
Information Theory
Lecture 11

• When is channel capacity maximum mutual information, and
when it’s not what is it then?

• Based on: S. Verdú and T. S. Han, “A general formula for
channel capacity,” IEEE Trans. on IT, July 1994
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Motivating Example

• Binary channel: Ym = Xm + Zm, memoryless noise Zm
• W ∈ {0, 1}, p = Pr(W = 1). A value W = w drawn once:

• w = 1⇒ Pr(Zm = 1) = α ≤ 1/2, ∀m
• w = 0⇒ Pr(Zm = 1) = β ≤ α, ∀m

• Let

C(w) = max
p(x)

I(X;Y |W = w)

= 1− w h(α)− (1− w)h(β)

with h(t) = −t log t− (1− t) log(1− t)
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• Is any of these entities the true capacity of the channel?
• C1 = E[C(W )] = 1− ph(α)− (1− p)h(β)
• C2 = maxw C(w) = C(0) = 1− h(β)
• C3 = minw C(w) = C(1) = 1− h(α)

• E.g., α = 1/2, β = 0, p = 1/2⇒
• C1 = 1/2
• C2 = maxw C(w) = C(0) = 1
• C3 = minw C(w) = C(1) = 0

(in bits per channel use)

• Is there a general formula that always holds?
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Definitions

• A sequence {Xn} of discrete random variables;
xN1 = (x1, . . . , xN ), p(xN1 ) = Pr(XN

1 = xN1 );
pX = {p(xn1 )}∞n=1

• Entropy
H(XN

1 ) = E[− log p(XN
1 )]

• Entropy rate

H̄(X) = lim
N→∞

1

N
H(XN

1 )
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• Limit in probability of {Xn}

x̃ = l. p
n→∞

Xn

if for any ε > 0 it holds that Pr(|x̃−Xn| > ε)→ 0 as n→∞
• Liminf in probability of {Xn}

x̃ = l. inf.p
n→∞

Xn

if x̃ = supremum of all x for which Pr(Xn ≤ x)→ 0 as
n→∞
• Limsup in probability of {Xn}

x̃ = l. sup.p
n→∞

Xn

if x̃ = infimum of all x for which Pr(Xn ≥ x)→ 0 as n→∞
• x̃ = l. pXn <∞ exists =⇒ x̃ = l. inf. pXn = l. sup. pXn
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• A two-dimensional sequence {(Xn, Yn)}.
Component-sequences {Xn} and {Yn},
p(xN1 , y

N
1 ) = Pr(XN

1 = xN1 , Y
N
1 = yN1 )

• Information density:

IN = IN (XN
1 , Y

N
1 ) = log

p(XN
1 , Y

N
1 )

p(XN
1 )p(Y N

1 )

• Mutual information:

I(XN
1 ;Y N

1 ) = E

[
log

p(XN
1 , Y

N
1 )

p(XN
1 )p(Y N

1 )

]
= E[IN ]

• Information rate:

Ī = lim
N→∞

1

N
I(XN

1 ;Y N
1 )
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• Ergodicity (c.f., CT15.7): Let {Xn} be a process described by
pX . Let X = · · · , X−1, X0, X1, · · · be an infinite sequence
drawn from {Xn} and let X(t) denote X shifted t positions in

time, that is, X
(t)
n = Xn+t. The process {Xn} is ergodic if for

any X and any t, it holds that Pr(X = X(t)) = 0 or 1.

• Let gn(x) be a function of the components xn1 in x. A
discrete and stationary process {Xn} is ergodic iff for all
n ≥ 1 and all gn(X) with E[|gn(X)|] <∞ it holds that

lim
N→∞

1

N

N∑

t=1

gn(X(t)) = E[gn(X)] w.p.1

• For a discrete stationary and ergodic {Xn},

lim
N→∞

1

N
log p(XN

1 ) = H̄(X) w.p.1
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• A channel with discrete input Xn and output Yn is described,
for all N , by

p(yN1 |xN1 ) = Pr(Y N
1 = yN1 |XN

1 = xN1 )

• Transmitting a uniform random variable ω ∈ {1, . . . ,M} over
a channel p(yN1 |xN1 ) using an (N,M) code:
• Encoding xN1 = α(ω); decoding ω̂ = β(yN1 ) ∈ {1, . . . ,M};

rate R = N−1 logM ; probability of error P
(N)
e = P (ω̂ 6= ω)

• A rate R is achievable1 if there exists a sequence of (N,M)

codes with rate R such that P
(N)
e → 0 as N →∞

• The capacity C of a channel p(yN1 |xN1 ) is the supremum of all
achievable rates for that channel

1In terms of P
(N)
e → 0; can be strengthened to Pmax → 0
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Results

• Feinstein’s Lemma (1954): Fix N and a channel p(yN1 |xN1 ).
For any p(xN1 ) and γ > 0, there exists an (N,M) code with
rate R for which

P (N)
e ≤ Pr

(
N−1 IN ≤ R+ γ

)
+ e−γ N

where

IN = log
p(Y N

1 , XN
1 )

p(XN
1 )p(Y N

1 )

• Corollary [Verdú and Han, 94]:

C ≥ sup
pX

{
l. inf.p
n→∞

1

n
In

}
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• Theorem [Verdú and Han, 94]: For every γ > 0, using any
(N,M) code with rate R in coding a uniform ω ∈ {1, . . . ,M}
over a channel p(yN1 |xN1 ) results in

P (N)
e ≥ Pr

(
N−1 IN ≤ R− γ

)
− e−γN

• Corollary:

C ≤ sup
pX

{
l. inf.p
n→∞

1

n
In

}

• A general formula for channel capacity:

C = sup
pX

{
l. inf.p
n→∞

1

n
In

}
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An Alternative Lower Bound for C

• Fix p(xn1 ). Let p(xn1 , y
n
1 ) describe Xn

1 and Y n
1 when the

channel is driven by Xn
1 , and let

I = l. inf.p
n→∞

1

n
In

• Let T
(n)
ε , ε > 0, be the set of sequences (xn1 , y

n
1 ) for which

1

n
log

p(yn1 |xn1 )

p(yn1 )
> I − ε

• C.f. the definition of typical sequences
• Notice that (xn1 , y

n
1 ) ∈ T (n)

ε ⇒ p(yN1 ) < p(yN1 |xN1 )2−n(I−ε)
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• Generate Cn = {xn1 (1), . . . , xn1 (M)} using p(xn1 ).

• A data symbol ω is generated according to a uniform
distribution on {1, . . . ,M}, and xn1 (ω) is transmitted.

• The channel produces a corresponding output sequence Y n
1

• The decoder uses the following decision rule:

• Index ω̂ was sent if:
(
xn1 (ω̂), Y n

1

)
∈ T (n)

ε for some small ε, and
no other ω̂

• Now study

πn = Pr(ω̂ 6= ω)

where “Pr” is over the random codebook selection, the data
variable ω and the channel.
• Symmetry =⇒ πn = Pr(ω̂ 6= 1|ω = 1)

• Let Ei = {(Xn
1 (i), Y n

1 ) ∈ T (n)
ε }, then

πn = P (Ec
1 ∪ E2 ∪ · · · ∪ EM ) ≤ P (Ec

1) +
M∑

i=2

P (Ei)
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• It holds that P (Ec
1)→ 0 because of the definition of I

• Also, for i > 1

P (Ei) =
∑

(x,y)∈T
p(x)p(y) <

∑

(x,y)∈T
p(x)p(y|x)2−n(I−ε) < 2−n(I−ε)

where x = xn1 , y = yn1 and T = T
(n)
ε , and consequently

M∑

i=2

P (Ei) < (M − 1)2−n(I−ε) ≤ 2−n(I−R−ε)

R = I − 2ε is achievable!
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Discrete Memoryless Channels
• For a discrete (stationary and) memoryless channel (DMC),

p(yN1 |xN1 ) = p(y1|x1) · · · p(yN |xN )

• In [Verdú and Han, 94] it is shown that the p(xN1 ) that
achieves the supremum in the formula for C is of the form

p(xN1 ) = p(x1) · · · p(xN )

Hence,

l. inf. p
1

n
IN (Xn

1 ;Y n
1 ) = I(X;Y )

evaluated for p(x) = p(x1) and p(y|x) = p(y1|x1), since
information density converges to mutual information.

• Thus, we get Shannon’s formula

C = max
p(x1)

I(X1;Y1)
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When is Mutual Information Relevant to Capacity?

• If at least one of X and Y is finite, then

l. inf. p
n→∞

1

n
In ≤ lim inf

n→∞
1

n
I(Xn

1 ;Y n
1 )

≤ lim sup
n→∞

1

n
I(Xn

1 ;Y n
1 ) ≤ l. sup. p

n→∞

1

n
In

• Corollary: If at least one of X and Y is finite, and if

sup
pX

l. inf.p
n→∞

1

n
In = sup

pX

l. sup.p
n→∞

1

n
In

then

C = sup
pX

Ī = lim
n→∞

1

n
sup
p(xn1 )

I(Xn
1 ;Y n

1 )
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• A channel is stationary and ergodic if {(Xn, Yn)} is stationary
and ergodic for all stationary and ergodic {Xn}
• For a stationary and ergodic channel

C = sup
pX

{
l. inf. p
n→∞

1

n
In

}
= sup

pX

{
l. p
n→∞

1

n
In

}
= sup

pX

Ī

= lim
n→∞

1

n
sup
p(xn1 )

I(Xn
1 ;Y n

1 )
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Some Binary Channel Models

• A general binary channel

Ym = Xm + Zm

where Zm is drawn according to an arbitrary binary random
process

• Capacity

C = sup
pX

{
l. inf.p
n→∞

1

n
In

}
= 1− l. sup.p

n→∞

1

n
log

1

p(Zn1 )
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• {Zn} stationary and memoryless:

C = 1− h(p)

where

h(p) = −p log p− (1− p) log(1− p) = H(Z1)

with p = Pr(Zn = 1), since

l. sup.p
n→∞

1

n
log

1

p(Zn1 )
= H(Z1)
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• {Zn} stationary and ergodic:

C = 1− H̄(Z)

since

l. sup.p
n→∞

1

n
log

1

p(Zn1 )
= lim

n→∞
1

n
H(Zn1 ) = H̄(Z)
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• {Zn} stationary and nonergodic (c.f. previous example): with
probability q, Zn = 0 for all n and with probability (1− q),
{Zn} is stationary and memoryless with p = P (Zn = 1)⇒

C = 1− h(p)

since

l. sup. p
n→∞

1

n
log

1

p(Zn1 )
= max{0, h(p)}

• Capacity determined by the “worst case” noise!
• E.g., p = 1/2⇒ C = 0 (no rates achievable)!

• In this example C∗ = maxp(x) I(X;Y ) will not give the
correct value for capacity (C∗ = p)
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Summary

• Shannon’s formula

C = max
p(x)

I(Y ;X)

holds for stationary and memoryless channels

• For the class of information stable channels, it generalizes to

C = lim
n→∞

sup
p(xn1 )

1

n
I(Xn

1 ;Y n
1 )

(e.g., stationary and ergodic channels)
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• The formula

C = sup
pX

l. inf.p
n→∞

1

n
In

holds for any channel p(yN1 |xN1 )
• Ergodicity is the key to formulas based on mutual information;
n−1 In needs to converge to a non-random entity

• E.g., in the nonergodic binary channel example

n−1 In →
{
H(X1), with prob. q

1/2, with prob. (1− q)
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