Information Theory

Spring semester, 2023

Assignment 9

Assigned: Friday, June 2, 2023
Due: Thursday, June 8, 2023

Problem 9.1: (Gallager)
(a) Compute

$$
\sum_{y_{i}} p\left(y_{i} \mid 0\right)^{1-s} p\left(y_{i} \mid 1\right)^{s}
$$

for the binary symmetric channel, the Z-channel, and the binary erasure channel (use ϵ as a parameter), and minimize the result over $s \in(0,1)$. Use this to provide an upper bound to the probability of maximum likelihood decoding error $P_{e, m}(m=1,2)$ attained using a code with two codewords $x_{1}=0^{n}$ (a sequence of n zeros) and $x_{2}=1^{n}$ (a sequence of n ones).
(b) Find exact expressions for the above error probabilities. Evaluate the expressions to 3 significant digits for $n=32$ and $\epsilon=0.1$ and compare with the bound in (a).
(c) For the BSC, show that

- for large even n,

$$
P_{e, 1} \approx \sqrt{\frac{2}{\pi n}}\left(\frac{1-\epsilon}{1-2 \epsilon}\right)[2 \sqrt{\epsilon(1-\epsilon)}]^{n} ; \quad P_{e, 2} \approx P_{e, 1}\left(\frac{\epsilon}{1-\epsilon}\right)
$$

- for large odd n,

$$
P_{e, 1}=P_{e, 2} \approx \sqrt{\frac{2 \epsilon}{\pi n(1-\epsilon)}}\left(\frac{1-\epsilon}{1-2 \epsilon}\right)[2 \sqrt{\epsilon(1-\epsilon)}]^{n}
$$

(d) Repeat parts (a) and (b) for the Z-channel for a code whose codewords are $x_{1}=0^{n / 2} 1^{n / 2}$ and $x_{2}=1^{n / 2} 0^{n / 2}$. Observe that this change of code will make no difference for the other channels.

Problem 9.2:

Prove the inequality:

$$
\left[\sum_{x} q(x) p(y \mid x)^{1 /(1+\rho)}\right]^{1+\rho} \leq\left[\sum_{x} q(x) p(y \mid x)^{s}\right]^{\rho}\left[\sum_{x} q(x) p(y \mid x)^{1-s \rho}\right]
$$

That is, the right side is minimized over $s>0$ by choosing $s=1 /(1+\rho)$. Use standard inequalities, do not take derivatives!

