
Infotheory for Statistics and Learning
Lecture 6

• Basic learning theory [BBL:1–3,HDGR:1,XR]

• Generalization error [HDGR:1,XR]

• Information bounds on generalization error [HDGR:2–4,XR]

• Complexity, information and generalization [BBL:4,HDGR:7]
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Learning an Estimator

Consider the general setup: P = {Pθ : θ ∈ Θ}, we observe X ∼ Pθ
and want to estimate T (θ) as T̂

The decision rule is a kernel PT̂ |X=x and the risk is

Rθ(T̂ ) =

∫ {∫
ℓ(T (θ), T̂ )dPT̂ |X=x

}
dPθ

Let Z = (X,T (θ)) for X ∼ Pθ, that is, knowing Z we know both
X and the correct value of T (θ)

For θ deterministic Z is described by Pθ, and with a prior π we
have PZ = (Pθ ⊗ PT |θ) ◦ π
In either case, let Q be the resulting distribution for Z
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Assume PT̂ |X is deterministic (for simplicity, can be generalized),

and that s = T̂ (x) ∈ E for a (standard Borel) space (E, E)
Let ℓ(s, z) be the associated cost; e.g. if T (θ) = θ and
ℓ(θ, θ̂) = (θ − θ̂)2, then ℓ(s, z) = ℓ(θ̂(x), (x, θ)) = (θ − θ̂(x))2

Define

LQ(s) = EQ[ℓ(s, Z)] =

∫
ℓ(s, z)Q(dz)

• The true risk (knowing Q) when using T̂ (x) = s

Assume ℓ(s, z) is chosen such that LQ(s) = Rθ(s) for θ
deterministic and LQ(s) = Rπ(s) with a prior θ ∼ π, e.g.

ℓ(s, z) = (θ − θ̂(x))2 ⇒
LQ(s) = Eθ[(θ − θ̂(X))2] or Eπ[Eθ[(θ − θ̂(X))2]]
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Assume now that Q is unknown but we have access to Zi iid ∼ Q
for i = 1, . . . , n, the training samples

Let Zn = (Z1, . . . , Zn) ∼ PZn = Q⊗n (n-fold product) and
consider a kernel PS|Zn , randomly assigning T̂ (x) ∈ E for Zn = zn

For a given learning algorithm PS|Zn , the resulting LQ(S) is a
random variable with distribution determined by PS = PS|Zn ◦ PZn

The probability space for S is (E, E , PS), for each hypothesis s ∈ E

Define the empirical loss for hypothesis s

LZn(s) =
1

n

n∑

i=1

ℓ(s, Zi)

• Goal is to minimize LQ(s) but we can only compute LZn(s)

So far Zi = (Xi, T (θi)) (or Zi = (Xi, Ti)) ⇒ supervised learning

We can also have Zi = Xi ⇒ unsupervised learning
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Example: θ ∈ Rp×1, x ∈ Rp×1, Zi = (Xi, θi) with Xi ∼ Pθ, θi ∼ π
and using ℓ(s, z) = ℓ(s, (x, θ)) = ∥θ − θ̂(x)∥2. We do not know Pθ
or π, and cannot compute Rπ = E[∥θ − θ̂(X)∥2]. Choose instead
θ̂(x) to minimize

LZn(s) =
1

n

n∑

i=1

∥θi − θ̂(Xi)∥2

over E = {linear estimators θ̂ = Ax}. With

R(Zn) =
1

n

n∑

i=1

XiX
T
i and F (Zn) =

1

n

n∑

i=1

θiX
T
i

we get

LZn(s) = Tr

{
(A− FR−1)R(A− FR−1)T +

1

n

n∑

i=1

θiθ
T
i − FR−1F T

}

⇒ PS|Zn → s(Zn) = F (Zn)(R(Zn))−1 x
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Define the (expected) generalization error

G(Q,PS|Zn) = E[LQ(S)− LZn(S)]

That is, on average
LQ(S) ≈ LZn(S)

if G(Q,PS|Zn) is small

Assume that there exists an s∗ ∈ E such that

inf
s∈E

LQ(s) = LQ(s
∗)

then

E[LQ(S)]− LQ(s
∗) = G(Q,PS|Zn) + E[LZn(S)− LZn(s∗)]

Thus E[LQ(S)] ≈ LQ(s
∗) if both

G(Q,PS|Zn) ≈ 0 and E[LZn(S)] ≈ E[LZn(s∗)]
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Sensitivity of PS|Zn to the training samples:

Assume Zn ∼ PZn and Z̃n ∼ PZn independent of Zn

If S was generated from Zn (via PS|Zn), then

E[ℓ(S, Z̃i)] =

∫
E

[∫
ℓ(S, z)Q(dz)

∣∣∣∣∣Z
n = zn

]
dPZn = E[LQ(S)]

and consequently

G(Q,PS|Zn) =
1

n

n∑

i=1

E[ℓ(S, Z̃i)− ℓ(S,Zi)]

=
1

n

n∑

i=1

E[ℓ(S, Z̃i)− ℓ(S(i), Z̃i)]

where S(i) was generated from (Z1, . . . , Zi−1, Z̃i, Zi+1, . . . , Zn)
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Thus G(Q,PS|Zn) is small if

1

n

n∑

i=1

ℓ(S, Z̃i) ≈
1

n

n∑

i=1

ℓ(S(i), Z̃i)

That is, if PS|Zn is stable in the sense that S is not sensitive to
local modification of the training samples

The algorithm PS|Zn is ε stable if

D(PS|Zn=zn∥PS|Zn=vn) ≤ ε

for all zn and vn that differ in one sample; does not depend on Q

The algorithm PS|Zn is ε information stable w.r.t. Q if

I(S;Zn) ≤ nε

ε stable ⇒ ε information stable for any Q
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Information Bounds on Generalization Error

For a RV X with m = E[X], its logarithmic moment-generating
function is

ψ(λ) = lnE
[
eλ(X−m)

]
, λ ∈ R

ψ(λ) is convex, ψ(0) = ψ′(0) = 0

We have the Chernoff bound, Pr(X ≥ m+ t) ≤ e−ψ̂(t), for any
t > 0, where

ψ̂(t) = sup
λ≥0

{λt− ψ(λ)}

is the Cramér transform of ψ(λ)
ψ̂(λ) is nonnegative, convex and non-decreasing on [0,∞)

For a general f(x) : R → R, we also define the Fenchel–Legendre
dual

f∗(y) = sup
x
{yx− f(x)}, f∗(y) is convex
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Assume we can find convex functions ψ1(λ) and ψ2(λ), with
ψi(0) = ψ′

i(0) = 0 and such that for λ > 0

sup
s∈E

E
[
e−λ(ℓ(s,Z)−LQ(s))

]
≤ eψ1(−λ), sup

s∈E
E
[
eλ(ℓ(s,Z)−LQ(s))

]
≤ eψ2(λ)

Then1, for any PS|Zn such that I(S;Zn) <∞

ψ̂−1
2

(
1

n
I(S;Zn)

)
≤ G(Q,PS|Zn) ≤ ψ̂−1

1

(
1

n
I(S;Zn)

)

The function ψ̂−1
i is concave. If it is also non-decreasing, then if

PS|Zn is ε stable, and/or PS|Zn is ε information stable for Q,

G(Q,PS|Zn) ≤ ψ̂−1
1 (ε)

1[J-H-W] Jiao, Han and Weissman, IEEE ISIT 2017
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The proof (see [XR] and [J-H-W] for details) relies on the following
lemma, of general value:

Lemma: For X and Y with joint distribution PXY and marginals
PX and PY , and f(X,Y ) real-valued such that

sup
x

lnE
[
eλ(f(x,Y )−E[f(x,Y )])

]
≤ ψ2(λ), λ > 0

sup
x

lnE
[
eλ(f(x,Y )−E[f(x,Y )])

]
≤ ψ1(λ), λ < 0

for ψi(λ) convex and ψ(0) = ψ′(0) = 0, then

E[f(X,Y )] ≤
∫
f(x, y)d(PX ⊗ PY ) + ψ̂−1

2 (I(X;Y ))

E[f(X,Y )] ≥
∫
f(x, y)d(PX ⊗ PY )− ψ̂−1

1 (I(X;Y ))
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The proof of the lemma relies on the following observations:

For any convex ϕ(x) with ϕ(0) = ϕ′(0) = 0, the transform
ϕ̂(y) = supx≥0(yx− ϕ(x)) has an inverse ϕ̂−1(y) that can be
written as

ϕ̂−1(y) = inf
λ>0

y + ϕ(λ)

λ

From the Donsker–Varadhan Lemma (more about this next
lecture), we have
D(PY |X=x∥PY ) ≥ λE[f(x, Y )|X = x]− lnE[eλf(x,Y )] and by

assumption lnE[eλf(x,Y )] ≤ ψ(λ) + λE[f(x, Y )]

Hence

E[f(x, Y )|X = x]−E[f(x, Y )] ≤ inf
λ>0

D(·∥·) + ψ(λ)

λ
= ψ̂−1(D(·∥·))

and consequently
∫
(E[f(x, Y )|X = x]− E[f(x, Y )])dPX

≤
∫
ψ̂−1(D(PY |X=x∥PY ))dPX ≤ ψ̂−1(I(X;Y ))
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For PX = N (0, σ2) we get ψ(λ) = (λσ)2/2

⇒ any PX such that m = E[X] <∞ and

ψ(λ) ≤ (λσ)2

2

is called σ2-sub-Gaussian ⇒ ψ̂(t) ≥ t2

2σ2 and thus

Pr(X +m ≥ t) ≤ e−
t2

2σ2

In general, if Pr(X ∈ [a, b]) = 1 for −∞ < a ≤ b <∞ then

ψ(λ) ≤ (λ(b− a))2

8

⇒ all such X are σ2-sub-Gaussian with σ2 = (b− a)2/4
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If ℓ(s, Z) is σ2-sub-Gaussian for all s ∈ E, we can use

ψi(λ) =
(λσ)2

2
, ψ̂−1

i (r) =
√
2rσ2

Then for any PS|Zn we get

|G(Q,PS|Zn)| ≤
√

2σ2

n
I(S;Zn)

and if PS|Zn is ε stable and/or ε information stable w.r.t. Q

|G(Q,PS|Zn)| ≤
√
2σ2ε
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Complexity and Generalization

Consider binary classification, that is T (θ) = θ ∈ {0, 1}, and
samples Zi = (Xi, θi) where θi = “Xi belongs to class θi”

Assume ℓ(s, Z) = 1({θ̂(X) ̸= θ}) ⇒ LQ(s) = Pr(θ̂(X) ̸= θ)

For a fixed s we have

Pr(LZn(s) ≤ LQ(s)− t) ≤ exp(−2nt2)

(LZn(s) is 1/(4n) sub-Gaussian for all s ∈ E and E[LZn ] = LQ)

Thus with probability at least 1− δ,

LQ(s) ≤ LZn(s) +

√
ln(1/δ)

2n
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Again, the bound is for a fixed s ∈ E. Assume E = {s1, . . . , sM}
is finite, then

Pr( there is an s ∈ E such that LZn(s) ≤ LQ(s)− t)

≤
M∑

i=1

Pr(LZn(si) ≤ LQ(si)− t) ≤Me−2nt2

Hence, for all s ∈ E and with probability at least 1− δ

LQ(s) ≤ LZn(s) +

√
lnM + ln(1/δ)

2n

How do we handle the case when E is infinite/uncountable?
Can we replace the lnM term with something finite?
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Even if E is infinite, the set

T (zn) = {(ℓ(s, z1), . . . , ℓ(s, zn)) : s ∈ E}
is finite

Let S(n) = supzn |T (zn)|, then with probability at least 1− δ

LQ(s) ≤ LZn(s) + 2

√
2
lnS(2n) + ln(2/δ)

n

A classifier s = θ̂(x) ∈ E shatters the samples {(xi, θi)}ni=1 if
θ̂(xi) = θi, i = 1, . . . , n

The Vapnik–Chervonenkis (VC) dimension d of the set E of
classifiers = the largest n for which there is a set {xi} such that
for any {θi} there is an s ∈ E that shatters {(xi, θi)}ni=1

That is, d = the largest n such that S(n) = 2n
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Example: For E = {mappings 1({x ∈ [a, b]}), −∞ < a < b <∞}
we get d = 2, since for any three points x < y < z the set
{(x, 1), (y, 0), (z, 1)} cannot be shattered

In general, for all n ≥ d it can be shown that

S(n) ≤
(en
d

)d

which implies the bound

LQ(s) ≤ LZn(s) + 2

√
2
d ln(2en/d) + ln(2/δ)

n

for a class E with VC dimension d

The VC dimension measures the complexity in learning hypotheses
from the class E
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Universal versus Algorithm-dependent

The bound

LQ(s) ≤ LZn(s) + 2

√
2
d ln(2en/d) + ln(2/δ)

n

holds with probability 1− β for all s ∈ E, i.e. uniformly over E

Our previous bound

|G(Q,PS|Zn)| ≤
√

2σ2

n
I(S;Zn)

is valid for the expected generalization error E[LQ(S)− LZn(S)]
for a given Q and algorithm PS|Zn

I(S;Zn) characterizes the complexity in producing S from Zn
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In modern (deep) learning, the VC dimension can be enormous,
resulting in the universal bound becoming vacuous

It has been argued2 that distribution Q and algorithm PS|Zn

dependent bounds are necessary to characterize deep learning,
resulting in more useful complexity metrics than VC dimension

As an example, a recent3 high-probability bound reads: Let R be
any distribution on E, then with probability not smaller than 1− β

E[LQ(S)− LZn(S)|Zn] ≤ ψ̂−1

(
D(PS|Zn∥R) + ln(n/β) + 1

n

)

(where ψ(λ) is such that lnE[exp(−λ(ℓ(s, Z) + LQ(s)))] ≤ ψ(λ))

Note that choosing R = PS gives E[D(PS|Zn∥PS)] = I(S;Zn)

2C. Zhang et al., “Understanding deep learning requires re-thinking
generalization,” 2017

3Rodŕıguez–Gálvez, Thobaben and Skoglund, “More PAC Bayes bounds,”
2023
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