Information Theory
Lecture 11

® When is channel capacity maximum mutual information, and
when it's not what is it then?

® Based on: S. Verdd and T. S. Han, “A general formula for
channel capacity,” IEEE Trans. on I'T, July 1994
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Motivating Example

® Binary channel: Y,, = X,, + Z,,,, memoryless noise Z,,

e We{0,1}, p=Pr(W =1). A value W = w drawn once:
cw=1=Pr(Z,=1)=a<1/2, Vm
* w=0=Pr(Z,=1)=p<a, Vm

® Let
C(w) = m(aicl(X;Y\W = w)
p(x

=1—wh(a)— (1 —w)h(B)

with h(t) = —tlogt — (1 —t)log(1 — ¢t)
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® |s any of these entities the true capacity of the channel?
* Oy =E[C(W)]=1-ph(a) — (1 —p)h(B)
® Oy = max, C(w) =C(0) =1— h(B)
® C3 =min, C(w) =C(1) =1- h(a)
e Eg,a=1/2,6=0,p=1/2=
o (] = 1/2
® Oy =max, C(w) =C(0) =1
® O3 =min, C(w) =C(1) =0
(in bits per channel use)

® /s there a general formula that always holds?
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Definitions

® A sequence {X,} of discrete random variables;

x{v = (x1,...,ZN), p(m{v) = Pr(X{V = JJ{V),
Px = {p(w{”) ne1
® Entropy

H(X{) = E[-logp(X{")]

® Entropy rate
_ 1
H(X)= lim NH(X{V)

N—oo
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® [imit in probability of {X,}

x= Lp X,

n—o0
if for any € > 0 it holds that Pr(|Z — X,,| >¢) > 0asn —
® Liminf in probability of {X,}
= linf.p X,

n—oo

if ¥ = supremum of all x for which Pr(X,, < x) — 0 as
n — oo

® [imsup in probability of {X,}

x = lsup.p X,

n—oo

if £ = infimum of all x for which Pr(X,, > z) - 0 asn — oo
G =

° L.pX,, <o exists = z=1inf.pX,, =1Lsup.p X,
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A two-dimensional sequence {(X,,Y,)}.
Component-sequences { X, } and {Y,,},
p(ar,yr) = Pr(Xy = a7, ¥{" =y1)

® [nformation density:
p(XiN? YlN)
Iy = In(X{,Y7") = log
p(X)p(Y{Y)
® Mutual information:
p<X{V7 YlN)
I(XY5v) = B |log — E[Iy)
p(XV)p(Y{)
® [nformation rate:
T [
I_]\}gnooNI<X1 YY)
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e FErgodicity (c.f.,, CT15.7): Let {X,,} be a process described by
px. Let X =--- X _1, Xg, X1, - be an infinite sequence
drawn from {X,,} and let X denote X shifted ¢ positions in
time, that is, qut) = X,4¢. The process { X, } is ergodic if for
any X and any ¢, it holds that Pr(X = X®)) =0 or 1.

® Let g,(x) be a function of the components z7 in x. A

discrete and stationary process {X,,} is ergodic iff for all
n > 1 and all g,(X) with E[|gn(X)|] < oo it holds that

N
1
im — ®)y — W
]\;lm NtE:1gn(X ) = Elgn(X)] w.p.1

® For a discrete stationary and ergodic {X,,},

1 _
lim Nlogp(XfV):H(X) w.p.1

N—oo
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® A channel with discrete input X,, and output Y, is described,
for all N, by

pyl |2 ) = Pr(Y{Y =y | X' = 2?)

® Transmitting a uniform random variable w € {1,..., M} over
a channel p(yd¥ |[2]) using an (IV, M) code:
® Encoding ¥ = a(w); decoding & = B(y]) € {1,..., M};
rate R = N~1log M; probability of error P = P(w # w)
® A rate R is achievable! if there exists a sequence of (IV, M)
codes with rate R such that P — 0 as N — oo

® The capacity C of a channel p(y¥|zY) is the supremum of all
achievable rates for that channel

N
'In terms of P. N 0; can be strengthened to Phnax — 0
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Results

® Feinstein's Lemma (1954): Fix N and a channel p(y|z{).
For any p(z¥) and v > 0, there exists an (N, M) code with

rate R for which

PN <Pr (N 'Iy <R47)+e N

where N wN
p(Yl >X1 )
p(X{)p(Y{Y)

® Corollary [Verdd and Han, 94]:

Iy = log

1
C > sup {1. inf.p — In}

Px n—oo
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® Theorem [Verdd and Han, 94]: For every v > 0, using any
(N, M) code with rate R in coding a uniform w € {1,..., M}
over a channel p(yi¥|z1") results in

PN >Pr(NT'Iy<R—7) —e ™V

® Corollary:
1
C <sup {1. inf.p — In}

PX n—00

® A general formula for channel capacity:

1
C = sup {1. inf.p — In}

Px n—oo
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An Alternative Lower Bound for C

® Fix p(«7). Let p(27,y}) describe X7* and Y{* when the
channel is driven by X7, and let

1
Z=L1linf.p—1,

n—o0
o Let T\, & > 0, be the set of sequences (', y7) for which

1 log. p(y1'|z1)

>7T —¢
n p(yl)

® (C.f. the definition of typical sequences
* Notice that (27, y1") € 72" = p(yY) < p(y|el )27
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® Generate C, = {z}(1),..., 27 (M)} using p(x7).

® A data symbol w is generated according to a uniform
distribution on {1,..., M}, and 27 (w) is transmitted.

® The channel produces a corresponding output sequence Y{"

® The decoder uses the following decision rule:

® Index @ was sent if: (z7(@),Y]") € 7™ for some small €, and
no other w

® Now study
T = Pr(w # w)
where “Pr"” is over the random codebook selection, the data
variable w and the channel.
® Symmetry = m, = Pr(0 # ljw = 1)
o Let E; = {(X2(3),Y{) € T{™1, then

M
M =P(EfUE, U - UEy) < P(ES)+ Y P(E;)

1=2

Mikael Skoglund, Information Theory 12/22



® [t holds that P(EY{) — 0 because of the definition of Z
® Also, forz > 1

Z p Z y‘ﬂf n(Z—e) <2—n(I—s)

(z,y)eT (z,y)eT

(1)

where z = 2%, y =y and T'="T."’, and consequently

M
ZP(Ez) < (M o 1)2—n(I—s) < 2—n(I—R—e)
=2
R =7 — 2¢ is achievable!
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Discrete Memoryless Channels
® For a discrete (stationary and) memoryless channel (DMC),
p(yr’ |21") = p(yila1) - plynlan)

® In [Verd( and Han, 94] it is shown that the p(z") that
achieves the supremum in the formula for C' is of the form

p(z1) = p(x1) - - p(zN)
Hence,

1
Linf.p —In(X75Y{") = I(X;Y)
n

evaluated for p(x) = p(x1) and p(y|x) = p(y1|x1), since
information density converges to mutual information.

® Thus, we get Shannon’s formula

C' =max I(X1;Y7)

p(z1)
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When is Mutual Information Relevant to Capacity?

® |f at least one of X and Y is finite, then

1 1
Linf.p — I, <liminf —I(X7;Y{")

n—oo T n—oo 1

1 1
<limsup —I(X;Y]") <Lsup.p— I,
n

n—oo N n—00

® Corollary: If at least one of X and ) is finite, and if

1 1
supl.inf.p — I,, = supl.sup.p — I,
n

px n—oo N pPx N—00
then |
C=supl = lim — sup I(X{;Y]")
px OO p(at)
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® A channel is stationary and ergodic if {(X,,Y,)} is stationary
and ergodic for all stationary and ergodic {X,,}

® For a stationary and ergodic channel

1 1 _
C = sup {l.inf.p—fn} = sup { l.p —In} =sup [

Px n—oo Px n—oo PxX

1
= lim — sup I(X{;Y{")

%
OO M b2
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Some Binary Channel Models

® A general binary channel
Yoo =Xm +Znm

where Z,, is drawn according to an arbitrary binary random
process

e Capacity

1 1 1
C =sup {l.inf.p—ln}:1—1.sup.p—log —
PX 71— 00 n—oo T p(Zl)
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e {Z,} stationary and memoryless:
C=1-h(p)
where
h(p) = —plogp — (1 — p)log(l —p) = H(Z1)

with p = Pr(Z,, = 1), since

1 1
l.sup.p —log = H(Z,)
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o {Z,} stationary and ergodic:

C=1-H(Z)
since
1 Ly L li Hﬂzw H(Z)
. sSup. — 10 = l1im -— ==
P %8 p(Z})  n—oom
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e {Z,} stationary and nonergodic (c.f. previous example): with
probability ¢, Z,, = 0 for all n and with probability (1 — ¢q),
{Z,} is stationary and memoryless with p = P(Z,, = 1) =

C=1-h(p)

since
| ! | !
.sup.p — lo
n—>1<3>op n gp(Z?)

= max{0, h(p)}

® (Capacity determined by the “worst case” noise!
® Eg,p=1/2= C =0 (no rates achievable)!

® In this example C* = max,,) [(X;Y) will not give the
correct value for capacity (C* = p)
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Summary

® Shannon’s formula

C =maxI(Y; X)
p(z)

holds for stationary and memoryless channels

® For the class of information stable channels, it generalizes to

1
C = lim sup —I(X{;Y]")

N0 gy M

(e.g., stationary and ergodic channels)
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® The formula

1
C =sup linf.p— 1,

Px M—00

holds for any channel p(y|z{)

® FErgodicity is the key to formulas based on mutual information;
n~1 I,, needs to converge to a non-random entity
® E.g., in the nonergodic binary channel example

A H(X,), W%th prob. ¢
1/2, with prob. (1 —gq)
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