Infotheory for Statistics and Learning

Lecture 5

Repeated iid experiments [PW:28.4-5]

The Gaussian location model [PW:28.2]

The mutual information method [PW:30]
Fano's method [PW:6.3,31.4],[CT:2.10]
Capacity and information radius [PW:5.3,30.1]
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Product of Experiments

Consider the model Py = Py, ® --- ® By, for 6; € ©; with
observation
X =(X1,...,Xp)~ Py

and loss

For R* = minimax risk of product, R = minimax risk of individual
and S; = sup,, R;‘ri = worst-case Bayes of individual, we have

p p
d Sf<R <) R
=1 1=1

Thus if the minimax theorem holds for each ¢, we get R* = ). R}
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Repeated iid Experiments

Consider instead n repeated independent and identically
distributed (iid) experiments:

X =(Xyq,...,Xn), X;~ Py and independent

The resulting minimax risk R} is non-increasing, and usually — 0
as n — 00

Sample complexity

n*(e) = min{n: R, <¢e}
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Example: Gaussian location model (GLM),
X; ~N(@0,0°1,), i=1,...,n

iid in 4, and £(0,0) = ||0 — 0||%. First, let n =1 and X = X;:
For any m, 0 ~ m, Rr(8) = Ex[Eo{ E[[|6 — 0]*| X]}]
Let g(x) = E[0|X = x], then for each X =z

E[|[§—0|%|X = 2] = E[||6—g(«)|I*|X = 2]+ E[|lg(x)—0()|*| X = ]

Thus 6*(z) = g(x)
We also know that

E[(6 — g(X))(0 — g(X))]| > @22}‘(“)()

where the RHS is maximized for P x Gaussian and the LHS =
RHS for 6 and X jointly Gaussian
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Because

p
h(61X) <) h(Bk|Xk)
k=1

with = if (0, X},) are independent in k, we can take 0 ~ N(0,7)
and independent in k, to get

2 1 2 p
h(0|X) = Z—?log ome—o 1 = 92h(01X) — [ 77
2 o2+ = (2me)p o2 4+~

and since E[(6 — g(X))(6 — g(X))T] = El(6; — g:(X))I, we get

2
o
Y :paz

sup R* = lim
up Ry = lim p—g——

and since sup, Ry < R* and R(0(x)) = po? is achieved by
0(x) = x we have also R* = po? (for n = 1)
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Forn>1,letz,=n"1! > Zi, then

_ 1 LS gl
f(:l?|9) - (27TO'2)(pn)/2 exp <_2T‘_2 ; sz - HH >

1 zi||?—n||Zn
- e @l s

Thus X, is a sufficient statistic of X for § and observing {X;} is
equivalent to seeing X,, ~ N (0, (¢?/n)I,), and consequently

2 2
R} :p% and n*(e) = [pa——‘

= fundamental trade-off between p and n
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Information Bounds
For a given Py, 0 ~ 7 and Py x such that E[((9,0)] < D, we have

A A

R(D) = inf  1(0;0) < 1(0;0) < 1(0; X) <supl(6;X)
Py o E16(0.0)]<D 7r

Assume £(0,0) = ||0 — 0||" (rth power of a norm over RP),

R(D) = inf {h(0) — h(6 —0]9)}
Py o El10—0]")<D

> h(f) — sup h(6 —6)
P; 4 E[0—0)|7]<D

p/r
> h(6) — log (x/p (%) i+ g))
Vi :/ dx
Jall<1
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where

The RHS of the bound = the Shannon lower bound on R(D)
The bound is tight as D — 0

For p=1, £(0,0) = (0 — 0)2, we get V; =1, I'(3/2) = /7/2 and

0.2

R(D) > h(6) — %log(QﬂeD) = %log 5 — D(rlg)

with ¢ = NV(0,0?) and 02 = E[6?], recovering our previous bound
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For the GLM X,, ~ N'(6, (1/n)1,) with £(6,0) = ||6 — 8", we get

Plog (14 nvy) > 1(6; X)) > 1(0,6) > R(RY)

>
> h(6) — log (VP (R;‘Z’e)p/rr (1+ g))

for any 7 s.t. E||0||* = py < co. Thus

Re> P (vr(is 1;?))"‘/79 o(r/)(h(6)—(p/2) log(1+77))

T~ re

Maximizing over 7 s.t. E||0]|> = py and then letting v — oo we

thus get
me 2 (e (1-2) 7 (2)

re n

Sanity check, p=1andr=2= RHS =1/n =R}

Mikael Skoglund 9/14

Fano Bounds

Consider a discrete and finite ©, i.e. 0 € {01,...,0y}

For 7 uniform on © and § — X — 6 use
0(0,0) = 1({6 # 6}) = E[¢(0,0)] = Pr(d # 6) = P.

Recall that for Py = Py|x o Px and Qy = Pyx o Qx (two input
distributions through the same kernel), D(Py ||Qy) < D(Px||Qx)

With Px — Pgév Qx — ™® P;, and PY|X — PZ|0é where
Z € {0,1} and Py, 5({Z = 1}10,0) = £(6,0) we get

Pz =Pyop0bhs Qz="Pyy;o(r®F)
thatis, P,{Z=1})=FP.and Qz({Z=1})=1—-1/M. Thus

1(0;0) > D(Py||Qz) = log M — P.log(M — 1) — H(Py)
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Hence since H(Pyz) < 1, we arrive at Fano's inequality

1(0:0 )
P>1_ (9,9)—}—121_1(9,)()—}—1
log M log M

For © = R” and £(0,0) = ||§ — 8]| (for || - || a norm on R?)

Pick a discrete subset © = {f,...,0x} such that ||6; — 0;| > ¢
Consider § — X — 6 — f£(6), f(0) =6, if |0 — 6] < |0 — 6]
Assume the true 6 is 6, € ©, then

R ) El6 -0
Pr(f(0) # 01) < Pr (16— 04 > £ ) < %
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Define 7 on (R, BP) by picking @ uniformly from ©, then

M
R*>supRp > — ) E|l0— 6
T i=1
e — A £ sup, I(6; X) +1
— P i) > =11 ul ’
93 (716 26 = 5 ( ey

Hence R* is limited from below by the capacity

C' =sup(0; X)

of the link @ = X inf = X — 0
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Information Radius

For any function f(z,y), z € A, y € B, set g(z) = inf, f(z,y)

Thus sup, g(x) < sup, f(z,y) for all y € B, in particular
sup,, g(x) < inf,(sup, f(x,y)), and thus

supinf f(z,y) < infsup f(x,y)
x Y Yy =z

For some set 2 and ¢ : Q2 — [0, 00), the radius of A C Q2 is

r(A) = inf sup {(z,y)
YEQ 1cA

and the diameter of A is

d(A) = sup L(x,y)
(z,y)€A?

Note that 7(A) < d(A)
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For 6 — X — 0, let P = {Py} and remember that

I(X;Y) = TginD(PwXHQY\PX)
Y

Thus for the capacity
C =supl(0; X) =sup iQIlfD(PX|9HQx|7T) < ié1f sup D(Px || Qx|T)
™ ™ X X 7

= inf sup D(Fy||@Q) = r(P) < d(P) = sup D(Py|| Py)
Q 9 6A0"

with radius and diameter in the sense of (P, Q) = D(P||Q)
So, e.g. for the Fano bound

» D(Pyl|| Py 1
B> GRS L€ (1 SPezs (Pal| Pyr) +
2 log M 2 log M
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