Information Theory
Spring semester, 2023

Assignment 3

Assigned: Wednesday, April 5, 2023
Due: Friday, April 21, 2023
M. Skoglund

Problem 3.1: Cover \& Thomas 5.28 (p. 150)

Problem 3.2:

Consider a coin with a fixed, but unkown, probability of turning up heads. Treat the unkown parameter as a random variable with a uniform prior. Given a sequence of independent flips of such a coin, derive a simple expression for the probability that the next flip will be a head.

Problem 3.3:

The binary sequence

$$
s=111111111000000111111111111111100001=1^{9} 0^{6} 1^{16} 0^{4} 1
$$

was generated by a stationary two-state Markov chain with transition probabilities $p_{1 \mid 0}=$ $p_{0 \mid 1}=0.2$. Encode s using
(a.1) a Huffman code for 3-bit symbols based on the source model,
(a.2) a Huffman code for 3-bit symbols based on relative frequencies in s;
(b.1) a Shannon-Fano-Elias code or an arithmetic code for 3-bit symbols based on the source model,
(b.2) a Shannon-Fano-Elias code or an arithmetic code for 3-bit symbols based on relative frequencies in s;
(c.1) an arithmetic stream code (as described in CT or class) based on the source model,
(c.2) an adaptive arithmetic stream code (as described in class; use Prob. 2), based on s;
(d.1) the "basic" Lempel-Ziv algorithm (CT),
(d.2) the "modified" Lempel-Ziv algorithm (class).
(e) Relate your answers to the entropy rate of the Markov source and the entropy of s based on relative frequencies.

You need not solve every problem by pen and paper. The arithmetic stream codes get quickly out of hand. If you choose to write a program, please turn in your "source code" with your solutions.

