
Infotheory for Statistics and Learning
Lecture 5

• Repeated iid experiments [PW:28.4–5]

• The Gaussian location model [PW:28.2]

• The mutual information method [PW:30]

• Fano’s method [PW:6.3,31.4],[CT:2.10]

• Capacity and information radius [PW:5.3,30.1]
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Product of Experiments

Consider the model Pθ = Pθ1 ⊗ · · · ⊗ Pθp for θi ∈ Θi with
observation

X = (X1, . . . , Xp) ∼ Pθ

and loss

ℓ(θ, θ̂) =

p∑

i=1

ℓi(θi, θ̂i)

For R∗ = minimax risk of product, R∗
i = minimax risk of individual

and S∗
i = supπi

R∗
πi

= worst-case Bayes of individual, we have

p∑

i=1

S∗
i ≤ R∗ ≤

p∑

i=1

R∗
i

Thus if the minimax theorem holds for each i, we get R∗ =
∑

iR
∗
i
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Repeated iid Experiments

Consider instead n repeated independent and identically
distributed (iid) experiments:

X = (X1, . . . , Xn), Xi ∼ Pθ and independent

The resulting minimax risk R∗
n is non-increasing, and usually → 0

as n → ∞
Sample complexity

n∗(ε) = min{n : R∗
n ≤ ε}
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Example: Gaussian location model (GLM),

Xi ∼ N (θ, σ2Ip), i = 1, . . . , n

iid in i, and ℓ(θ, θ̂) = ∥θ − θ̂∥2. First, let n = 1 and X = X1:

For any π, θ ∼ π, Rπ(θ̂) = Eπ[Eθ{E[∥θ − θ̂∥2|X]}]
Let g(x) = E[θ|X = x], then for each X = x

E[∥θ−θ̂∥2|X = x] = E[∥θ−g(x)∥2|X = x]+E[∥g(x)−θ̂(x)∥2|X = x]

Thus θ̂∗(x) = g(x)

We also know that

|E[(θ − g(X))(θ − g(X))T ]| ≥ 1

(2πe)p
22h(θ|X)

where the RHS is maximized for Pθ|X Gaussian and the LHS =
RHS for θ and X jointly Gaussian
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Because

h(θ|X) ≤
p∑

k=1

h(θk|Xk)

with = if (θk, Xk) are independent in k, we can take θk ∼ N (0, γ)
and independent in k, to get

h(θ|X) =
p

2
log 2πe

σ2γ

σ2 + γ
⇒ 1

(2πe)p
22h(θ|X) =

(
σ2γ

σ2 + γ

)p

and since E[(θ − g(X))(θ − g(X))T ] = E[(θi − gi(X))2]Ip we get

sup
π

R∗
π = lim

γ→∞
p

σ2γ

σ2 + γ
= pσ2

and since supπ R
∗
π ≤ R∗ and R(θ̂(x)) = pσ2 is achieved by

θ̂(x) = x we have also R∗ = pσ2 (for n = 1)
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For n > 1, let x̄n = n−1
∑

i xi, then

f(x|θ) = 1

(2πσ2)(pn)/2
exp

(
− 1

2σ2

n∑

i=1

∥xi − θ∥2
)

=
1

np/2(2πσ2)(n−1)p/2
f(x̄n|θ) e−

1
2σ2 (

∑
i ∥xi∥2−n∥x̄n∥2)

Thus X̄n is a sufficient statistic of X for θ and observing {Xi} is
equivalent to seeing X̄n ∼ N (θ, (σ2/n)Ip), and consequently

R∗
n = p

σ2

n
and n∗(ε) =

⌈
p
σ2

ε

⌉

⇒ fundamental trade-off between p and n
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Information Bounds
For a given Pθ, θ ∼ π and Pθ̂|X such that E[ℓ(θ, θ̂)] ≤ D, we have

R(D) = inf
Pθ̂|θ:E[ℓ(θ,θ̂)]≤D

I(θ; θ̂) ≤ I(θ; θ̂) ≤ I(θ;X) ≤ sup
π

I(θ;X)

Assume ℓ(θ, θ̂) = ∥θ − θ̂∥r (rth power of a norm over Rp),

R(D) = inf
Pθ̂|θ:E[∥θ−θ̂∥r]≤D

{h(θ)− h(θ − θ̂|θ̂)}

≥ h(θ)− sup
Pθ̂|θ:E[∥θ−θ̂)∥r]≤D

h(θ − θ̂)

≥ h(θ)− log

(
Vp

(
Dre

p

)p/r

Γ
(
1 +

p

r

))

where

Vp =

∫

∥x∥≤1
dx
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The RHS of the bound = the Shannon lower bound on R(D)

The bound is tight as D → 0

For p = 1, ℓ(θ, θ̂) = (θ − θ̂)2, we get V1 = 1, Γ(3/2) =
√
π/2 and

R(D) ≥ h(θ)− 1

2
log(2πeD) =

1

2
log

σ2

D
−D(π∥g)

with g = N (0, σ2) and σ2 = E[θ2], recovering our previous bound
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For the GLM X̄n ∼ N (θ, (1/n)Ip) with ℓ(θ, θ̂) = ∥θ − θ̂∥r, we get

p

2
log (1 + nγ) ≥ I(θ; X̄n) ≥ I(θ, θ̂) ≥ R(R∗

π)

≥ h(θ)− log

(
Vp

(
R∗

πre

p

)p/r

Γ
(
1 +

p

r

))

for any π s.t. E∥θ∥2 = pγ < ∞. Thus

R∗
π ≥ p

re

(
Vp Γ

(
1 +

p

r

))−r/p
2(r/p)(h(θ)−(p/2) log(1+nγ))

Maximizing over π s.t. E∥θ∥2 = pγ and then letting γ → ∞ we
thus get

R∗
n ≥ p

re

(
Vp Γ

(
1 +

p

r

))−r/p
(
2πe

n

)r/2

Sanity check, p = 1 and r = 2 ⇒ RHS = 1/n = R∗
n
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Fano Bounds

Consider a discrete and finite Θ, i.e. θ ∈ {θ1, . . . , θM}
For π uniform on Θ and θ → X → θ̂ use

ℓ(θ, θ̂) = 1({θ ̸= θ̂}) ⇒ E[ℓ(θ, θ̂)] = Pr(θ̂ ̸= θ) = Pe

Recall that for PY = PY |X ◦ PX and QY = PY |X ◦QX (two input
distributions through the same kernel), D(PY ∥QY ) ≤ D(PX∥QX)

With PX → Pθ,θ̂, QX → π ⊗ Pθ̂, and PY |X → PZ|θ,θ̂ where

Z ∈ {0, 1} and PZ|θ,θ̂({Z = 1}|θ, θ̂) = ℓ(θ, θ̂) we get

PZ = PZ|θ,θ̂ ◦ Pθ,θ̂, QZ = PZ|θ,θ̂ ◦ (π ⊗ Pθ̂)

that is, PZ({Z = 1}) = Pe and QZ({Z = 1}) = 1− 1/M . Thus

I(θ; θ̂) ≥ D(PZ∥QZ) = logM − Pe log(M − 1)−H(PZ)
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Hence since H(PZ) ≤ 1, we arrive at Fano’s inequality

Pe ≥ 1− I(θ; θ̂) + 1

logM
≥ 1− I(θ;X) + 1

logM

For Θ = Rp and ℓ(θ, θ̂) = ∥θ − θ̂∥ (for ∥ · ∥ a norm on Rp)

Pick a discrete subset Θ̃ = {θ1, . . . , θM} such that ∥θi − θj∥ ≥ ε

Consider θ → X → θ̂ → f(θ̂), f(θ̂) = θi if ∥θ̂ − θi∥ ≤ ∥θ̂ − θj∥
Assume the true θ is θk ∈ Θ̃, then

Pr(f(θ̂) ̸= θk) ≤ Pr
(
∥θ̂ − θk∥ ≥ ε

2

)
≤ E∥θ̂ − θk∥

ε/2
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Define π on (Rp,Bp) by picking θ uniformly from Θ̃, then

R∗ ≥ sup
π

R∗
π ≥ 1

M

M∑

i=1

E∥θ̂ − θi∥

≥ ε

2M

M∑

i=1

Pr(f(θ̂) ̸= θi) ≥
ε

2

(
1− supπ I(θ;X) + 1

logM

)

Hence R∗ is limited from below by the capacity

C = sup
π

I(θ;X)

of the link θ → X in θ → X → θ̂
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Information Radius

For any function f(x, y), x ∈ A, y ∈ B, set g(x) = infy f(x, y)

Thus supx g(x) ≤ supx f(x, y) for all y ∈ B, in particular
supx g(x) ≤ infy(supx f(x, y)), and thus

sup
x

inf
y
f(x, y) ≤ inf

y
sup
x

f(x, y)

For some set Ω and ℓ : Ω2 → [0,∞), the radius of A ⊂ Ω is

r(A) = inf
y∈Ω

sup
x∈A

ℓ(x, y)

and the diameter of A is

d(A) = sup
(x,y)∈A2

ℓ(x, y)

Note that r(A) ≤ d(A)
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For θ → X → θ̂, let P = {Pθ} and remember that

I(X;Y ) = min
QY

D(PY |X∥QY |PX)

Thus for the capacity

C = sup
π

I(θ;X) = sup
π

inf
QX

D(PX|θ∥QX |π) ≤ inf
QX

sup
π

D(PX|θ∥QX |π)

= inf
Q

sup
θ

D(Pθ∥Q) = r(P) ≤ d(P) = sup
θ ̸=θ′

D(Pθ∥Pθ′)

with radius and diameter in the sense of ℓ(P,Q) = D(P∥Q)

So, e.g. for the Fano bound

R∗ ≥ ε

2

(
1− r(P) + 1

logM

)
≥ ε

2

(
1− supθ ̸=θ′ D(Pθ∥Pθ′) + 1

logM

)
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