
Infotheory for Statistics and Learning
Lecture 7

• Donsker–Varadhan [PW:4.3]

• Variational characterization of f -divergence [PW:7.13]

• Marginalization and the ELBO [MK:33]

• Variational free energy and inference [MK:33]
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Donsker–Varadhan

For P and Q on (Ω,A) we have

D(P∥Q) = sup
X

{∫
X(ω)dP − ln

∫
eX(ω)dQ

}

(for D(P∥Q) in nats) where the supremum is over RVs X such
that EQ[exp(X(ω))] < ∞
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Proof: Let Y (X) = EP [X] and Z(X) = lnEQ[exp(X)], then

D(P∥Q) = Y

(
ln

dP

dQ

)
− Z

(
ln

dP

dQ

)

Also, for A ∈ A define

QX(A) =

∫

A
exp(X(ω)− Z(X))dQ

then

Y (X)− Z(X) = EP

[
ln

(
dP

dQ

dQX

dP

)]
= D(P∥Q)−D(P∥QX)
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f -divergence

Remember the Fenchel–Legendre dual, given a (convex) function
f(x), define

f∗(y) = sup
x
(xy − f(x))

Then (assuming P ≪ Q)

Df (P∥Q) = EQ

[
f

(
dP

dQ
(ω)

)]
= sup

X
{EP [X]− EQ[f

∗(X)]}

and the supremum is obtained for

X(ω) = f ′
(
dP

dQ
(ω)

)
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Proof: For fixed Q, Df (P∥Q) is convex in P . Let

D∗
f (X) = sup

P

{
EP [X]− EQ

[
f

(
dP

dQ

)]}

be the dual of P 7→ Df (P∥Q). Then since (D∗
f )

∗ = Df

Df (P∥Q) = sup
X

{
EP [X]−D∗

f (X)
}

Also, since f∗(X) = supω(ωX − f(ω)) we have

f∗(X(ω)) ≥ X(ω)
dP

dQ
(ω)− f

(
dP

dQ
(ω)

)

⇒ EQ[f
∗(X)] ≥ EP [X]−Df (P∥Q) ⇒ EQ[f

∗(X)] ≥ D∗
f (X)
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Hence
Df (P∥Q) ≥ sup

X
{EP [X]− EQ[f

∗(X)]}

On the other hand, for

X(ω) = f ′
(
dP

dQ
(ω)

)

we get

f∗(X) =
dP

dQ
f ′

(
dP

dQ

)
− f

(
dP

dQ

)

since f∗(f ′(x)) = xf ′(x)− f(x), that is

Df (P∥Q) = EP

[
f ′

(
dP

dQ
(ω)

)]
− EQ

[
f∗

(
f ′

(
dP

dQ
(ω)

))]
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Special cases

With f(x) = x lnx we get f∗(y) = exp(y − 1) and

Df (P∥Q) = D(P∥Q) = sup
X

{EP [X]− EQ[exp(X − 1)]}

to compare with Donsker–Varadhan

D(P∥Q) = sup
X

{EP [X]− lnEQ[exp(X)]}

Since ln t ≤ t/e the lower bound obtained from D–V is tighter
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With f(x) = (x− 1)2 we get f∗(y) = y + y2/4 and

Df (P∥Q) = χ2(P∥Q) = sup
X

{
EP [X]− EQ

[
X +

X2

4

]}

Or, setting Y (ω) = X(ω)/2 + 1,

χ2(P∥Q) = sup
Y

{
2EP [Y ]− EQ

[
Y 2

]
− 1

}
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Marginalization and the ELBO

Assume Xn ∈ R and Y m ∈ R are jointly distributed according to a
pdf pθ(x

n, ym) where θ ∈ Rd is a parameterization

Consider e.g. the ML problem based on observing Xn = xn but
not the latent variables Y m, where we want to compute

pθ(x
n) =

∫
pθ(x

n, ym)dym

(or the corresponding sum if ym is discrete)

This is a typical marginalization problem, which can be hard or
impossible to solve if m ≫ 1
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Let q(ym|xn) be an arbitrary conditional pdf for ym given xn,
chosen from a class Q
Then define the evidence lower bound (ELBO) as

Lθ(x
n; q) = ln pθ(x

n)−D(q(ym|xn)∥pθ(ym|xn))

where pθ(y
n|xn) is the true pdf and the divergence is over ym

That is, if Q contains pθ(y
m|xn) then

ln pθ(x
n) = max

q∈Q
Lθ(x

n; q)

⇒ marginalization by optimization

But can Lθ(x
n; q) be computed?
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Connection to statistical physics

In physics one often assumes canonical models of the form

pθ(x
n) =

1

Z(θ)
exp (−βE(xn; θ))

where pθ(x
n) is the pmf for xn ∈ {±1}n, with ±1 corresponding

e.g. to “spin up” or “spin down”

Also, E(xn; θ) is the energy function and

Z(θ) =
∑

xn

e−βE(xn;θ)

is the partition function
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The variational free energy for the system is

βF̃ (θ) =
∑

xn

qθ(x
n) ln

qθ(x
n)

exp(−βE(xn; θ))

relative to the pmf qθ(x
n)

Note that

βF̃ (θ) = β
∑

xn

qθ(x
n)E(xn; θ)−H(qθ)

= βF (θ) +D(qθ(x
n)∥pθ(xn))

where βF (θ) = − lnZ(θ) is the true free energy

⇒ Approximate βF (θ) by choosing qθ to minimize βF̃ (θ)

Note the relation to the ELBO: We marginalize over xn to get
βF (θ), so ELBO ↔ negative of the variational free energy
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Mean field equations for a spin system

For the energy function

E(xn; θ, h) = −1

2

∑

ij

θijxixj −
∑

i

hixi

use a qθ(x
n) of the form

qa(x
n) =

exp (
∑

i aixi)∑
xn exp (

∑
i aixi)

⇒ mean field equations to minimize βF̃

ai = β
∑

j

θij x̄j + βhi

x̄i = tanh(ai)
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Connection to the dual

Consider E(xn; θ) = −∑
θiϕi(xi) = −⟨θ, ϕ(xn)⟩ so that

pθ(x
n) = exp (β⟨θ, ϕ(xn)⟩+ βF (θ))

Let βF ∗(µ) = supθ(βF (θ) + ⟨θ, µ⟩)
The sup is achieved when the relation µ(θ) = βEθ[ϕ(X

n)] holds

Note that Eθ[ln pθ(X
n)] = β⟨θ,Eθ[ϕ(X

n)]⟩+ βF (θ) = −H(pθ)

⇒ βF ∗(µ) = −H(pθ) for θ such that µ = βEθ[ϕ(X
n)]

For a general µ (not coupled to θ), βF (θ) ≤ βF ∗(µ)− ⟨θ, µ⟩
For any pmf q(xn) we also have (due to Jensen)

βF (θ) ≤
∑

xn

q(xn) ln q(xn)− β
∑

xn

q(xn)⟨θ, ϕ(xn)⟩ = βF̃ (θ, q)

General mean field problem:
Compute/approximate µ∗ = βEθ[ϕ(X

n)] by minimizing βF̃ (θ, q)
over q to get pθ or βF ∗(µ)− ⟨θ, µ⟩ directly over µ
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Other choices for qθ

Alternative separable models for qθ of the form qθ(x
n) =

∏
qθi(xi),

or a more general Markov structure described by a factor graph

Alternative physics-based methods, such as Bethe or Kikuchi free
energy models

See [MK] and

Wainwright & Jordan, “Graphical models, exponential families and
variational inference,” FnT’s Machine Learning 2008

for a thorough account
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Variational Bayes

For θ ∈ Θ and data X consider the average and Bayes risks

Rπ(θ̂) =

∫ {∫
ℓ(θ, θ̂(x))Pθ(dx)

}
π(dθ)

R∗
π = inf

θ̂
Rπ(θ̂)

Let θ̂∗ denote the corresponding Bayes estimator

For ℓ(θ, θ̂) = (θ − θ̂)2 we get

θ̂∗(x) =
∫

θdPθ|X=x

and for |Θ| < ∞ and ℓ(θ, θ̂) = 1(θ ̸= θ̂) we get

θ̂∗(x) = argmax
θ

pθ|X=x(θ|x)
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Thus for Bayesian inference in general, we need access to the
conditional or posterior distribution Pθ|X=x, either via a pdf
fθ|X=x(θ|x) or a pmf pθ|X=x(θ|x)
We have (for the case of a pdf)

fθ|X=x(θ|x) =
fθ(x)π(θ)∫
fθ(x)π(θ)dθ

where we have a marginalization problem in computing the integral

f(x) =

∫
fθ(x)π(θ)dθ

With

L(q) = −
∫

q(θ) ln
q(θ)

fθ(x)π(θ)
dθ = ln f(x)−D(q∥fθ|X=x)

we can maximize over q to compute/approximate ln f(x)
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Example: Assume Xn = (X1, . . . , Xn) drawn iid ∼ N (µ, σ2) and
consider θ = (µ, σ) for the model

fθ|Xn=xn(θ|xn)f(xn) = 1

σµσ(2πσ2)n/2
exp

(
−n(µ− x̄)2 + S

2σ2

)

(corresponding to an improper noninformative prior for µ and σ,
see MK Ch. 24) where x̄ = n−1

∑
i xi and S =

∑
i(xi − x̄)2

To compute f(xn) we seek to minimize

∫
q(θ) ln

q(θ)

fθ|Xn=xn(θ|xn)f(xn)dθ

over q(θ) of the form q(θ) = q(µ)q(σ) (separable)
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Thus, for a fixed q(σ) we minimize

∫
q(µ)

{∫
q(σ)

n(µ− x̄)2

2σ2
dσ + ln q(µ)

}
dµ

⇒ q(µ) = N (x̄, σ2
µ|xn) where

σ2
µ|xn =

1

n
∫
q(σ)/σ2dσ

Similarly, for a fixed q(µ) we get

q(β) = Γ(β; a, b) =
1

aΓ(b)

(
β

a

)b−1

e−β/a

with β = 1/σ2 and where 1/a = (nσ2
µ|xn + S(xn))/2 and b = n/2

Since
∫
βq(β)dβ = ab we also have σ2

µ|xn = S(xn)/(n(n− 1))
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