
Infotheory for Statistics and Learning
Lecture 4

• Binary hypothesis testing [PW:14],[CT:11.7]

• The Neyman–Pearson lemma [PW:14]

• General theory [PW:28]

• Bayes and minimax [PW:28.3]

• The minimax theorem [PW:28.3]
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Binary Hypothesis Testing

Consider P and Q on (Ω,A)

One of P and Q is the correct measure, i.e. the probability space is
either (Ω,A, P ) or (Ω,A, Q)

Based on observation ω we wish to decide P or Q,
hypotheses H0 : P and H1 : Q

A decision kernel PZ|ω for Z ∈ {0, 1}; Z = 0 → H0, Z = 1 → H1

Define PZ = PZ|ω ◦ P , QZ = PZ|ω ◦Q and

α = PZ({0}), β = QZ({0}), π = QZ({1})

Tradeoff between α (correct negative) and β (false negative)

π = 1− β power of the test (correct positive)
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Define
βα(P,Q) = inf

PZ|ω :PZ({0})≥α
QZ({0})

and
R(P,Q) =

⋃

PZ|ω

{(α, β)}

Note that (α, β) ∈ R(P,Q) ⇐⇒ (1− α, 1− β) ∈ R(P,Q)
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Bounds on R(P,Q)

Binary divergence for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

d(x∥y) = x log
x

y
+ (1− x) log

1− x

1− y

Then if (α, β) ∈ R(P,Q)

d(α∥β) ≤ D(P∥Q), d(β∥α) ≤ D(Q∥P )

Also, for all γ > 0 and (α, β) ∈ R(P,Q)

α− γβ ≤ P

({
log

dP

dQ
> log γ

})

β − α

γ
≤ Q

({
log

dP

dQ
< log γ

})
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Neyman–Pearson Lemma

Define the log-likelihood ratio (LLR),

L(ω) = log
dP

dQ
(ω)

For any α, βα(P,Q) is achieved by the LLR test

PZ|ω({0}|ω) =





1 L(ω) > τ

λ L(ω) = τ

0 L(ω) < τ

where τ and λ ∈ [0, 1] solve

α = P ({L > τ}) + λP ({L = τ})
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⇒ L(ω) is a sufficient statistic for {Hi}
⇒ R(P,Q) is closed and convex, and

R(P,Q) = {(α, β) : βα(P,Q) ≤ β ≤ 1− β1−α(P,Q)}

We have implicitly assumed P ≪ Q (and Q ≪ P ), if this is not the
case we can define F = ∪{A ∈ A : Q(A) = 0 while P (A) > 0}
Then set PZ|ω({0}|ω) = 1 on F and use the LLR test on F c

In the extreme P (F ) = 1 we can set PZ|ω({0}|ω) = 1 on F and
PZ|ω({0}|ω) = 0 on F c, to get

α = P (F ) = 1 and β = Q(F ) = 0

the test is singular, P ⊥ Q
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Proof of optimality

Let g(ω) = PZ|ω({0}|ω) for any PZ|ω such that EP [g(ω)] ≥ α

Let

f(ω) =





1 L(ω) > τ

λ L(ω) = τ

0 L(ω) < τ

and t = exp(τ), where τ and λ are chosen so that α = EP [f(ω)]

Note that

(f(ω)− g(ω))

(
dP

dQ
(ω)− t

)
≥ 0

Hence

t

∫
(f − g)dQ ≤

∫
(f − g)dP ≤ 0

⇒ EQ[g(ω)] ≥ EQ[f(ω)]
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With probabilities on {Hi}: Pr(H1 true) = p, Pr(H0 true) = 1− p

Let g(ω) = PZ|ω({0}|ω), then the average probability of error

Pe = (1− p)

(
1−

∫
g(ω)dP

)
+ p

∫
g(ω)dQ

=

∫
g(ω)

(
p− (1− p)

dP

dQ
(ω)

)
dQ+ 1− p

Thus the LLR test is optimal also for minimizing Pe, with

τ = log
p

1− p

and with λ ∈ [0, 1] arbitrary (e.g. λ = 1− p)
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For the total variation between P and Q, we have

TV(P,Q) = sup
E∈A

(P (E)−Q(E))

= sup
E∈A

{∫

E

(
dP

dQ
(ω)− 1

)
dQ

}

achieved by E = {ω : L(ω) > 0} (if P ≪ Q)

Thus for the LLR test that minimizes Pe with p = 1/2 ⇒ τ = 0
(and using λ = 0),

TV(P,Q) = P ({L(ω) > 0})−Q({L(ω) > 0})
= α− βα(P,Q) = 1− 2Pe

⇒ Pe = (1− TV(P,Q))/2

For P ⊥ Q, E = F = ∪{A ∈ A : Q(A) = 0 while P (A) > 0},

TV(P,Q) = P (F )−Q(F ) = 1 and Pe = 0
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General Decision Theory

Given (Ω,A, P ) and assume (E, E) is a standard Borel space
(i.e., there is a topology T on E, (E, T ) is Polish, and E = σ(T ))

X : Ω → E is measurable if {ω : f(ω) ∈ F} ∈ A for all F ∈ E
A measurable X is a random

• variable if (E, E) = (R,B)
• vector if (E, E) = (Rn,Bn)

• sequence if (E, E) = (R∞,B∞)

• object in general

Let T be arbitrary, but typically T = R

Denote ET = {functions from T to E}, then X is a random

• process if (E, E) = (RT ,BT )
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Given (Ω,A, P ), (E, E) and X : Ω → E measurable

For a general parameter set Θ let P = {Pθ : θ ∈ Θ} be a set of
possible distributions for X on (E, E)
Assume we observe X ∼ Pθ (i.e. Pθ is the correct distribution),
and we are interested in knowing T (θ), for some T : Θ → F

A decision rule is a kernel PT̂ |X=x such that PT̂ = PT̂ |X ◦ PX on

(F̂ , F̂) (for (F̂ , F̂) standard Borel, typically F̂ = F = R and F̂ = B)

Define a loss function ℓ : F × F̂ → R and the corresponding risk

Rθ(T̂ ) =

∫ {∫
ℓ(T (θ), T̂ )dPT̂ |X=x

}
dPθ = Eθ[ℓ(T, T̂ )]
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Bayes Risk

Assume Θ = R and T (θ) = θ (for simplicity)

Postulate a prior distribution π for θ on (R,B)
The average risk

Rπ(θ̂) =

∫
Rθ(θ̂)dπ =

∫ {∫
ℓ(θ, θ̂)d(Pθ̂|X ◦ Pθ)

}
dπ

and the Bayes risk
R∗

π = inf
Pθ̂|X

Rπ(θ̂)

achieved by the Bayes estimator P ∗
θ̂|X=x
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Define Pθ|X from π = Pθ|X ◦ Pθ, then since θ → X → θ̂

Eπ

[∫ {∫
ℓ(θ, θ̂)dPθ̂|X=x

}
dPθ

]

=

∫ {∫ {∫
ℓ(θ, θ̂)dPθ̂|X=x

}
dPθ|X=x

}
d(Pθ ◦ π)

Hence we can define θ̂(x) via ℓ(θ, θ̂(x)) =
∫
ℓ(θ, θ̂)dPθ̂|X=x and for

each X = x minimize
∫

ℓ(θ, θ̂(x))dPθ|X=x

⇒ the Bayes estimator is always deterministic

• Thus we can always work with θ̂(x) instead of Pθ̂|X
• Can also be proved more formally from the fact that Rπ(θ̂) is
linear in Pθ̂|X and the set {Pθ̂|X} is convex
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Data processing inequality

Given a prior distribution π for θ, assume that

θ → X → Y

and let R∗
π(X) denote the Bayes risk based on observing X, and

similarly R∗
π(Y ) based on Y . Then

R∗
π(X) ≤ R∗

π(Y )

Proof Define

f(x, u) = sup{v ∈ [0, 1] : PY |X=x([0, v]) < u}
Let U ∼ U([0, 1]) and independent of X, then f(x, U) ∼ PY |X=x and

R∗
π(X) = inf

θ̂(·)
E[ℓ(θ, θ̂(X))] ≤ inf

u∈[0,1]
E[ℓ(θ, θ̃(f(X,u)))]

≤ E[ℓ(θ, θ̃(f(X,U)))] = E[ℓ(θ, θ̃(Y ))] = R∗
π(Y )

where θ̃(Y ) is the Bayes estimator based on Y .
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Minimax Risk

Let

R∗ = inf
Pθ̂|X

sup
θ∈Θ

Rθ(θ̂) = inf
Pθ̂|X

sup
θ∈Θ

∫ {∫
ℓ(θ, θ̂)dPθ̂|X=x

}
dPθ

denote the minimax risk

The problem is convex, and we can write

R∗ = inf t s.t. Eθ[ℓ(θ, θ̂)] ≤ t for all θ ∈ Θ

over Pθ̂|X and t
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Assuming Θ is finite for simplicity, we get the Lagrangian

L(Pθ̂|X , t, {λ(θ)}) = t+
∑

θ

λ(θ)(Eθ[ℓ(θ, θ̂)]− t)

and the dual function g({λ(θ)}) = infPθ̂|X ,t L(Pθ̂|X , t, {λ(θ)})
Note that unless

∑
θ λ(θ) = 1, we get g({λ(θ)}) = −∞

Thus sup g({λ(θ)}) is attained for λ(θ) = a pmf on θ, and

sup
{λ(θ)}

g({λ(θ)}) = sup
{λ(θ)}

inf
Pθ̂|X

∑

θ

λ(θ)Eθ[ℓ(θ, θ̂)] = sup
π

R∗
π

with π(θ) = λ(θ) is the worst-case Bayes risk
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Because of weak duality, we always have

sup
π

R∗
π ≤ R∗

and strong duality, i.e.

R∗ = sup
π

R∗
π

holds if

• θ is finite and X is finite, or

• θ is finite and infθ,θ̂ ℓ(θ, θ̂) > −∞
and also under very general conditions (see [PW:28.3.4]. . . )

We have thus established the minimax theorem

When strong duality holds the minimax risk is obtained by a
deterministic θ̂(x)
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