Infotheory for Statistics and Learning

Lecture 7

Donsker—Varadhan [PW:4.3]

Variational characterization of f-divergence [PW:7.13]
Marginalization and the ELBO [MK:33]

Variational free energy and inference [MK:33]
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Donsker—Varadhan

For P and @ on (£2,.A) we have

D(PQ) = sg(p{ [x@dr-n | eX<w>d@}

(for D(PJ|Q) in nats) where the supremum is over RVs X such
that Eglexp(X(w))] < oo
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Proof: Let Y(X) = Ep[X] and Z(X) = In Eglexp(X)], then

p(p1Q) =¥ (1w ) - 2 (w%0)

Also, for A € A define
Qx(4) = /A exp(X (w) — Z(X))dQ

then

dP dQx

V() - 206) = B [ (5552 ) | = D(PIQ) - D(Plx)
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f-divergence

Remember the Fenchel-Legendre dual, given a (convex) function
f(x), define
f*(y) = sup(zy — f(x))

Then (assuming P < Q)

dp
@

and the supremum is obtained for

Dy(PIQ) = Eo | £ (G5 )| =suw (E{x] - Eolr )
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Proof: For fixed @, Df(P| Q) is convex in P. Let

0= -1 (2]}

be the dual of P — D;(P||Q). Then since (D%)* = D;
Dy(PlQ) = sup {Ep[X] - D}(X)}
Also, since f*(X) = sup,(wX — f(w)) we have
PO 2 X500 - £ (550)

= E[f*(X)] = Ep[X] = D;(P||Q) = Eq[f*(X)] = D}(X)
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Hence
Dy(P|Q) = S;p{EP[X] — Eq[f*(X)]}

On the other hand, for

x@) =1 (55)

ro=ir () -+ ()

since f*(f'(x)) =z f'(x) — f(x), thatis

Dy(P|Q) = Ep [f’ (%M)] ~Ea [f * (f | (%“")))]

we get
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Special cases

With f(z) = xlnx we get f*(y) = exp(y — 1) and
Dy(P||Q) = D(P|Q) = Sup {Ep|X] — Eqlexp(X —1)]}
to compare with Donsker—Varadhan

D(P||Q) = Sl)l(p{EP[X] — In Eqlexp(X)]}

Since Int < t/e the lower bound obtained from D-V is tighter
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With f(x) = (z — 1)? we get f*(y) =y + y?/4 and

X2
DAPIQ) = (PIQ) = sup { Eplx) - o [x + 2] |
Or, setting YV (w) = X (w)/2 + 1,

X (P)Q) = sup {2Ep[Y] — Eq [Y?] — 1}
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Marginalization and the ELBO

Assume X" € R and Y™ € R are jointly distributed according to a
pdf pg(x™,y™) where 6 € RY is a parameterization

Consider e.g. the ML problem based on observing X™ = z™ but
not the latent variables Y, where we want to compute

po(a™) = / po(, y™)dy"

(or the corresponding sum if y™ is discrete)

This is a typical marginalization problem, which can be hard or
impossible to solve if m > 1
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Let q(y™|z™) be an arbitrary conditional pdf for y™ given x™,
chosen from a class Q

Then define the evidence lower bound (ELBO) as

Lo(x";q) = npe(z™) — D(q(y™[«")[lpe(y™|2"))

where py(y™|z™) is the true pdf and the divergence is over y™

That is, if Q contains pg(y"™|x™) then

1 ") = Lo(x™;
npy(z") max o(z"; q)

= marginalization by optimization

But can Ly(z";q) be computed?
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Connection to statistical physics

In physics one often assumes canonical models of the form

1
Z(0)

po(z") = exp (—BE(z";0))

where pg(z™) is the pmf for 2™ € {£1}", with £1 corresponding
e.g. to “spin up” or “spin down”

Also, E(z"™;0) is the energy function and
2(0) =3 e M0

is the partition function

Mikael Skoglund 11/19

The variational free energy for the system is

B I go(z")
5F<9) _qu( )1 exp(—ﬁE(l‘n;O))

xn
relative to the pmf gy(x™)

Note that
BE0) =5 qo(z")E(z";0) — H(qp)

= BF(0) + D(qo(z")|[po(z"))
where SF(6) = —1In Z(0) is the true free energy
= Approximate SF(6) by choosing g to minimize SF(6)

Note the relation to the ELBO: We marginalize over " to get
BF (), so ELBO < negative of the variational free energy
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Mean field equations for a spin system

For the energy function
E(z";0, h) ——Zewxzmj thz

use a gg(x™) of the form

o exp (D, aimy)
(]a(aj ) - an exp (Zz Clixi)

— mean field equations to minimize 3F

=B 0i;%; + Bh
J

XT; = tanh(az-)
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Connection to the dual

Consider E(z™;0) = — > 0;0;(z;) = — (0, ¢(z™)) so that
po(x") = exp (B0, ¢(z")) + BF(0))

Let BF™ () = supy(BE(0) + (0, 1))

The sup is achieved when the relation u(0) = SEg[¢(X™)] holds
Note that Ep[lnpg(X™)] = 8(6, Ep[¢(X™)]) + BF(0) = —H (po)
= BF*(u) = —H (pg) for 6 such that p = BEg[o(X™)]

For a general p (not coupled to 0), BF(0) < BF*(u) — (0, 1)

For any pmf g(x™) we also have (due to Jensen)

<Zq )Ing(z BZ z")) = BF(0,q)

General mean field problem: )
Compute/approximate p* = SEy[¢(X™)] by minimizing 5F(0, q)
over q to get pg or BF*(u) — (0, u) directly over
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Other choices for gy

Alternative separable models for gy of the form gy(x™) =[] qo, (x:),
or a more general Markov structure described by a factor graph

Alternative physics-based methods, such as Bethe or Kikuchi free
energy models

See [MK] and

Wainwright & Jordan, “Graphical models, exponential families and
variational inference,” FnT’'s Machine Learning 2008

for a thorough account
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Variational Bayes

For § € © and data X consider the average and Bayes risks

zﬁmy:/{/iwﬁu»mu@}wum

A

R* = inf Ry (0)
0

Let 6* denote the corresponding Bayes estimator

For £(0,0) = (0 — 0)% we get
(@)= [ 6Py

and for |©| < co and £(0,6) = 1(0 # 0) we get

A

0*(z) = arg mQaXme:x(@\x)
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Thus for Bayesian inference in general, we need access to the
conditional or posterior distribution Py x_,, either via a pdf

f9|X:x(9\33) or a pmf pe|X:x(9\fE)
We have (for the case of a pdf)

__ Jo(z)m(8)
f9|X:m<0‘w) - ffg(l‘)ﬂ'(@)de

where we have a marginalization problem in computing the integral

f(x):/fg(x)w(ﬁ)de

£@) = = [ a(0) 85 = 1n £ (@) = Dlal fox—)
we can maximize over ¢ to compute/approximate In f(z)
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Example: Assume X" = (X1,...,X,) drawn iid ~ N(u, o?) and
consider 8 = (u, o) for the model

Fopnzan (Ol (@) = —1_exp (—

0,0 (2ma2)n/2

n(p—z)°+ S
202

(corresponding to an improper noninformative prior for p and o,
see MK Ch. 24) where z =n"1Y . x; and S = . (z; — 7)*

To compute f(x™) we seek to minimize

q(0)
/ A N (T It Dl

over q(0) of the form ¢(0) = q(u)q(o) (separable)

Mikael Skoglund 18/19



Thus, for a fixed g(o) we minimize

[aw{ [ ator™ =t + i an

= q(p) = N(z, ai’mn) where

9 1

Tulet 0 [ (o) fotdo

Similarly, for a fixed g(u) we get

b—1
2p) =T(B;a,b) = ar1<b) (5) o

with 8 = 1/02 and where 1/a = (naiw + S(2™))/2 and b =n/2

Since [ Bq(B)dB = ab we also have 03 = S(z™)/(n(n — 1))

"
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