Infotheory for Statistics and Learning

Lecture 6

- Basic learning theory [BBL:1-3,HDGR:1,XR]
- Generalization error [HDGR:1,XR]
- Information bounds on generalization error [HDGR:2-4,XR]
- Complexity, information and generalization [BBL:4,HDGR:7]

Learning an Estimator

Consider the general setup: $\mathcal{P}=\left\{P_{\theta}: \theta \in \Theta\right\}$, we observe $X \sim P_{\theta}$ and want to estimate $T(\theta)$ as \hat{T}
The decision rule is a kernel $P_{\hat{T} \mid X=x}$ and the risk is

$$
R_{\theta}(\hat{T})=\int\left\{\int \ell(T(\theta), \hat{T}) d P_{\hat{T} \mid X=x}\right\} d P_{\theta}
$$

Let $Z=(X, T(\theta))$ for $X \sim P_{\theta}$, that is, knowing Z we know both X and the correct value of $T(\theta)$

For θ deterministic Z is described by P_{θ}, and with a prior π we have $P_{Z}=\left(P_{\theta} \otimes P_{T \mid \theta}\right) \circ \pi$
In either case, let Q be the resulting distribution for Z

Assume $P_{\hat{T} \mid X}$ is deterministic (for simplicity, can be generalized), and that $s=\hat{T}(x) \in E$ for a (standard Borel) space (E, \mathcal{E})
Let $\ell(s, z)$ be the associated cost; e.g. if $T(\theta)=\theta$ and $\ell(\theta, \hat{\theta})=(\theta-\hat{\theta})^{2}$, then $\ell(s, z)=\ell(\hat{\theta}(x),(x, \theta))=(\theta-\hat{\theta}(x))^{2}$

Define

$$
L_{Q}(s)=E_{Q}[\ell(s, Z)]=\int \ell(s, z) Q(d z)
$$

- The true risk (knowing Q) when using $\hat{T}(x)=s$

Assume $\ell(s, z)$ is chosen such that $L_{Q}(s)=R_{\theta}(s)$ for θ deterministic and $L_{Q}(s)=R_{\pi}(s)$ with a prior $\theta \sim \pi$, e.g.

$$
\begin{aligned}
\ell(s, z)=(\theta-\hat{\theta}(x))^{2} & \Rightarrow \\
L_{Q}(s) & =E_{\theta}\left[(\theta-\hat{\theta}(X))^{2}\right] \text { or } E_{\pi}\left[E_{\theta}\left[(\theta-\hat{\theta}(X))^{2}\right]\right]
\end{aligned}
$$

Assume now that Q is unknown but we have access to Z_{i} iid $\sim Q$ for $i=1, \ldots, n$, the training samples
Let $Z^{n}=\left(Z_{1}, \ldots, Z_{n}\right) \sim P_{Z^{n}}=Q^{\otimes n}$ (n-fold product) and consider a kernel $P_{S \mid Z^{n}}$, randomly assigning $\hat{T}(x) \in E$ for $Z^{n}=z^{n}$
For a given learning algorithm $P_{S \mid Z^{n}}$, the resulting $L_{Q}(S)$ is a random variable with distribution determined by $P_{S}=P_{S \mid Z^{n}} \circ P_{Z^{n}}$ The probability space for S is $\left(E, \mathcal{E}, P_{S}\right)$, for each hypothesis $s \in E$ Define the empirical loss for hypothesis s

$$
L_{Z^{n}}(s)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(s, Z_{i}\right)
$$

- Goal is to minimize $L_{Q}(s)$ but we can only compute $L_{Z^{n}}(s)$

So far $Z_{i}=\left(X_{i}, T\left(\theta_{i}\right)\right)$ (or $\left.Z_{i}=\left(X_{i}, T_{i}\right)\right) \Rightarrow$ supervised learning We can also have $Z_{i}=X_{i} \Rightarrow$ unsupervised learning

Example: $\theta \in \mathbb{R}^{p \times 1}, x \in \mathbb{R}^{p \times 1}, Z_{i}=\left(X_{i}, \theta_{i}\right)$ with $X_{i} \sim P_{\theta}, \theta_{i} \sim \pi$ and using $\ell(s, z)=\ell(s,(x, \theta))=\|\theta-\hat{\theta}(x)\|^{2}$. We do not know P_{θ} or π, and cannot compute $R_{\pi}=E\left[\|\theta-\hat{\theta}(X)\|^{2}\right]$. Choose instead $\hat{\theta}(x)$ to minimize

$$
L_{Z^{n}}(s)=\frac{1}{n} \sum_{i=1}^{n}\left\|\theta_{i}-\hat{\theta}\left(X_{i}\right)\right\|^{2}
$$

over $E=\{$ linear estimators $\hat{\theta}=A x\}$. With

$$
R\left(Z^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} X_{i} X_{i}^{T} \text { and } F\left(Z^{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \theta_{i} X_{i}^{T}
$$

we get
$L_{Z^{n}}(s)=\operatorname{Tr}\left\{\left(A-F R^{-1}\right) R\left(A-F R^{-1}\right)^{T}+\frac{1}{n} \sum_{i=1}^{n} \theta_{i} \theta_{i}^{T}-F R^{-1} F^{T}\right\}$
$\Rightarrow P_{S \mid Z^{n}} \rightarrow s\left(Z^{n}\right)=F\left(Z^{n}\right)\left(R\left(Z^{n}\right)\right)^{-1} x$

Define the (expected) generalization error

$$
G\left(Q, P_{S \mid Z^{n}}\right)=E\left[L_{Q}(S)-L_{Z^{n}}(S)\right]
$$

That is, on average

$$
L_{Q}(S) \approx L_{Z^{n}}(S)
$$

if $G\left(Q, P_{S \mid Z^{n}}\right)$ is small
Assume that there exists an $s^{*} \in E$ such that

$$
\inf _{s \in E} L_{Q}(s)=L_{Q}\left(s^{*}\right)
$$

then

$$
E\left[L_{Q}(S)\right]-L_{Q}\left(s^{*}\right)=G\left(Q, P_{S \mid Z^{n}}\right)+E\left[L_{Z^{n}}(S)-L_{Z^{n}}\left(s^{*}\right)\right]
$$

Thus $E\left[L_{Q}(S)\right] \approx L_{Q}\left(s^{*}\right)$ if both

$$
G\left(Q, P_{S \mid Z^{n}}\right) \approx 0 \text { and } E\left[L_{Z^{n}}(S)\right] \approx E\left[L_{Z^{n}}\left(s^{*}\right)\right]
$$

Sensitivity of $P_{S \mid Z^{n}}$ to the training samples:
Assume $Z^{n} \sim P_{Z^{n}}$ and $\tilde{Z}^{n} \sim P_{Z^{n}}$ independent of Z^{n}
If S was generated from Z^{n} (via $P_{S \mid Z^{n}}$), then

$$
E\left[\ell\left(S, \tilde{Z}_{i}\right)\right]=\int E\left[\int \ell(S, z) Q(d z) \mid Z^{n}=z^{n}\right] d P_{Z^{n}}=E\left[L_{Q}(S)\right]
$$

and consequently

$$
\begin{aligned}
G\left(Q, P_{S \mid Z^{n}}\right) & =\frac{1}{n} \sum_{i=1}^{n} E\left[\ell\left(S, \tilde{Z}_{i}\right)-\ell\left(S, Z_{i}\right)\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} E\left[\ell\left(S, \tilde{Z}_{i}\right)-\ell\left(S^{(i)}, \tilde{Z}_{i}\right)\right]
\end{aligned}
$$

where $S^{(i)}$ was generated from $\left(Z_{1}, \ldots, Z_{i-1}, \tilde{Z}_{i}, Z_{i+1}, \ldots, Z_{n}\right)$

Thus $G\left(Q, P_{S \mid Z^{n}}\right)$ is small if

$$
\frac{1}{n} \sum_{i=1}^{n} \ell\left(S, \tilde{Z}_{i}\right) \approx \frac{1}{n} \sum_{i=1}^{n} \ell\left(S^{(i)}, \tilde{Z}_{i}\right)
$$

That is, if $P_{S \mid Z^{n}}$ is stable in the sense that S is not sensitive to local modification of the training samples

The algorithm $P_{S \mid Z^{n}}$ is ε stable if

$$
D\left(P_{S \mid Z^{n}=z^{n}} \| P_{S \mid Z^{n}=v^{n}}\right) \leq \varepsilon
$$

for all z^{n} and v^{n} that differ in one sample; does not depend on Q The algorithm $P_{S \mid Z^{n}}$ is ε information stable w.r.t. Q if

$$
I\left(S ; Z^{n}\right) \leq n \varepsilon
$$

ε stable $\Rightarrow \varepsilon$ information stable for any Q

Information Bounds on Generalization Error

For a $\mathrm{RV} X$ with $m=E[X]$, its logarithmic moment-generating function is

$$
\psi(\lambda)=\ln E\left[e^{\lambda(X-m)}\right], \quad \lambda \in \mathbb{R}
$$

$\psi(\lambda)$ is convex, $\psi(0)=\psi^{\prime}(0)=0$
We have the Chernoff bound, $\operatorname{Pr}(X \geq m+t) \leq e^{-\hat{\psi}(t)}$, for any $t>0$, where

$$
\hat{\psi}(t)=\sup _{\lambda \geq 0}\{\lambda t-\psi(\lambda)\}
$$

is the Cramér transform of $\psi(\lambda)$

$$
\hat{\psi}(\lambda) \text { is nonnegative, convex and non-decreasing on }[0, \infty)
$$

For a general $f(x): \mathbb{R} \rightarrow \mathbb{R}$, we also define the Fenchel-Legendre dual

$$
f^{*}(y)=\sup _{x}\{y x-f(x)\}, \quad f^{*}(y) \text { is convex }
$$

Assume we can find convex functions $\psi_{1}(\lambda)$ and $\psi_{2}(\lambda)$, with $\psi_{i}(0)=\psi_{i}^{\prime}(0)=0$ and such that for $\lambda>0$
$\sup _{s \in E} E\left[e^{-\lambda\left(\ell(s, Z)-L_{Q}(s)\right)}\right] \leq e^{\psi_{1}(-\lambda)}, \sup _{s \in E} E\left[e^{\lambda\left(\ell(s, Z)-L_{Q}(s)\right)}\right] \leq e^{\psi_{2}(\lambda)}$
Then ${ }^{1}$, for any $P_{S \mid Z^{n}}$ such that $I\left(S ; Z^{n}\right)<\infty$

$$
\hat{\psi}_{2}^{-1}\left(\frac{1}{n} I\left(S ; Z^{n}\right)\right) \leq G\left(Q, P_{S \mid Z^{n}}\right) \leq \hat{\psi}_{1}^{-1}\left(\frac{1}{n} I\left(S ; Z^{n}\right)\right)
$$

The function $\hat{\psi}_{i}^{-1}$ is concave. If it is also non-decreasing, then if $P_{S \mid Z^{n}}$ is ε stable, and/or $P_{S \mid Z^{n}}$ is ε information stable for Q,

$$
G\left(Q, P_{S \mid Z^{n}}\right) \leq \hat{\psi}_{1}^{-1}(\varepsilon)
$$

[^0]The proof (see [XR] and [J-H-W] for details) relies on the following lemma, of general value:

Lemma: For X and Y with joint distribution $P_{X Y}$ and marginals P_{X} and P_{Y}, and $f(X, Y)$ real-valued such that

$$
\begin{aligned}
& \sup _{x} \ln E\left[e^{\lambda(f(x, Y)-E[f(x, Y)])}\right] \leq \psi_{2}(\lambda), \quad \lambda>0 \\
& \sup _{x} \ln E\left[e^{\lambda(f(x, Y)-E[f(x, Y)])}\right] \leq \psi_{1}(\lambda), \quad \lambda<0
\end{aligned}
$$

for $\psi_{i}(\lambda)$ convex and $\psi(0)=\psi^{\prime}(0)=0$, then

$$
\begin{aligned}
& E[f(X, Y)] \leq \int f(x, y) d\left(P_{X} \otimes P_{Y}\right)+\hat{\psi}_{2}^{-1}(I(X ; Y)) \\
& E[f(X, Y)] \geq \int f(x, y) d\left(P_{X} \otimes P_{Y}\right)-\hat{\psi}_{1}^{-1}(I(X ; Y))
\end{aligned}
$$

The proof of the lemma relies on the following observations:
For any convex $\phi(x)$ with $\phi(0)=\phi^{\prime}(0)=0$, the transform $\hat{\phi}(y)=\sup _{x \geq 0}(y x-\phi(x))$ has an inverse $\hat{\phi}^{-1}(y)$ that can be written as

$$
\hat{\phi}^{-1}(y)=\inf _{\lambda>0} \frac{y+\phi(\lambda)}{\lambda}
$$

From the Donsker-Varadhan Lemma (more about this next lecture), we have
$D\left(P_{Y \mid X=x} \| P_{Y}\right) \geq \lambda E[f(x, Y) \mid X=x]-\ln E\left[e^{\lambda f(x, Y)}\right]$ and by assumption $\ln E\left[e^{\lambda f(x, Y)}\right] \leq \psi(\lambda)+\lambda E[f(x, Y)]$

Hence
$E[f(x, Y) \mid X=x]-E[f(x, Y)] \leq \inf _{\lambda>0} \frac{D(\cdot \| \cdot)+\psi(\lambda)}{\lambda}=\hat{\psi}^{-1}(D(\cdot \| \cdot))$
and consequently $\int(E[f(x, Y) \mid X=x]-E[f(x, Y)]) d P_{X}$

$$
\leq \int \hat{\psi}^{-1}\left(D\left(P_{Y \mid X=x} \| P_{Y}\right)\right) d P_{X} \leq \hat{\psi}^{-1}(I(X ; Y))
$$

For $P_{X}=\mathcal{N}\left(0, \sigma^{2}\right)$ we get $\psi(\lambda)=(\lambda \sigma)^{2} / 2$
\Rightarrow any P_{X} such that $m=E[X]<\infty$ and

$$
\psi(\lambda) \leq \frac{(\lambda \sigma)^{2}}{2}
$$

is called σ^{2}-sub-Gaussian $\Rightarrow \hat{\psi}(t) \geq \frac{t^{2}}{2 \sigma^{2}}$ and thus

$$
\operatorname{Pr}(X+m \geq t) \leq e^{-\frac{t^{2}}{2 \sigma^{2}}}
$$

In general, if $\operatorname{Pr}(X \in[a, b])=1$ for $-\infty<a \leq b<\infty$ then

$$
\psi(\lambda) \leq \frac{(\lambda(b-a))^{2}}{8}
$$

\Rightarrow all such X are σ^{2}-sub-Gaussian with $\sigma^{2}=(b-a)^{2} / 4$

If $\ell(s, Z)$ is σ^{2}-sub-Gaussian for all $s \in E$, we can use

$$
\psi_{i}(\lambda)=\frac{(\lambda \sigma)^{2}}{2}, \quad \hat{\psi}_{i}^{-1}(r)=\sqrt{2 r \sigma^{2}}
$$

Then for any $P_{S \mid Z^{n}}$ we get

$$
\left|G\left(Q, P_{S \mid Z^{n}}\right)\right| \leq \sqrt{\frac{2 \sigma^{2}}{n} I\left(S ; Z^{n}\right)}
$$

and if $P_{S \mid Z^{n}}$ is ε stable and/or ε information stable w.r.t. Q

$$
\left|G\left(Q, P_{S \mid Z^{n}}\right)\right| \leq \sqrt{2 \sigma^{2} \varepsilon}
$$

Complexity and Generalization

Consider binary classification, that is $T(\theta)=\theta \in\{0,1\}$, and samples $Z_{i}=\left(X_{i}, \theta_{i}\right)$ where $\theta_{i}=$ " X_{i} belongs to class θ_{i} "
Assume $\ell(s, Z)=\mathbb{1}(\{\hat{\theta}(X) \neq \theta\}) \Rightarrow L_{Q}(s)=\operatorname{Pr}(\hat{\theta}(X) \neq \theta)$
For a fixed s we have

$$
\operatorname{Pr}\left(L_{Z^{n}}(s) \leq L_{Q}(s)-t\right) \leq \exp \left(-2 n t^{2}\right)
$$

($L_{Z^{n}}(s)$ is $1 /(4 n)$ sub-Gaussian for all $s \in E$ and $\left.E\left[L_{Z^{n}}\right]=L_{Q}\right)$
Thus with probability at least $1-\delta$,

$$
L_{Q}(s) \leq L_{Z^{n}}(s)+\sqrt{\frac{\ln (1 / \delta)}{2 n}}
$$

Again, the bound is for a fixed $s \in E$. Assume $E=\left\{s_{1}, \ldots, s_{M}\right\}$ is finite, then

$$
\begin{aligned}
& \operatorname{Pr}\left(\text { there is an } s \in E \text { such that } L_{Z^{n}}(s) \leq L_{Q}(s)-t\right) \\
& \quad \leq \sum_{i=1}^{M} \operatorname{Pr}\left(L_{Z^{n}}\left(s_{i}\right) \leq L_{Q}\left(s_{i}\right)-t\right) \leq M e^{-2 n t^{2}}
\end{aligned}
$$

Hence, for all $s \in E$ and with probability at least $1-\delta$

$$
L_{Q}(s) \leq L_{Z^{n}}(s)+\sqrt{\frac{\ln M+\ln (1 / \delta)}{2 n}}
$$

How do we handle the case when E is infinite/uncountable?
Can we replace the $\ln M$ term with something finite?

Even if E is infinite, the set

$$
T\left(z^{n}\right)=\left\{\left(\ell\left(s, z_{1}\right), \ldots, \ell\left(s, z_{n}\right)\right): s \in E\right\}
$$

is finite
Let $S(n)=\sup _{z^{n}}\left|T\left(z^{n}\right)\right|$, then with probability at least $1-\delta$

$$
L_{Q}(s) \leq L_{Z^{n}}(s)+2 \sqrt{2 \frac{\ln S(2 n)+\ln (2 / \delta)}{n}}
$$

A classifier $s=\hat{\theta}(x) \in E$ shatters the samples $\left\{\left(x_{i}, \theta_{i}\right)\right\}_{i=1}^{n}$ if $\hat{\theta}\left(x_{i}\right)=\theta_{i}, i=1, \ldots, n$
The Vapnik-Chervonenkis (VC) dimension d of the set E of classifiers $=$ the largest n for which there is a set $\left\{x_{i}\right\}$ such that for any $\left\{\theta_{i}\right\}$ there is an $s \in E$ that shatters $\left\{\left(x_{i}, \theta_{i}\right)\right\}_{i=1}^{n}$

That is, $d=$ the largest n such that $S(n)=2^{n}$

Example: For $E=\{$ mappings $\mathbb{1}(\{x \in[a, b]\}),-\infty<a<b<\infty\}$ we get $d=2$, since for any three points $x<y<z$ the set $\{(x, 1),(y, 0),(z, 1)\}$ cannot be shattered

In general, for all $n \geq d$ it can be shown that

$$
S(n) \leq\left(\frac{e n}{d}\right)^{d}
$$

which implies the bound

$$
L_{Q}(s) \leq L_{Z^{n}}(s)+2 \sqrt{2 \frac{d \ln (2 e n / d)+\ln (2 / \delta)}{n}}
$$

for a class E with VC dimension d
The VC dimension measures the complexity in learning hypotheses from the class E

Universal versus Algorithm-dependent

The bound

$$
L_{Q}(s) \leq L_{Z^{n}}(s)+2 \sqrt{2 \frac{d \ln (2 e n / d)+\ln (2 / \delta)}{n}}
$$

holds with probability $1-\beta$ for all $s \in E$, i.e. uniformly over E Our previous bound

$$
\left|G\left(Q, P_{S \mid Z^{n}}\right)\right| \leq \sqrt{\frac{2 \sigma^{2}}{n} I\left(S ; Z^{n}\right)}
$$

is valid for the expected generalization error $E\left[L_{Q}(S)-L_{Z^{n}}(S)\right]$ for a given Q and algorithm $P_{S \mid Z^{n}}$
$I\left(S ; Z^{n}\right)$ characterizes the complexity in producing S from Z^{n}

In modern (deep) learning, the VC dimension can be enormous, resulting in the universal bound becoming vacuous It has been argued ${ }^{2}$ that distribution Q and algorithm $P_{S \mid Z^{n}}$ dependent bounds are necessary to characterize deep learning, resulting in more useful complexity metrics than VC dimension As an example, a recent ${ }^{3}$ high-probability bound reads: Let R be any distribution on E, then with probability not smaller than $1-\beta$

$$
E\left[L_{Q}(S)-L_{Z^{n}}(S) \mid Z^{n}\right] \leq \hat{\psi}^{-1}\left(\frac{D\left(P_{S \mid Z^{n}} \| R\right)+\ln (n / \beta)+1}{n}\right)
$$

(where $\psi(\lambda)$ is such that $\ln E\left[\exp \left(-\lambda\left(\ell(s, Z)+L_{Q}(s)\right)\right)\right] \leq \psi(\lambda)$)
Note that choosing $R=P_{S}$ gives $E\left[D\left(P_{S \mid Z^{n}} \| P_{S}\right)\right]=I\left(S ; Z^{n}\right)$

[^1]
[^0]: ${ }^{1}$ [J-H-W] Jiao, Han and Weissman, IEEE ISIT 2017

[^1]: ${ }^{2}$ C. Zhang et al., "Understanding deep learning requires re-thinking generalization," 2017
 ${ }^{3}$ Rodríguez-Gálvez, Thobaben and Skoglund, "More PAC Bayes bounds,"

