 0 € O} be a set of
possible distributions for X on (FE, &)

Assume we observe X ~ Py (i.e. Py is the correct distribution),
and we are interested in knowing T'(6), for some T': © — F

A decision rule is a kernel Phix—y such that Py = Ppix

(F, ]}) (for (F', F) standard Borel, typically ' = F =R and F = B)

OPX on

Define a loss function ¢ : F x ' — R and the corresponding risk

Ro(T) = / { / E(T(O),T)dPﬂ X:x} dPy = Eg[t(T,T)]
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Bayes Risk

Assume © = R and T'(6) = 0 (for simplicity)
Postulate a prior distribution 7 for 6 on (R, B)

The average risk

Ra(0) = / Ro(6)dr = / { / ﬁ(@,é)d(Pé|XoP9)}d7T

and the Bayes risk

A

R* = inf R.(0)

™
Pé|X

: _ .
achieved by the Bayes estimator Pé|X:x
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Define Py x from m = Py x o Py, then since § — X — 0

B, U {/ae,é)dpélxzm} dpel
_ / {/ {/ﬁ(e,é)dpé|xzx}dP9|X:m}d(pe o 1)

Hence we can define O(x) via £(6,0(x)) = [ £(6,0)dP,

each X = £ minimize

X—z and for

/ (6, 6(x))dPyyx—.

= the Bayes estimator is always deterministic

 Thus we can always work with §(x) instead of Py x

e Can also be proved more formally from the fact that R, (f) is
linear in Fj - and the set {P9|X} is convex
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Data processing inequality

Given a prior distribution 7 for 6, assume that

06— X —Y

and let R (X) denote the Bayes risk based on observing X, and
similarly RX(Y") based on Y. Then

Rz (X) < Rz (Y)

Proof Define
f(z,u) = sup{v € [0,1] : Py x=4([0,v]) < u}
Let U ~ U([0,1]) and independent of X, then f(z,U) ~ Py|x—, and

R (X) = g?_f)E[ﬁ(@,é(X))] S E[£(6,6(f(X,u)))

< E[0(8,6(f(X,U)))] = E[£(8,0(Y))] = Ry(Y)

where 0(Y) is the Bayes estimator based on Y.
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Minimax Risk

Let

R* = inf sup Ry é) = inf sup/{/f(@,é dP; _x}dPg
Ps1x 0O ( Py x 6€0 ) b1X=

denote the minimax risk

The problem is convex, and we can write
R* =inft st. Eg[0(0,0)] <t forall €O

over PéyX and t
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Assuming O is finite for simplicity, we get the Lagrangian

L(Py ot MO)}) = t+ S AO)(Eole(9,0)] - 1)
0

and the dual function g({\(0)}) = il’lfpé|X7t L(Pé|X,t, {A0)})
Note that unless >, A(0) =1, we get g({\(0)}) = —o0
Thus sup g({\(6)}) is attained for \() = a pmf on 6, and

sup g({A(0)}) = sup inf Y A(6)Eg[(6,0)] = sup R;
{A\6)} {\0)} Foix m

with w(0) = A(0) is the worst-case Bayes risk
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Because of weak duality, we always have

sup R; < R*
v

and strong duality, i.e.

R* =sup R,
™

holds if

® @ is finite and X is finite, or

® 0 is finite and inf ; 000,0) > —c0
and also under very general conditions (see [PW:28.3.4]...)
We have thus established the minimax theorem

When strong duality holds the minimax risk is obtained by a
deterministic 6(x)
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