Infotheory for Statistics and Learning

Lecture 6

Basic learning theory [BBL:1-3,HDGR:1,XR]
Generalization error [HDGR:1,XR]

Information bounds on generalization error [HDGR:2—-4 XR]

Complexity, information and generalization [BBL:4,HDGR:7]
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Learning an Estimator

Consider the general setup: P = {Py:0 € O}, we observe X ~ Py
and want to estimate 7'(0) as T

The decision rule is a kernel PT\X— and the risk is
=z

Ro(T) = / { / E(T(@),T)dPT| X:x}dpg

Let Z = (X,T(0)) for X ~ Py, that is, knowing Z we know both
X and the correct value of T'(0)

For 6 deterministic Z is described by Py, and with a prior m we
have PZ: (Pg@PTw)O’T(

In either case, let () be the resulting distribution for Z
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Assume Py, 71X is deterministic (for simplicity, can be generalized),
and that s = T'(z) € E for a (standard Borel) space (E, &)

Let £(s, z) be the associated cost; e.g. if T'(¢) = 6 and

A

000,0) = (0 — )2, then £(s, z) = £(0(z), (x,0)) = (0 — O(x))?
Define
Lo(s) = Eqlt(s. 2)] = [ #(s.2)Q(d

® The true risk (knowing Q) when using T'(z) = s
Assume /(s, z) is chosen such that Lg(s) = Ry(s) for 0
deterministic and Lg(s) = Rx(s) with a prior § ~ 7, e.g.

U(s,2) = (0 —0(x))? = A A
Lq(s) = Eg[(0 — 0(X))?] or E[Ey|(0 —0(X))%]]
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Assume now that () is unknown but we have access to Z; iid ~ ()
fore=1,...,n, the training samples

Let Z" = (Z1,...,2Zy) ~ Pzn = Q¥" (n-fold product) and
consider a kernel Pg|zn, randomly assigning T'(z) € E for Z" = 2"

For a given learning algorithm Pg|zn, the resulting Lg(S) is a
random variable with distribution determined by Pg = Pg|zn 0 Pzn

The probability space for S'is (E, &, Ps), for each hypothesis s € E

Define the empirical loss for hypothesis s

LZn 268 Z

® Goal is to minimize Lg(s) but we can only compute Lzn(s)

So far Z; = (X;,T(6;)) (or Z; = (X;,T;)) = supervised learning

We can also have Z; = X; = unsupervised learning
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Example: § € RPX! z c RP*! Z, = (X i, Z) with X; ~ Py, 0; ~ 7
and using ((s, z) = £(s, (z,0)) = ||0 — 6(x)||2. We do not know Py
or 7, and cannot compute R, = E[||§ — 6(X)]||?]. Choose instead
0(x) to minimize

Lgn (s ZHH —0(X3)|”

over £ = {linear estimators § = Az}. With

R(Z™) = ZXXT and F(Z") = ZHXT
1=1
we get

1 n
Lyn(s) =Tr {(A —~FRHYRA-FR™HT + ~ > 66 — FRlFT}
=1

= Pgjzn — s(Z") = F(Z")(R(Z"™))™
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Define the (expected) generalization error

G(Q, Psjzn) = E[LQ(S) — Lzn(95)]

That is, on average

Lq(S5) & Lzn(S5)
if G(Q, Pgzn) is small

Assume that there exists an s* € FE such that

inf Lo(s) = Lo(s”)

then
E[Lq(9)] — Lo(s*) = G(Q, Ps|zn) + E[Lzn(S) — Lzn(s)]
Thus E[Lg(S)] ~ Lg(s*) if both

G(Q, Psjzn) =0 and E[Lzn(S)] = E|Lzn(s")]
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Sensitivity of Pg|z» to the training samples:

Assume Z™ ~ Pz» and Zn ~ Pyzn independent of Z"
If S was generated from Z™ (via Pgzn), then

E[((S, Z;)] = /E Z" = 2" | dPzn = E[Lo(9)]

/ 08, 2)Q(d2)

and consequently

1 o .
G(Q, Psjzn) = — > E[U(S, Z;) - £(S, Z)]
BN > ()
=D El(S,Z) - (S, Z:)]
i=1
where S() was generated from (Z1y. oy Zi—1, Z;, Zit1y ey Lp)
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Thus G(Q, Pg|z») is small if

—Zesz Zz

That is, if Pgzn is stable in the sense that S is not sensitive to
local modification of the training samples

The algorithm Pg|z» is £ stable if
D(PS|Z":z”HPS|Z”:v") <e€

for all z™ and v™ that differ in one sample; does not depend on ()

The algorithm Pgz» is £ information stable w.r.t. @ if
I(5;7™) < ne
¢ stable = ¢ information stable for any @)
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Information Bounds on Generalization Error

For a RV X with m = E[X], its logarithmic moment-generating
function is
b(\) = In E {eA(X_m)} . AER

P(A) is convex, ¥(0) =¢'(0) =0

We have the Chernoff bound, Pr(X >m +1t) < e_iﬁ(t), for any
t > 0, where

D(t) = sup {At — P(\)}

A>0

is the Cramér transform of ¥ (\)
() is nonnegative, convex and non-decreasing on [0, co)

For a general f(x): R — R, we also define the Fenchel-Legendre
dual

[*(y) = S‘;P{yl' — f(x)}, f*(y) is convex
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Assume we can find convex functions 1 () and 12(X), with
1;(0) = ¢!(0) = 0 and such that for A > 0

sup E [e—Me(s,Z)—LQ(s))} <N qupE [eAw(s,Z)—LQ(s))] < )
seE seFE

Then?, for any Pgzn such that I(S;2") < oo

Byt (105:27)) < 6(QuPoz) <7 (7105527

The function 1@-_1 is concave. If it is also non-decreasing, then if
Pgzn is € stable, and/or Pg|zn is ¢ information stable for @,

G(Q. Psizn) < 1 (e)

'[J-H-W] Jiao, Han and Weissman, IEEE ISIT 2017
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The proof (see [XR] and [J-H-W] for details) relies on the following
lemma, of general value:

Lemma: For X and Y with joint distribution Pxy and marginals
Px and Py, and f(X,Y) real-valued such that

sup n 7 | M E=EY@ID] < (1), A >0

supln E [e/\(f(w,Y)—E[f(w,Y)])} <hi(\), A< 0
for 1;(\) convex and ¥(0) = ¢’(0) = 0, then
BUXY) < [ fle.p)d(Px @ Py) + 07 (1(XGY))

E[f(X,Y)] > / f(z,y)d(Px ® Py) — 97 I(X;Y))
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The proof of the lemma relies on the following observations:
For any convex ¢(z) with ¢(0) = ¢’(0) = 0, the transform
¢(y) = sup,>q(yz — ¢(x)) has an inverse ¢~ *(y) that can be

written as (ﬁ(A)
» +
1 — inf Yy
¢ (y) inf =——

From the Donsker—Varadhan Lemma (more about this next
lecture), we have

D(Py|x—.|Py) > AE[f(z,Y)|X = 2] — In E[e"(®Y)] and by
assumption In E[eM@Y)] < () + AE[f(z,Y)]

Hence

o DO +v(A)
Elf(z,Y)|X = 2]-E[f(2,Y)] < inf A

=4~ H(DC)

and consequently [(E[f(z,Y)|X =z] — E[f(x,Y)])dPx
< [~ D(Pyjx=s ]| Py))dPx < d~H(I(X;Y))
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For Px = N(0,02%) we get ¥(A\) = (\o)?/2
= any Py such that m = E[X] < oo and

(Ao)?
2

P(A) =
is called o2-sub-Gaussian = t)(t) > % and thus

+2

Pr(X+m>t)<e 22

In general, if Pr(X € [a,b]) =1 for —o0o < a < b < oo then

(A(b — a))?

IO

= all such X are o2-sub-Gaussian with 02 = (b — a)?/4
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If {(s,Z) is 0%-sub-Gaussian for all s € E, we can use

()\;')2’ &Z—l(r) — \V2ro2

Yi(A) =

Then for any Pgz» we get

and if Pgzn is € stable and/or € information stable w.r.t. @

|G(Q, Psjzn)| < V202e
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Complexity and Generalization

Consider binary classification, that is 7'(0) = 6 € {0,1}, and
samples Z; = (X;, 6;) where 6; = "X, belongs to class 6;"

Assume £(s, Z) = 1({8(X) # 0}) = Lo(s) = Pr(6(X) # 6)
For a fixed s we have

Pr(Lzn(s) < Lo(s) —t) < exp(—2nt?)
(Lzn(s) is 1/(4n) sub-Gaussian for all s € E'and E[Lzn| = Lg)
Thus with probability at least 1 — 9,

In(1/9)

Lo(s) < Lzn(s) +1/ —5
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Again, the bound is for a fixed s € E. Assume F = {s1,...,Sn}
is finite, then

Pr(there is an s € E such that Lzn(s) < Lg(s) —t)
M
<Y Pr(Lzn(si) < Lo(si) —t) < Me™ 2™
i=1

Hence, for all s € E and with probability at least 1 — ¢

In M + In(1/6)
2n

Lo(s) < Lzn(s)+ \/

How do we handle the case when E is infinite/uncountable?
Can we replace the In M term with something finite?
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Even if E is infinite, the set
T(z")={(l(s,21),...,4(8,2,)) : s € E}
is finite

Let S(n) = sup,. |T'(2")], then with probability at least 1 — §

5 In S(2n) + In(2/9)

n

Lqo(s) < Lzn(s) + 2\/

A classifier s = f(x) € E shatters the samples {(z;,6;)}", if
Q(ZBZ) :91', 1= 1,...,71

The Vapnik—Chervonenkis (VC) dimension d of the set E of
classifiers = the largest n for which there is a set {z;} such that

for any {6;} there is an s € E that shatters {(z;,0;)}1
That is, d = the largest n such that S(n) = 2"
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Example: For E = {mappings 1({z € [a,b]}), —00 < a < b < o0}
we get d = 2, since for any three points = < y < z the set
{(x,1),(y,0),(z,1)} cannot be shattered

In general, for all n > d it can be shown that

eEn

s < ()’

which implies the bound

2dln(2€n/d) + In(2/6)

n

Lqo(s) < Lizn(s) + 2\/

for a class E with VC dimension d

The VC dimension measures the complexity in learning hypotheses
from the class
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Universal versus Algorithm-dependent

The bound

2dln(2€n/d) +1n(2/9)

Lg(s) < Lzn(s) + 2\/

holds with probability 1 —  for all s € E, i.e. uniformly over E

Our previous bound

2
|G(Q, Pszn)| < \/2%1(5; AD

is valid for the expected generalization error E[Lg(S) — Lzn(5)]
for a given ) and algorithm Pg7»

I(S; Z™) characterizes the complexity in producing S from Z"
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In modern (deep) learning, the VC dimension can be enormous,
resulting in the universal bound becoming vacuous

It has been argued? that distribution () and algorithm Pg|zn
dependent bounds are necessary to characterize deep learning,
resulting in more useful complexity metrics than VC dimension

As an example, a recent? high-probability bound reads: Let R be
any distribution on FE, then with probability not smaller than 1 — (3

D(Pgjzn||R) + In(n/f) + 1)

n

E[Lo(S) — Lzn(S)|Z2"] < 41 (

(where 9(A) is such that In Efexp(—A({(s, Z) + Lg(s)))] < ¥(N))

Note that choosing R = Ps gives E[D(Pgzn||Ps)] = I(S;2")

2C. Zhang et al., "Understanding deep learning requires re-thinking
generalization,” 2017
3Rodr|’guez—GéIvez, Thobaben and Skoglund, “More PAC Bayes bounds,”

2023
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