Infotheory for Statistics and Learning Lecture 5

- Repeated iid experiments [PW:28.4-5]
- The Gaussian location model [PW:28.2]
- The mutual information method [PW:30]
- Fano's method [PW:6.3,31.4],[CT:2.10]
- Capacity and information radius [PW:5.3,30.1]

Product of Experiments

Consider the model $P_{\theta}=P_{\theta_{1}} \otimes \cdots \otimes P_{\theta_{p}}$ for $\theta_{i} \in \Theta_{i}$ with observation

$$
X=\left(X_{1}, \ldots, X_{p}\right) \sim P_{\theta}
$$

and loss

$$
\ell(\theta, \hat{\theta})=\sum_{i=1}^{p} \ell_{i}\left(\theta_{i}, \hat{\theta}_{i}\right)
$$

For $R^{*}=\operatorname{minimax}$ risk of product, $R_{i}^{*}=$ minimax risk of individual and $S_{i}^{*}=\sup _{\pi_{i}} R_{\pi_{i}}^{*}=$ worst-case Bayes of individual, we have

$$
\sum_{i=1}^{p} S_{i}^{*} \leq R^{*} \leq \sum_{i=1}^{p} R_{i}^{*}
$$

Thus if the minimax theorem holds for each i, we get $R^{*}=\sum_{i} R_{i}^{*}$

Repeated iid Experiments

Consider instead n repeated independent and identically distributed (iid) experiments:

$$
X=\left(X_{1}, \ldots, X_{n}\right), \quad X_{i} \sim P_{\theta} \text { and independent }
$$

The resulting minimax risk R_{n}^{*} is non-increasing, and usually $\rightarrow 0$ as $n \rightarrow \infty$

Sample complexity

$$
n^{*}(\varepsilon)=\min \left\{n: R_{n}^{*} \leq \varepsilon\right\}
$$

Example: Gaussian location model (GLM),

$$
X_{i} \sim \mathcal{N}\left(\theta, \sigma^{2} I_{p}\right), \quad i=1, \ldots, n
$$

iid in i, and $\ell(\theta, \hat{\theta})=\|\theta-\hat{\theta}\|^{2}$. First, let $n=1$ and $X=X_{1}$:
For any $\pi, \theta \sim \pi, R_{\pi}(\hat{\theta})=E_{\pi}\left[E_{\theta}\left\{E\left[\|\theta-\hat{\theta}\|^{2} \mid X\right]\right\}\right]$
Let $g(x)=E[\theta \mid X=x]$, then for each $X=x$
$E\left[\|\theta-\hat{\theta}\|^{2} \mid X=x\right]=E\left[\|\theta-g(x)\|^{2} \mid X=x\right]+E\left[\|g(x)-\hat{\theta}(x)\|^{2} \mid X=x\right]$
Thus $\hat{\theta}^{*}(x)=g(x)$
We also know that

$$
\left|E\left[(\theta-g(X))(\theta-g(X))^{T}\right]\right| \geq \frac{1}{(2 \pi e)^{p}} 2^{2 h(\theta \mid X)}
$$

where the RHS is maximized for $P_{\theta \mid X}$ Gaussian and the LHS $=$ RHS for θ and X jointly Gaussian

Because

$$
h(\theta \mid X) \leq \sum_{k=1}^{p} h\left(\theta_{k} \mid X_{k}\right)
$$

with $=$ if $\left(\theta_{k}, X_{k}\right)$ are independent in k, we can take $\theta_{k} \sim \mathcal{N}(0, \gamma)$ and independent in k, to get

$$
h(\theta \mid X)=\frac{p}{2} \log 2 \pi e \frac{\sigma^{2} \gamma}{\sigma^{2}+\gamma} \Rightarrow \frac{1}{(2 \pi e)^{p}} 2^{2 h(\theta \mid X)}=\left(\frac{\sigma^{2} \gamma}{\sigma^{2}+\gamma}\right)^{p}
$$

and since $E\left[(\theta-g(X))(\theta-g(X))^{T}\right]=E\left[\left(\theta_{i}-g_{i}(X)\right)^{2}\right] I_{p}$ we get

$$
\sup _{\pi} R_{\pi}^{*}=\lim _{\gamma \rightarrow \infty} p \frac{\sigma^{2} \gamma}{\sigma^{2}+\gamma}=p \sigma^{2}
$$

and since $\sup _{\pi} R_{\pi}^{*} \leq R^{*}$ and $R(\hat{\theta}(x))=p \sigma^{2}$ is achieved by $\hat{\theta}(x)=x$ we have also $R^{*}=p \sigma^{2}($ for $n=1)$

For $n>1$, let $\bar{x}_{n}=n^{-1} \sum_{i} x_{i}$, then

$$
\begin{aligned}
f(x \mid \theta) & =\frac{1}{\left(2 \pi \sigma^{2}\right)^{(p n) / 2}} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left\|x_{i}-\theta\right\|^{2}\right) \\
& =\frac{1}{n^{p / 2}\left(2 \pi \sigma^{2}\right)^{(n-1) p / 2}} f\left(\bar{x}_{n} \mid \theta\right) e^{-\frac{1}{2 \sigma^{2}}\left(\sum_{i}\left\|x_{i}\right\|^{2}-n\left\|\bar{x}_{n}\right\|^{2}\right)}
\end{aligned}
$$

Thus \bar{X}_{n} is a sufficient statistic of X for θ and observing $\left\{X_{i}\right\}$ is equivalent to seeing $\bar{X}_{n} \sim \mathcal{N}\left(\theta,\left(\sigma^{2} / n\right) I_{p}\right)$, and consequently

$$
R_{n}^{*}=p \frac{\sigma^{2}}{n} \text { and } n^{*}(\varepsilon)=\left\lceil p \frac{\sigma^{2}}{\varepsilon}\right\rceil
$$

\Rightarrow fundamental trade-off between p and n

For a given $P_{\theta}, \theta \sim \pi$ and $P_{\hat{\theta} \mid X}$ such that $E[\ell(\theta, \hat{\theta})] \leq D$, we have

$$
R(D)=\inf _{P_{\hat{\theta} \mid \theta}: E[\ell(\theta, \hat{\theta})] \leq D} I(\theta ; \hat{\theta}) \leq I(\theta ; \hat{\theta}) \leq I(\theta ; X) \leq \sup _{\pi} I(\theta ; X)
$$

Assume $\ell(\theta, \hat{\theta})=\|\theta-\hat{\theta}\|^{r}$ (r th power of a norm over \mathbb{R}^{p}),

$$
\begin{aligned}
R(D) & =\inf _{P_{\hat{\theta} \mid \theta}: E[\|\theta-\hat{\theta}\| r] \leq D}\{h(\theta)-h(\theta-\hat{\theta} \mid \hat{\theta})\} \\
& \geq h(\theta)-\sup _{\left.P_{\hat{\theta} \mid \theta}: E[\| \theta-\hat{\theta}) \|^{r}\right] \leq D} h(\theta-\hat{\theta}) \\
& \geq h(\theta)-\log \left(V_{p}\left(\frac{D r e}{p}\right)^{p / r} \Gamma\left(1+\frac{p}{r}\right)\right)
\end{aligned}
$$

where

$$
V_{p}=\int_{\|x\| \leq 1} d x
$$

The RHS of the bound $=$ the Shannon lower bound on $R(D)$ The bound is tight as $D \rightarrow 0$

For $p=1, \ell(\theta, \hat{\theta})=(\theta-\hat{\theta})^{2}$, we get $V_{1}=1, \Gamma(3 / 2)=\sqrt{\pi} / 2$ and

$$
R(D) \geq h(\theta)-\frac{1}{2} \log (2 \pi e D)=\frac{1}{2} \log \frac{\sigma^{2}}{D}-D(\pi \| g)
$$

with $g=\mathcal{N}\left(0, \sigma^{2}\right)$ and $\sigma^{2}=E\left[\theta^{2}\right]$, recovering our previous bound

For the GLM $\bar{X}_{n} \sim \mathcal{N}\left(\theta,(1 / n) I_{p}\right)$ with $\ell(\theta, \hat{\theta})=\|\theta-\hat{\theta}\|^{r}$, we get

$$
\begin{aligned}
\frac{p}{2} \log (1+n \gamma) & \geq I\left(\theta ; \bar{X}_{n}\right) \geq I(\theta, \hat{\theta}) \geq R\left(R_{\pi}^{*}\right) \\
& \geq h(\theta)-\log \left(V_{p}\left(\frac{R_{\pi}^{*} r e}{p}\right)^{p / r} \Gamma\left(1+\frac{p}{r}\right)\right)
\end{aligned}
$$

for any π s.t. $E\|\theta\|^{2}=p \gamma<\infty$. Thus

$$
R_{\pi}^{*} \geq \frac{p}{r e}\left(V_{p} \Gamma\left(1+\frac{p}{r}\right)\right)^{-r / p} 2^{(r / p)(h(\theta)-(p / 2) \log (1+n \gamma))}
$$

Maximizing over π s.t. $E\|\theta\|^{2}=p \gamma$ and then letting $\gamma \rightarrow \infty$ we thus get

$$
R_{n}^{*} \geq \frac{p}{r e}\left(V_{p} \Gamma\left(1+\frac{p}{r}\right)\right)^{-r / p}\left(\frac{2 \pi e}{n}\right)^{r / 2}
$$

Sanity check, $p=1$ and $r=2 \Rightarrow$ RHS $=1 / n=R_{n}^{*}$

Fano Bounds

Consider a discrete and finite Θ, i.e. $\theta \in\left\{\theta_{1}, \ldots, \theta_{M}\right\}$
For π uniform on Θ and $\theta \rightarrow X \rightarrow \hat{\theta}$ use

$$
\ell(\theta, \hat{\theta})=\mathbb{1}(\{\theta \neq \hat{\theta}\}) \Rightarrow E[\ell(\theta, \hat{\theta})]=\operatorname{Pr}(\hat{\theta} \neq \theta)=P_{e}
$$

Recall that for $P_{Y}=P_{Y \mid X} \circ P_{X}$ and $Q_{Y}=P_{Y \mid X} \circ Q_{X}$ (two input distributions through the same kernel), $D\left(P_{Y} \| Q_{Y}\right) \leq D\left(P_{X} \| Q_{X}\right)$
With $P_{X} \rightarrow P_{\theta, \hat{\theta}}, Q_{X} \rightarrow \pi \otimes P_{\hat{\theta}}$, and $P_{Y \mid X} \rightarrow P_{Z \mid \theta, \hat{\theta}}$ where $Z \in\{0,1\}$ and $P_{Z \mid \theta, \hat{\theta}}(\{Z=1\} \mid \theta, \hat{\theta})=\ell(\theta, \hat{\theta})$ we get

$$
P_{Z}=P_{Z \mid \theta, \hat{\theta}} \circ P_{\theta, \hat{\theta}}, \quad Q_{Z}=P_{Z \mid \theta, \hat{\theta}} \circ\left(\pi \otimes P_{\hat{\theta}}\right)
$$

that is, $P_{Z}(\{Z=1\})=P_{e}$ and $Q_{Z}(\{Z=1\})=1-1 / M$. Thus

$$
I(\theta ; \hat{\theta}) \geq D\left(P_{Z} \| Q_{Z}\right)=\log M-P_{e} \log (M-1)-H\left(P_{Z}\right)
$$

Hence since $H\left(P_{Z}\right) \leq 1$, we arrive at Fano's inequality

$$
P_{e} \geq 1-\frac{I(\theta ; \hat{\theta})+1}{\log M} \geq 1-\frac{I(\theta ; X)+1}{\log M}
$$

For $\Theta=\mathbb{R}^{p}$ and $\ell(\theta, \hat{\theta})=\|\theta-\hat{\theta}\|$ (for $\|\cdot\|$ a norm on \mathbb{R}^{p})
Pick a discrete subset $\tilde{\Theta}=\left\{\theta_{1}, \ldots, \theta_{M}\right\}$ such that $\left\|\theta_{i}-\theta_{j}\right\| \geq \varepsilon$
Consider $\theta \rightarrow X \rightarrow \hat{\theta} \rightarrow f(\hat{\theta}), f(\hat{\theta})=\theta_{i}$ if $\left\|\hat{\theta}-\theta_{i}\right\| \leq\left\|\hat{\theta}-\theta_{j}\right\|$
Assume the true θ is $\theta_{k} \in \tilde{\Theta}$, then

$$
\operatorname{Pr}\left(f(\hat{\theta}) \neq \theta_{k}\right) \leq \operatorname{Pr}\left(\left\|\hat{\theta}-\theta_{k}\right\| \geq \frac{\varepsilon}{2}\right) \leq \frac{E\left\|\hat{\theta}-\theta_{k}\right\|}{\varepsilon / 2}
$$

Define π on $\left(\mathbb{R}^{p}, \mathcal{B}^{p}\right)$ by picking θ uniformly from $\tilde{\Theta}$, then

$$
\begin{aligned}
R^{*} & \geq \sup _{\pi} R_{\pi}^{*} \geq \frac{1}{M} \sum_{i=1}^{M} E\left\|\hat{\theta}-\theta_{i}\right\| \\
& \geq \frac{\varepsilon}{2 M} \sum_{i=1}^{M} \operatorname{Pr}\left(f(\hat{\theta}) \neq \theta_{i}\right) \geq \frac{\varepsilon}{2}\left(1-\frac{\sup _{\pi} I(\theta ; X)+1}{\log M}\right)
\end{aligned}
$$

Hence R^{*} is limited from below by the capacity

$$
C=\sup _{\pi} I(\theta ; X)
$$

of the link $\theta \rightarrow X$ in $\theta \rightarrow X \rightarrow \hat{\theta}$

For any function $f(x, y), x \in A, y \in B$, set $g(x)=\inf _{y} f(x, y)$
Thus $\sup _{x} g(x) \leq \sup _{x} f(x, y)$ for all $y \in B$, in particular $\sup _{x} g(x) \leq \inf _{y}\left(\sup _{x} f(x, y)\right)$, and thus

$$
\sup _{x} \inf _{y} f(x, y) \leq \inf _{y} \sup _{x} f(x, y)
$$

For some set Ω and $\ell: \Omega^{2} \rightarrow[0, \infty)$, the radius of $A \subset \Omega$ is

$$
r(A)=\inf _{y \in \Omega} \sup _{x \in A} \ell(x, y)
$$

and the diameter of A is

$$
d(A)=\sup _{(x, y) \in A^{2}} \ell(x, y)
$$

Note that $r(A) \leq d(A)$

For $\theta \rightarrow X \rightarrow \hat{\theta}$, let $\mathcal{P}=\left\{P_{\theta}\right\}$ and remember that

$$
I(X ; Y)=\min _{Q_{Y}} D\left(P_{Y \mid X} \| Q_{Y} \mid P_{X}\right)
$$

Thus for the capacity

$$
\begin{aligned}
C & =\sup _{\pi} I(\theta ; X)=\sup _{\pi} \inf _{Q_{X}} D\left(P_{X \mid \theta} \| Q_{X} \mid \pi\right) \leq \inf _{Q_{X}} \sup _{\pi} D\left(P_{X \mid \theta} \| Q_{X} \mid \pi\right) \\
& =\inf _{Q} \sup _{\theta} D\left(P_{\theta} \| Q\right)=r(\mathcal{P}) \leq d(\mathcal{P})=\sup _{\theta \neq \theta^{\prime}} D\left(P_{\theta} \| P_{\theta^{\prime}}\right)
\end{aligned}
$$

with radius and diameter in the sense of $\ell(P, Q)=D(P \| Q)$
So, e.g. for the Fano bound

$$
R^{*} \geq \frac{\varepsilon}{2}\left(1-\frac{r(\mathcal{P})+1}{\log M}\right) \geq \frac{\varepsilon}{2}\left(1-\frac{\sup _{\theta \neq \theta^{\prime}} D\left(P_{\theta} \| P_{\theta^{\prime}}\right)+1}{\log M}\right)
$$

