
Information Theory

Lecture 1

• Course introduction

• Entropy, relative entropy and mutual information:
Cover & Thomas (CT) 2.1–5

• Important inequalities: CT2.6–8, 2.10
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Information Theory

• Founded by Claude Shannon in 1948.
• C. E. Shannon, “A mathematical theory of communication,”

Bell Sys. Tech. Journal, vol. 27, pp. 379-423, 623-656, 1948
• “The fundamental problem of communication is that of

reproducing at one point either exactly or approximately a
message selected at another point.”

• Information theory is concerned with
• communication, information, entropy, coding, achievable

performance, performance bounds, limits, inequalities,. . .
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Shannon’s Coding Theorems

• Two source coding theorems
• Discrete sources
• Analog sources

• The channel coding theorem

• The joint source–channel coding theorem
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Noiseless Coding of Discrete Sources

• A discrete source S (finite number of possible values per
output sample) that produces raw data at a rate of R bits per
symbol.

• The source has entropy H(S) ≤ R.

• Result (CT5): S can be coded into an alternative, but
equivalent, representation at H(S) bits per symbol. The
original representation can be recovered without errors. This
is impossible at rates lower than H(S).

• Hence, H(S) is a measure of the “real” information content
in the output of S. The coding process removes all that is
redundant.
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Coding of Analog Sources

• A discrete-time analog source S (e.g., a sampled speech
signal).

• For storage or transmission the source needs to be coded
(“quantized”) into a discrete representation Ŝ, at R bits per
source sample. This process is generally irreversible. . .

• A measure d(S, Ŝ) ≥ 0 of the distortion induced by the
coding.

• A function DS(R), the distortion-rate function of the source.

• Result (CT10): There exists a way of coding S into Ŝ at rate
R (bits per sample), with d(S, Ŝ) = DS(R). At rate R it is
impossible to achieve a lower distortion than DS(R).
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Channel Coding

• Consider transmitting a stream of information bits b ∈ {0, 1}
over a binary channel with bit-error probability q and capacity
C = C(q).

• A channel code takes a block of k information bits, b, and
maps these into a new block of n > k coded bits, c, hence
introducing redundancy. The “information content” per
coded bit is r = k/n.

• The coded bits, c, are transmitted and a decoder at the
receiver produces estimates b̂ of the original information bits.

• Overall error probability pb = Pr(b̂ 6= b).

• Result (CT7): As long as r < C, a code exists that can
achieve pb → 0. At rates r > C this is impossible. Hence, C
is a measure of the “quality” or “noisiness” of the channel.
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Achievable Rates
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The left plot illustrates the rates believed to be achievable before 1948.
The right plot shows the rates Shannon proved were achievable.

Shannon’s remarkable result is that, at a particular channel bit-error rate
q, all rates below the channel capacity C(q) are achievable with pb → 0.
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Course Outline

• 1–2: Introduction to Information Theory

• Entropy, mutual information, inequalities,. . .

• 3: Data compression

• Huffman, Shannon-Fano, arithmetic, Lemper-Ziv,. . .

• 4–5: Channel capacity and coding

• Block channel coding, discrete and Gaussian channels,. . .

• 6–8: Linear block codes (book by Roth)

• G and H matrices, finite fields, cyclic codes and polynomials
over finite fields, BCH and Reed-Solomon codes,. . .

• 9–11: More channel capacity

• Error exponents, non-stationary and/or non-ergodic
channels,. . .

Senior undergraduate version: 1–8; Ph.D. student version: 1–11
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Entropy and Information

• Consider a binary random variable X ∈ {0, 1} and let
p = Pr(X = 1).

• Before we observe the value of X there is a certain amount of
uncertainty about its value. After getting to know the value of
X, we gain information. Uncertainty ↔ Information

• The average amount of uncertainty lost = information gained,
over a large number of observations, should behave like

“information”

p

11/20
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• Define the entropy H(X) of the binary variable X as

H(X) = Pr(X = 1) · log
1

Pr(X = 1)
+ Pr(X = 0) · log

1

Pr(X = 0)
=

= −p · log p− (1− p) · log(1− p) , h(p)

where h(x) is the binary entropy function.

• log = log2: unit = bits; log = loge = ln: unit = nats

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

h(p) [bits]

p

Mikael Skoglund, Information Theory 10/26



• Entropy for a general discrete variable X with alphabet X and
pmf p(x) , Pr(X = x), ∀x ∈ X

H(X) , −
∑

x∈X

p(x) log p(x)

• H(X) = the average amount of uncertainty removed when
observing the value of X = the information obtained when
observing X

• It holds that 0 ≤ H(X) ≤ log |X |

• Entropy for an n-tuple X = (X1, . . . , Xn)

H(X) = H(X1, . . . , Xn) = −
∑

x

p(x) log p(x)
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• Conditional entropy of Y given X = x

H(Y |X = x) , −
∑

y∈Y

p(y|x) log p(y|x)

• H(Y |X = x) = the average information obtained when
observing Y when it is already known that X = x

• Conditional entropy of Y given X (on the average)

H(Y |X) ,
∑

x∈X

p(x)H(Y |X = x)

• Define g(x) = H(Y |X = x). Then H(Y |X) = Eg(X).

• Chain rule

H(X,Y ) = H(Y |X) +H(X)

(c.f., p(x, y) = p(y|x)p(x))
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• Relative entropy between the pmf’s p(·) and q(·)

D(p‖q) ,
∑

x∈X

p(x) log
p(x)

q(x)

• Measures the “distance” between p(·) and q(·). If X ∼ p(x)
and Y ∼ q(y) then a low D(p‖q) means that X and Y are
close, in the sense that their “statistical structure” is similar.

• Mutual information

I(X;Y ) , D
(
p(x, y)‖p(x)p(y)

)

=
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)

• I(X;Y ) = the average information about X obtained when
observing Y (and vice versa).
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H(X) H(Y )

H(X,Y )

H(X|Y )

H(Y |X)
I(X;Y )

I(X;Y ) = I(Y ;X)

I(X;Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y )

I(X;Y ) = H(X) +H(Y )−H(X,Y )

I(X;X) = H(X)

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y )
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Inequalities

• Jensen’s inequality
• based on convexity
• application: general purpose inequality

• Log sum inequality
• based on Jensen’s inequality
• application: convexity as a function of distribution

• Data processing inequality
• based on Markov property
• application: cannot generate “extrinsic” information

• Fano’s inequality
• based on conditional entropy
• application: lower bound on error probability
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Convex Functions

f : Df ⊂ R
n → R

• convex
Df is convex1 and for all x,y ∈ Df , λ ∈ [0, 1]

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y)

• strictly convex
strict inequality for x 6= y, λ ∈ (0, 1)

• (strictly) concave
−f (strictly) convex

1
x,y ∈ Df , λ ∈ [0, 1] =⇒ λx+ (1− λ)y ∈ Df
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Jensen’s Inequality

• For f convex and a random X ∈ R
n,

f(E[X]) ≤ E[f(X)]

• Reverse inequality for f concave

• For f strictly convex (or strictly concave),

f(E[X]) = E[f(X)] =⇒ Pr(X = E[X]) = 1
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Quick Proof of Jensen’s Inequality

Supporting hyperplane characterization of convexity: For f convex
and any x0 ∈ Df there exists a n0 such that for all x ∈ Df

f(x) ≥ f(x0) + n0 · (x− x0)

Let x0 = E[X] and take expectations

E[f(X)] ≥ f(E[X])+n0·E
[
(X−E[X])

]

Mikael Skoglund, Information Theory 18/26



Applications of Jensen’s Inequality

• Uniform distribution maximizes entropy (f(x) = log x
concave)

H(X) = E log
1

p(X)
≤ log

[

E
1

p(X)

]

= log |X |

with equality iff 1
p(X) = constant w.p. 1

• Information Inequality (f(x) = x log x convex)

D(p‖q) = Eq
p(X)

q(X)
log

p(X)

q(X)
≥ Eq

(
p(X)

q(X)

)

logEq
p(X)

q(X)
= 0

with equality iff q(X)
p(X) = constant w.p. 1 (i.e. p ≡ q)
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• Non-negativity of mutual information

I(X;Y ) ≥ 0

with equality iff X and Y independent

• Conditioning reduces entropy

H(X|Y ) ≤ H(X)

with equality iff X and Y independent

• Independence bound on entropy

H(X1, X2, . . . , Xn) ≤
n∑

i=1

H(Xi)

with equality iff Xi independent
similar inequalities hold with extra conditioning
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The Log Sum Inequality

For non-negative a1, a2, . . . , an and b1, b2, . . . , bn,

n∑

i=1

ai log
ai
bi

≥

(
n∑

i=1

ai

)

log

∑n
i=1 ai∑n
i=1 bi

with equality iff ai
bi

= constant

Applications

• D(p‖q) is convex in the pair (p, q)

• H(p) is concave in p

• I(X;Y ) is concave in p(x) for fixed p(y|x)

• I(X;Y ) is convex in p(y|x) for fixed p(x)
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Markov Property

• Given the Present, the Past and the Future are independent

• Formally, X → Y → Z Markov if

p(x, y, z) = p(x)p(y|x)p(z|y)

• Symmetric! X → Y → Z =⇒ Z → Y → X

p(z|y)p(y|x)p(x) =
p(x, y)p(y, z)

p(y)
= p(x|y)p(y|z)p(z)

• Conditional independence

p(x, z|y) = p(x|y)p(z|y)

• In particular, X → Y → f(Y )
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Data Processing Inequality

X → Y → Z =⇒ I(X;Z) ≤ I(X;Y )

In particular,
I(X; f(Y )) ≤ I(X;Y )

⇒ No clever manipulation of the data can extract additional
information that is not already present in the data itself.
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Proof of the Data Processing Inequality

Using the chain rule, expand in two different ways

I(X;Y, Z) = I(X;Z) + I(X;Y |Z)
︸ ︷︷ ︸

≥0

= I(X;Y ) + I(X;Z|Y )
︸ ︷︷ ︸

=0

Corollary

X → Y → Z =⇒ I(X;Y |Z) ≤ I(X;Y )

Caution: this last inequality need not hold in general
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Fano’s Inequality

• Consider the following estimation problem (discrete RV’s):

X random variable of interest
Y observed random variable
X̂ = f(Y ) estimate of X based on Y

• Define the probability of error as

Pe = Pr(X̂ 6= X)

• Fano’s inequality lower bounds Pe

h(Pe) + Pe log(|X | − 1) ≥ H(X|Y )

[h(x) = −x log x− (1− x) log(1− x)]
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Proof of Fano’s Inequality

• Define an indicator random variable for the error event

E =

{
1, X̂ 6= X

0, X̂ = X
; Pr(E = 1) = 1− Pr(E = 0) = Pe

• Using the chain rule, expand in two different ways

H(E,X|Y ) = H(X|Y ) +H(E|X,Y )
︸ ︷︷ ︸

=0

= H(E|Y )
︸ ︷︷ ︸

≤H(E)

+ H(X|E, Y )
︸ ︷︷ ︸

≤Pe log(|X |−1)

H(X|E, Y ) = PeH(X|Y,E = 1) + (1− Pe)H(X|Y,E = 0)
︸ ︷︷ ︸

=0
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