Infotheory for Statistics and Learning

Lecture 7

- Donsker-Varadhan [PW:4.3]
- Variational characterization of f-divergence [PW:7.13]
- Marginalization and the ELBO [MK:33]
- Variational free energy and inference [MK:33]

Donsker-Varadhan

For P and Q on (Ω, \mathcal{A}) we have

$$
D(P \| Q)=\sup _{X}\left\{\int X(\omega) d P-\ln \int e^{X(\omega)} d Q\right\}
$$

(for $D(P \| Q)$ in nats) where the supremum is over RV s X such that $E_{Q}[\exp (X(\omega))]<\infty$

Proof: Let $Y(X)=E_{P}[X]$ and $Z(X)=\ln E_{Q}[\exp (X)]$, then

$$
D(P \| Q)=Y\left(\ln \frac{d P}{d Q}\right)-Z\left(\ln \frac{d P}{d Q}\right)
$$

Also, for $A \in \mathcal{A}$ define

$$
Q_{X}(A)=\int_{A} \exp (X(\omega)-Z(X)) d Q
$$

then

$$
Y(X)-Z(X)=E_{P}\left[\ln \left(\frac{d P}{d Q} \frac{d Q_{X}}{d P}\right)\right]=D(P \| Q)-D\left(P \| Q_{X}\right)
$$

f-divergence

Remember the Fenchel-Legendre dual, given a (convex) function $f(x)$, define

$$
f^{*}(y)=\sup _{x}(x y-f(x))
$$

Then (assuming $P \ll Q$)

$$
D_{f}(P \| Q)=E_{Q}\left[f\left(\frac{d P}{d Q}(\omega)\right)\right]=\sup _{X}\left\{E_{P}[X]-E_{Q}\left[f^{*}(X)\right]\right\}
$$

and the supremum is obtained for

$$
X(\omega)=f^{\prime}\left(\frac{d P}{d Q}(\omega)\right)
$$

Proof: For fixed $Q, D_{f}(P \| Q)$ is convex in P. Let

$$
D_{f}^{*}(X)=\sup _{P}\left\{E_{P}[X]-E_{Q}\left[f\left(\frac{d P}{d Q}\right)\right]\right\}
$$

be the dual of $P \mapsto D_{f}(P \| Q)$. Then since $\left(D_{f}^{*}\right)^{*}=D_{f}$

$$
D_{f}(P \| Q)=\sup _{X}\left\{E_{P}[X]-D_{f}^{*}(X)\right\}
$$

Also, since $f^{*}(X)=\sup _{\omega}(\omega X-f(\omega))$ we have

$$
\begin{gathered}
f^{*}(X(\omega)) \geq X(\omega) \frac{d P}{d Q}(\omega)-f\left(\frac{d P}{d Q}(\omega)\right) \\
\Rightarrow E_{Q}\left[f^{*}(X)\right] \geq E_{P}[X]-D_{f}(P \| Q) \Rightarrow E_{Q}\left[f^{*}(X)\right] \geq D_{f}^{*}(X)
\end{gathered}
$$

Hence

$$
D_{f}(P \| Q) \geq \sup _{X}\left\{E_{P}[X]-E_{Q}\left[f^{*}(X)\right]\right\}
$$

On the other hand, for

$$
X(\omega)=f^{\prime}\left(\frac{d P}{d Q}(\omega)\right)
$$

we get

$$
f^{*}(X)=\frac{d P}{d Q} f^{\prime}\left(\frac{d P}{d Q}\right)-f\left(\frac{d P}{d Q}\right)
$$

since $f^{*}\left(f^{\prime}(x)\right)=x f^{\prime}(x)-f(x)$, that is

$$
D_{f}(P \| Q)=E_{P}\left[f^{\prime}\left(\frac{d P}{d Q}(\omega)\right)\right]-E_{Q}\left[f^{*}\left(f^{\prime}\left(\frac{d P}{d Q}(\omega)\right)\right)\right]
$$

Special cases

With $f(x)=x \ln x$ we get $f^{*}(y)=\exp (y-1)$ and

$$
D_{f}(P \| Q)=D(P \| Q)=\sup _{X}\left\{E_{P}[X]-E_{Q}[\exp (X-1)]\right\}
$$

to compare with Donsker-Varadhan

$$
D(P \| Q)=\sup _{X}\left\{E_{P}[X]-\ln E_{Q}[\exp (X)]\right\}
$$

Since $\ln t \leq t / e$ the lower bound obtained from $\mathrm{D}-\mathrm{V}$ is tighter

With $f(x)=(x-1)^{2}$ we get $f^{*}(y)=y+y^{2} / 4$ and

$$
D_{f}(P \| Q)=\chi^{2}(P \| Q)=\sup _{X}\left\{E_{P}[X]-E_{Q}\left[X+\frac{X^{2}}{4}\right]\right\}
$$

Or, setting $Y(\omega)=X(\omega) / 2+1$,

$$
\chi^{2}(P \| Q)=\sup _{Y}\left\{2 E_{P}[Y]-E_{Q}\left[Y^{2}\right]-1\right\}
$$

Assume $X^{n} \in \mathbb{R}$ and $Y^{m} \in \mathbb{R}$ are jointly distributed according to a pdf $p_{\theta}\left(x^{n}, y^{m}\right)$ where $\theta \in \mathbb{R}^{d}$ is a parameterization
Consider e.g. the ML problem based on observing $X^{n}=x^{n}$ but not the latent variables Y^{m}, where we want to compute

$$
p_{\theta}\left(x^{n}\right)=\int p_{\theta}\left(x^{n}, y^{m}\right) d y^{m}
$$

(or the corresponding sum if y^{m} is discrete)
This is a typical marginalization problem, which can be hard or impossible to solve if $m \gg 1$

Let $q\left(y^{m} \mid x^{n}\right)$ be an arbitrary conditional pdf for y^{m} given x^{n}, chosen from a class \mathcal{Q}

Then define the evidence lower bound (ELBO) as

$$
\mathcal{L}_{\theta}\left(x^{n} ; q\right)=\ln p_{\theta}\left(x^{n}\right)-D\left(q\left(y^{m} \mid x^{n}\right) \| p_{\theta}\left(y^{m} \mid x^{n}\right)\right)
$$

where $p_{\theta}\left(y^{n} \mid x^{n}\right)$ is the true pdf and the divergence is over y^{m} That is, if \mathcal{Q} contains $p_{\theta}\left(y^{m} \mid x^{n}\right)$ then

$$
\ln p_{\theta}\left(x^{n}\right)=\max _{q \in \mathcal{Q}} \mathcal{L}_{\theta}\left(x^{n} ; q\right)
$$

\Rightarrow marginalization by optimization
But can $\mathcal{L}_{\theta}\left(x^{n} ; q\right)$ be computed?

Connection to statistical physics
In physics one often assumes canonical models of the form

$$
p_{\theta}\left(x^{n}\right)=\frac{1}{Z(\theta)} \exp \left(-\beta E\left(x^{n} ; \theta\right)\right)
$$

where $p_{\theta}\left(x^{n}\right)$ is the pmf for $x^{n} \in\{ \pm 1\}^{n}$, with ± 1 corresponding e.g. to "spin up" or "spin down"

Also, $E\left(x^{n} ; \theta\right)$ is the energy function and

$$
Z(\theta)=\sum_{x^{n}} e^{-\beta E\left(x^{n} ; \theta\right)}
$$

is the partition function

The variational free energy for the system is

$$
\beta \tilde{F}(\theta)=\sum_{x^{n}} q_{\theta}\left(x^{n}\right) \ln \frac{q_{\theta}\left(x^{n}\right)}{\exp \left(-\beta E\left(x^{n} ; \theta\right)\right)}
$$

relative to the $\operatorname{pmf} q_{\theta}\left(x^{n}\right)$
Note that

$$
\begin{aligned}
\beta \tilde{F}(\theta) & =\beta \sum_{x^{n}} q_{\theta}\left(x^{n}\right) E\left(x^{n} ; \theta\right)-H\left(q_{\theta}\right) \\
& =\beta F(\theta)+D\left(q_{\theta}\left(x^{n}\right) \| p_{\theta}\left(x^{n}\right)\right)
\end{aligned}
$$

where $\beta F(\theta)=-\ln Z(\theta)$ is the true free energy
\Rightarrow Approximate $\beta F(\theta)$ by choosing q_{θ} to minimize $\beta \tilde{F}(\theta)$
Note the relation to the ELBO: We marginalize over x^{n} to get $\beta F(\theta)$, so ELBO \leftrightarrow negative of the variational free energy

Mean field equations for a spin system
For the energy function

$$
E\left(x^{n} ; \theta, h\right)=-\frac{1}{2} \sum_{i j} \theta_{i j} x_{i} x_{j}-\sum_{i} h_{i} x_{i}
$$

use a $q_{\theta}\left(x^{n}\right)$ of the form

$$
q_{a}\left(x^{n}\right)=\frac{\exp \left(\sum_{i} a_{i} x_{i}\right)}{\sum_{x^{n}} \exp \left(\sum_{i} a_{i} x_{i}\right)}
$$

\Rightarrow mean field equations to minimize $\beta \tilde{F}$

$$
\begin{aligned}
a_{i} & =\beta \sum_{j} \theta_{i j} \bar{x}_{j}+\beta h_{i} \\
\bar{x}_{i} & =\tanh \left(a_{i}\right)
\end{aligned}
$$

Connection to the dual
Consider $E\left(x^{n} ; \theta\right)=-\sum \theta_{i} \phi_{i}\left(x_{i}\right)=-\left\langle\theta, \phi\left(x^{n}\right)\right\rangle$ so that

$$
p_{\theta}\left(x^{n}\right)=\exp \left(\beta\left\langle\theta, \phi\left(x^{n}\right)\right\rangle+\beta F(\theta)\right)
$$

Let $\beta F^{*}(\mu)=\sup _{\theta}(\beta F(\theta)+\langle\theta, \mu\rangle)$
The sup is achieved when the relation $\mu(\theta)=\beta E_{\theta}\left[\phi\left(X^{n}\right)\right]$ holds
Note that $E_{\theta}\left[\ln p_{\theta}\left(X^{n}\right)\right]=\beta\left\langle\theta, E_{\theta}\left[\phi\left(X^{n}\right)\right]\right\rangle+\beta F(\theta)=-H\left(p_{\theta}\right)$
$\Rightarrow \beta F^{*}(\mu)=-H\left(p_{\theta}\right)$ for θ such that $\mu=\beta E_{\theta}\left[\phi\left(X^{n}\right)\right]$
For a general μ (not coupled to θ), $\beta F(\theta) \leq \beta F^{*}(\mu)-\langle\theta, \mu\rangle$
For any $\operatorname{pmf} q\left(x^{n}\right)$ we also have (due to Jensen)

$$
\beta F(\theta) \leq \sum_{x^{n}} q\left(x^{n}\right) \ln q\left(x^{n}\right)-\beta \sum_{x^{n}} q\left(x^{n}\right)\left\langle\theta, \phi\left(x^{n}\right)\right\rangle=\beta \tilde{F}(\theta, q)
$$

General mean field problem:
Compute/approximate $\mu^{*}=\beta E_{\theta}\left[\phi\left(X^{n}\right)\right]$ by minimizing $\beta \tilde{F}(\theta, q)$ over q to get p_{θ} or $\beta F^{*}(\mu)-\langle\theta, \mu\rangle$ directly over μ

Other choices for q_{θ}
Alternative separable models for q_{θ} of the form $q_{\theta}\left(x^{n}\right)=\prod q_{\theta_{i}}\left(x_{i}\right)$, or a more general Markov structure described by a factor graph Alternative physics-based methods, such as Bethe or Kikuchi free energy models

See $[\mathrm{MK}]$ and
Wainwright \& Jordan, "Graphical models, exponential families and variational inference," FnT's Machine Learning 2008 for a thorough account

Variational Bayes

For $\theta \in \Theta$ and data X consider the average and Bayes risks

$$
\begin{aligned}
R_{\pi}(\hat{\theta}) & =\int\left\{\int \ell(\theta, \hat{\theta}(x)) P_{\theta}(d x)\right\} \pi(d \theta) \\
R_{\pi}^{*} & =\inf _{\hat{\theta}} R_{\pi}(\hat{\theta})
\end{aligned}
$$

Let $\hat{\theta}^{*}$ denote the corresponding Bayes estimator
For $\ell(\theta, \hat{\theta})=(\theta-\hat{\theta})^{2}$ we get

$$
\hat{\theta}^{*}(x)=\int \theta d P_{\theta \mid X=x}
$$

and for $|\Theta|<\infty$ and $\ell(\theta, \hat{\theta})=\mathbb{1}(\theta \neq \hat{\theta})$ we get

$$
\hat{\theta}^{*}(x)=\arg \max _{\theta} p_{\theta \mid X=x}(\theta \mid x)
$$

Thus for Bayesian inference in general, we need access to the conditional or posterior distribution $P_{\theta \mid X=x}$, either via a pdf $f_{\theta \mid X=x}(\theta \mid x)$ or a pmf $p_{\theta \mid X=x}(\theta \mid x)$
We have (for the case of a pdf)

$$
f_{\theta \mid X=x}(\theta \mid x)=\frac{f_{\theta}(x) \pi(\theta)}{\int f_{\theta}(x) \pi(\theta) d \theta}
$$

where we have a marginalization problem in computing the integral

$$
f(x)=\int f_{\theta}(x) \pi(\theta) d \theta
$$

With

$$
\mathcal{L}(q)=-\int q(\theta) \ln \frac{q(\theta)}{f_{\theta}(x) \pi(\theta)} d \theta=\ln f(x)-D\left(q \| f_{\theta \mid X=x}\right)
$$

we can maximize over q to compute/approximate $\ln f(x)$

Example: Assume $X^{n}=\left(X_{1}, \ldots, X_{n}\right)$ drawn iid $\sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ and consider $\theta=(\mu, \sigma)$ for the model

$$
f_{\theta \mid X^{n}=x^{n}}\left(\theta \mid x^{n}\right) f\left(x^{n}\right)=\frac{1}{\sigma_{\mu} \sigma\left(2 \pi \sigma^{2}\right)^{n / 2}} \exp \left(-\frac{n(\mu-\bar{x})^{2}+S}{2 \sigma^{2}}\right)
$$

(corresponding to an improper noninformative prior for μ and σ, see MK Ch. 24) where $\bar{x}=n^{-1} \sum_{i} x_{i}$ and $S=\sum_{i}\left(x_{i}-\bar{x}\right)^{2}$
To compute $f\left(x^{n}\right)$ we seek to minimize

$$
\int q(\theta) \ln \frac{q(\theta)}{f_{\theta \mid X^{n}=x^{n}}\left(\theta \mid x^{n}\right) f\left(x^{n}\right)} d \theta
$$

over $q(\theta)$ of the form $q(\theta)=q(\mu) q(\sigma)$ (separable)

Thus, for a fixed $q(\sigma)$ we minimize

$$
\begin{gathered}
\int q(\mu)\left\{\int q(\sigma) \frac{n(\mu-\bar{x})^{2}}{2 \sigma^{2}} d \sigma+\ln q(\mu)\right\} d \mu \\
\Rightarrow q(\mu)=\mathcal{N}\left(\bar{x}, \sigma_{\mu \mid x^{n}}^{2}\right) \text { where } \\
\sigma_{\mu \mid x^{n}}^{2}=\frac{1}{n \int q(\sigma) / \sigma^{2} d \sigma}
\end{gathered}
$$

Similarly, for a fixed $q(\mu)$ we get

$$
q(\beta)=\Gamma(\beta ; a, b)=\frac{1}{a \Gamma(b)}\left(\frac{\beta}{a}\right)^{b-1} e^{-\beta / a}
$$

with $\beta=1 / \sigma^{2}$ and where $1 / a=\left(n \sigma_{\mu \mid x^{n}}^{2}+S\left(x^{n}\right)\right) / 2$ and $b=n / 2$
Since $\int \beta q(\beta) d \beta=a b$ we also have $\sigma_{\mu \mid x^{n}}^{2}=S\left(x^{n}\right) /(n(n-1))$

