Information Theory

Lecture 1

- Course introduction
- Entropy, relative entropy and mutual information: Cover \& Thomas (CT) 2.1-5
- Important inequalities: CT2.6-8, 2.10

Information Theory

- Founded by Claude Shannon in 1948.
- C. E. Shannon, "A mathematical theory of communication," Bell Sys. Tech. Journal, vol. 27, pp. 379-423, 623-656, 1948
- "The fundamental problem of communication is that of reproducing at one point either exactly or approximately a message selected at another point."
- Information theory is concerned with
- communication, information, entropy, coding, achievable performance, performance bounds, limits, inequalities,...

Shannon's Coding Theorems

- Two source coding theorems
- Discrete sources
- Analog sources
- The channel coding theorem
- The joint source-channel coding theorem

Noiseless Coding of Discrete Sources

- A discrete source \mathcal{S} (finite number of possible values per output sample) that produces raw data at a rate of R bits per symbol.
- The source has entropy $H(\mathcal{S}) \leq R$.
- Result (CT5): \mathcal{S} can be coded into an alternative, but equivalent, representation at $H(\mathcal{S})$ bits per symbol. The original representation can be recovered without errors. This is impossible at rates lower than $H(\mathcal{S})$.
- Hence, $H(\mathcal{S})$ is a measure of the "real" information content in the output of \mathcal{S}. The coding process removes all that is redundant.

Coding of Analog Sources

- A discrete-time analog source \mathcal{S} (e.g., a sampled speech signal).
- For storage or transmission the source needs to be coded ("quantized") into a discrete representation $\hat{\mathcal{S}}$, at R bits per source sample. This process is generally irreversible...
- A measure $d(\mathcal{S}, \hat{\mathcal{S}}) \geq 0$ of the distortion induced by the coding.
- A function $D_{\mathcal{S}}(R)$, the distortion-rate function of the source.
- Result (CT10): There exists a way of coding \mathcal{S} into $\hat{\mathcal{S}}$ at rate R (bits per sample), with $d(\mathcal{S}, \hat{\mathcal{S}})=D_{\mathcal{S}}(R)$. At rate R it is impossible to achieve a lower distortion than $D_{\mathcal{S}}(R)$.

Channel Coding

- Consider transmitting a stream of information bits $b \in\{0,1\}$ over a binary channel with bit-error probability q and capacity $C=C(q)$.
- A channel code takes a block of k information bits, b, and maps these into a new block of $n>k$ coded bits, c, hence introducing redundancy. The "information content" per coded bit is $r=k / n$.
- The coded bits, c, are transmitted and a decoder at the receiver produces estimates \hat{b} of the original information bits.
- Overall error probability $p_{b}=\operatorname{Pr}(\hat{b} \neq b)$.
- Result (CT7): As long as $r<C$, a code exists that can achieve $p_{b} \rightarrow 0$. At rates $r>C$ this is impossible. Hence, C is a measure of the "quality" or "noisiness" of the channel.

Achievable Rates

The left plot illustrates the rates believed to be achievable before 1948.
The right plot shows the rates Shannon proved were achievable.
Shannon's remarkable result is that, at a particular channel bit-error rate q, all rates below the channel capacity $C(q)$ are achievable with $p_{b} \rightarrow 0$.

Course Outline

- 1-2: Introduction to Information Theory
- Entropy, mutual information, inequalities,...
- 3: Data compression
- Huffman, Shannon-Fano, arithmetic, Lemper-Ziv,...
- 4-5: Channel capacity and coding
- Block channel coding, discrete and Gaussian channels,...
- 6-8: Linear block codes (book by Roth)
- G and H matrices, finite fields, cyclic codes and polynomials over finite fields, BCH and Reed-Solomon codes,...
- 9-11: More channel capacity
- Error exponents, non-stationary and/or non-ergodic channels,...

Senior undergraduate version: 1-8; Ph.D. student version: 1-11

Entropy and Information

- Consider a binary random variable $X \in\{0,1\}$ and let $p=\operatorname{Pr}(X=1)$.
- Before we observe the value of X there is a certain amount of uncertainty about its value. After getting to know the value of X, we gain information. Uncertainty \leftrightarrow Information
- The average amount of uncertainty lost = information gained, over a large number of observations, should behave like

- Define the entropy $H(X)$ of the binary variable X as

$$
\begin{aligned}
H(X) & =\operatorname{Pr}(X=1) \cdot \log \frac{1}{\operatorname{Pr}(X=1)}+\operatorname{Pr}(X=0) \cdot \log \frac{1}{\operatorname{Pr}(X=0)}= \\
& =-p \cdot \log p-(1-p) \cdot \log (1-p) \triangleq h(p)
\end{aligned}
$$

where $h(x)$ is the binary entropy function.

- $\log =\log _{2}:$ unit $=$ bits; $\log =\log _{e}=\ln :$ unit $=$ nats

- Entropy for a general discrete variable X with alphabet \mathcal{X} and $\operatorname{pmf} p(x) \triangleq \operatorname{Pr}(X=x), \forall x \in \mathcal{X}$

$$
H(X) \triangleq-\sum_{x \in \mathcal{X}} p(x) \log p(x)
$$

- $H(X)=$ the average amount of uncertainty removed when observing the value of $X=$ the information obtained when observing X
- It holds that $0 \leq H(X) \leq \log |\mathcal{X}|$
- Entropy for an n-tuple $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)$

$$
H(\mathbf{X})=H\left(X_{1}, \ldots, X_{n}\right)=-\sum_{\mathbf{x}} p(\mathbf{x}) \log p(\mathbf{x})
$$

- Conditional entropy of Y given $X=x$

$$
H(Y \mid X=x) \triangleq-\sum_{y \in \mathcal{Y}} p(y \mid x) \log p(y \mid x)
$$

- $H(Y \mid X=x)=$ the average information obtained when observing Y when it is already known that $X=x$
- Conditional entropy of Y given X (on the average)

$$
H(Y \mid X) \triangleq \sum_{x \in \mathcal{X}} p(x) H(Y \mid X=x)
$$

- Define $g(x)=H(Y \mid X=x)$. Then $H(Y \mid X)=E g(X)$.
- Chain rule

$$
H(X, Y)=H(Y \mid X)+H(X)
$$

(c.f., $p(x, y)=p(y \mid x) p(x))$

- Relative entropy between the pmf's $p(\cdot)$ and $q(\cdot)$

$$
D(p \| q) \triangleq \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)}
$$

- Measures the "distance" between $p(\cdot)$ and $q(\cdot)$. If $X \sim p(x)$ and $Y \sim q(y)$ then a low $D(p \| q)$ means that X and Y are close, in the sense that their "statistical structure" is similar.

- Mutual information

$$
\begin{aligned}
I(X ; Y) & \triangleq D(p(x, y) \| p(x) p(y)) \\
& =\sum_{x} \sum_{y} p(x, y) \log \frac{p(x, y)}{p(x) p(y)}
\end{aligned}
$$

- $I(X ; Y)=$ the average information about X obtained when observing Y (and vice versa).

$$
\begin{gathered}
I(X ; Y)=I(Y ; X) \\
I(X ; Y)=H(Y)-H(Y \mid X)=H(X)-H(X \mid Y) \\
I(X ; Y)=H(X)+H(Y)-H(X, Y) \\
I(X ; X)=H(X) \\
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
\end{gathered}
$$

Inequalities

- Jensen's inequality
- based on convexity
- application: general purpose inequality
- Log sum inequality
- based on Jensen's inequality
- application: convexity as a function of distribution
- Data processing inequality
- based on Markov property
- application: cannot generate "extrinsic" information
- Fano's inequality
- based on conditional entropy
- application: lower bound on error probability

Convex Functions

$$
f: \mathcal{D}_{f} \subset \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

- convex
\mathcal{D}_{f} is convex ${ }^{1}$ and for all $\mathbf{x}, \mathbf{y} \in \mathcal{D}_{f}, \lambda \in[0,1]$

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y})
$$

- strictly convex
strict inequality for $\mathbf{x} \neq \mathbf{y}, \lambda \in(0,1)$
- (strictly) concave
-f (strictly) convex

$$
{ }^{1} \mathbf{x}, \mathbf{y} \in \mathcal{D}_{f}, \lambda \in[0,1] \Longrightarrow \lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in \mathcal{D}_{f}
$$

- For f convex and a random $\mathbf{X} \in \mathbb{R}^{n}$,

$$
f(E[\mathbf{X}]) \leq E[f(\mathbf{X})]
$$

- Reverse inequality for f concave
- For f strictly convex (or strictly concave),

$$
f(E[\mathbf{X}])=E[f(\mathbf{X})] \Longrightarrow \operatorname{Pr}(\mathbf{X}=E[\mathbf{X}])=1
$$

Quick Proof of Jensen's Inequality

Supporting hyperplane characterization of convexity: For f convex and any $\mathbf{x}_{0} \in \mathcal{D}_{f}$ there exists a \mathbf{n}_{0} such that for all $\mathbf{x} \in \mathcal{D}_{f}$

$$
f(\mathbf{x}) \geq f\left(\mathbf{x}_{0}\right)+\mathbf{n}_{\mathbf{0}} \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

Let $\mathbf{x}_{0}=E[\mathbf{X}]$ and take expectations

$$
E[f(\mathbf{X})] \geq f(E[\mathbf{X}])+\mathbf{n}_{0} \cdot E[(\mathbf{X}-\mathrm{E}[\mathbf{X}])]
$$

Applications of Jensen's Inequality

- Uniform distribution maximizes entropy $(f(x)=\log x$ concave)

$$
H(X)=E \log \frac{1}{p(X)} \leq \log \left[E \frac{1}{p(X)}\right]=\log |\mathcal{X}|
$$

with equality iff $\frac{1}{p(X)}=$ constant w.p. 1

- Information Inequality $(f(x)=x \log x$ convex $)$

$$
D(p \| q)=E_{q} \frac{p(X)}{q(X)} \log \frac{p(X)}{q(X)} \geq E_{q}\left(\frac{p(X)}{q(X)}\right) \log E_{q} \frac{p(X)}{q(X)}=0
$$

with equality iff $\frac{q(X)}{p(X)}=$ constant w.p. 1 (i.e. $p \equiv q$)

- Non-negativity of mutual information

$$
I(X ; Y) \geq 0
$$

with equality iff X and Y independent

- Conditioning reduces entropy

$$
H(X \mid Y) \leq H(X)
$$

with equality iff X and Y independent

- Independence bound on entropy

$$
H\left(X_{1}, X_{2}, \ldots, X_{n}\right) \leq \sum_{i=1}^{n} H\left(X_{i}\right)
$$

with equality iff X_{i} independent
similar inequalities hold with extra conditioning

The Log Sum Inequality

For non-negative $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$,

$$
\sum_{i=1}^{n} a_{i} \log \frac{a_{i}}{b_{i}} \geq\left(\sum_{i=1}^{n} a_{i}\right) \log \frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n} b_{i}}
$$

with equality iff $\frac{a_{i}}{b_{i}}=$ constant

Applications

- $D(p \| q)$ is convex in the pair (p, q)
- $H(p)$ is concave in p
- $I(X ; Y)$ is concave in $p(x)$ for fixed $p(y \mid x)$
- $I(X ; Y)$ is convex in $p(y \mid x)$ for fixed $p(x)$

Markov Property

- Given the Present, the Past and the Future are independent
- Formally, $X \rightarrow Y \rightarrow Z$ Markov if

$$
p(x, y, z)=p(x) p(y \mid x) p(z \mid y)
$$

- Symmetric! $X \rightarrow Y \rightarrow Z \Longrightarrow Z \rightarrow Y \rightarrow X$

$$
p(z \mid y) p(y \mid x) p(x)=\frac{p(x, y) p(y, z)}{p(y)}=p(x \mid y) p(y \mid z) p(z)
$$

- Conditional independence

$$
p(x, z \mid y)=p(x \mid y) p(z \mid y)
$$

- In particular, $X \rightarrow Y \rightarrow f(Y)$

Data Processing Inequality

$$
X \rightarrow Y \rightarrow Z \Longrightarrow I(X ; Z) \leq I(X ; Y)
$$

In particular,

$$
I(X ; f(Y)) \leq I(X ; Y)
$$

\Rightarrow No clever manipulation of the data can extract additional information that is not already present in the data itself.

Proof of the Data Processing Inequality

Using the chain rule, expand in two different ways

$$
\begin{aligned}
I(X ; Y, Z) & =I(X ; Z)+\underbrace{I(X ; Y \mid Z)}_{\geq 0} \\
& =I(X ; Y)+\underbrace{I(X ; Z \mid Y)}_{=0}
\end{aligned}
$$

Corollary

$$
X \rightarrow Y \rightarrow Z \Longrightarrow I(X ; Y \mid Z) \leq I(X ; Y)
$$

Caution: this last inequality need not hold in general

Fano's Inequality

- Consider the following estimation problem (discrete RV's):
X random variable of interest
Y observed random variable
$\hat{X}=f(Y)$ estimate of X based on Y
- Define the probability of error as

$$
P_{e}=\operatorname{Pr}(\hat{X} \neq X)
$$

- Fano's inequality lower bounds P_{e}

$$
\begin{gathered}
h\left(P_{e}\right)+P_{e} \log (|\mathcal{X}|-1) \geq H(X \mid Y) \\
{[h(x)=-x \log x-(1-x) \log (1-x)]}
\end{gathered}
$$

Proof of Fano's Inequality

- Define an indicator random variable for the error event

$$
E=\left\{\begin{array}{ll}
1, & \hat{X} \neq X \\
0, & \hat{X}=X
\end{array} ; \quad \operatorname{Pr}(E=1)=1-\operatorname{Pr}(E=0)=P_{e}\right.
$$

- Using the chain rule, expand in two different ways

$$
\begin{gathered}
H(E, X \mid Y)=H(X \mid Y)+\underbrace{H(E \mid X, Y)}_{=0} \\
=\underbrace{H(E \mid Y)}_{\leq H(E)}+\underbrace{H(X \mid E, Y)}_{\leq P_{e} \log (|\mathcal{X}|-1)} \\
H(X \mid E, Y)=P_{e} H(X \mid Y, E=1)+\left(1-P_{e}\right) \underbrace{H(X \mid Y, E=0)}_{=0}
\end{gathered}
$$

