Information Theory

Lecture 2

e Sources and entropy rate: CT4
e Typical sequences: CT3

e Introduction to lossless source coding: CT5.1-5
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Information Sources

source

Xn

e Source data: a speech signal, an image, a fax, a computer
file,. ..

e In practice source data is time-varying and unpredictable.

e Bandlimited continuous-time signals (e.g. speech) can be
sampled into discrete time and reproduced without loss.

A source S is defined by a discrete-time stochastic process { X, }.
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o If X,, € X, Vn, the set X is the source alphabet.
e The source is

stationary if {X,,} is stationary.

ergodic if {X,,} is ergodic.

memoryless if X,, and X,,, are independent for n # m.

iid if {X,,} is iid (independent and identically distributed).
e stationary and memoryless —> iid

continuous if X' is a continuous set (e.g. the real numbers).
discrete if X is a discrete set (e.g. the integers {0,1,2,...,9}).
binary if X = {0, 1}.
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o Consider a source S, described by {X,,}. Define

XN & (X, Xo,...,XN).

e The entropy rate of S is defined as

H(S) %2 lim %H(X{V )

N—oo

(when the limit exists).

e H(X) is the entropy of a single random variable X, while
entropy rate defines the “entropy per unit time” of the
stochastic process S = { X, }.
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e A stationary source S always has a well-defined entropy rate,
and it furthermore holds that

1 :
H(S) = lim NH(XfV):A;EnOOH(XMXN_l,XN_g,...,Xl).

N—o0

That is, H(S) is a measure of the information gained when
observing a source symbol, given knowledge of the infinite
past.

e \We note that for iid sources

. 1 1
BS) = Jim HOD) = Ji, 37 %) =K

e Examples (from CT4): Markov chain, Markov process,
Random walk on a weighted graph, hidden Markov models,. ..

Mikael Skoglund, Information Theory 5/23

Typical Sequences

e A binary iid source {b,} with p = Pr(b, = 1)

o Let R be the number of 1:s in a sequence, by,...,by, of
length N = p(by') = p"(1 —p)N "

o P(r) 2 Pr(£ <) for N = 10,50, 100,500, with p = 0.3,
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e As N grows, the probability that a sequence will satisfy
R~ p-N is high = given a b{v that the source produced,
it is likely that

p(bl) ~ pPN (1 — )=V

In the sense that the above holds with high probability, the
“source will only produce” sequences for which

1
7 logp(b) ~ plogp + (1 = p)log(1 —p) = —H
That is, for large IV it holds with high probability that

o) =27

where H is the entropy (entropy rate) of the source.

Mikael Skoglund, Information Theory 7/23

e A general discrete source that produces iid symbols X,,, with
X, € X and Pr(X,, = ) = p(z). For all z&¥ € XN we have

logp(xy) =logp(z1,...,an) = > logp(wm).

For an arbitrary random sequence X{V we hence get

N—o0

N
1 1
lim Nlogp(Xl = Nmz_:logp = Flogp(X1) a.s.

by the (strong) law of large numbers. That is, for large N
pOXY) 27 A

holds with high probability.
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o The result (the Shannon—-McMillan—Breiman Theorem) can be
extended to (discrete) stationary and ergodic sources
(CT16.8). For a stationary and ergodic source, S, it holds that

1
— lim Nlogp(XfV):H(S) a.s.

N—o0

where H(S) is the entropy rate of the source.

e We note that p(XiV) is a random variable. However, the
right-hand side of

D) = 27

Is a constant
— a constraint on the sequences the source “typically” produces!
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The Typical Set

e For a given stationary and ergodic source S, the typical set
AN s the set of sequences x € XN for which

2—N(H(S)+€) < p(le\f) < 2—N(H(S)—5)

@ 2V e AY) = _N-llogp(alN) € [H(S) — e, H(S) +¢]
® Pr(X{] ¢ A§N>) > 1 —¢, for N sufficiently large
(3} |A§N>’ < QN (H(S)+e)

(4] |A§N)] > (1— 5)2N(H(3)_5), for N sufficiently large
That is, a large N and a small € gives

Pr(XN e AM) ~ 1, |AN)| 2NV H(S)

p(az{v) ~ |A§N)|—1 ~ 9~ NH(S) 5 xi\f c AgN)
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The Typical Set and Source Coding

® Fix ¢ (small) and IV (large). Partition XY into two subsets:
A=A"N) and B=aN\ A,

® Observed sequences will “typically” belong to the set A.
There are M = |A| < 2NH(S)+€) glements in A.

© Let the different i € {0,..., M — 1} enumerate the elements
of A. An index i can be stored or transmitted spending no
more than [N - (H(S) + ¢)] bits.
O Encoding. For each observed sequence z¥
O if 2 € A produce the corresponding index i.
® if 2 € Bleti=0.

@ Decoding. Map each index i back into A ¢ XM,
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e An error appears with probability Pr(X# € B) < ¢ for large
N = the probability of error can be made to vanish as
N — o0

e An “almost noiseless” source code that maps =¥ into an index

i, where i can be represented using at most [N - (H(S) + ¢)|
bits. However, since also M > (1 — 5)2N(H(3)_6), for a large
enough N, we need at least |log(1 —¢e) + N(H(S) — ¢)] bits.

e Thus, for large N it is possible to design a source code with
rate

H(S)—6+%(log(1—s)—1) <R§H(8)+s+%

bits per source symbol.

—> “Operational” meaning of entropy rate: the smallest rate at
which a source can be coded with arbitrarily low error
probability.
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Data Compression

e For large N it is possible to design a source code with rate

1 1
HS)—e+ —(log(l—e)—1) <R<H(S)+e+ —
N N
bits per symbol, having a vanishing probability of error.
e The above is an existence result; it doesn't tell us how to
design codes.
e For a fixed finite N, the typical-sequence codes discussed are
“almost noiseless” fixed-length to fixed-length codes.
e We will now start looking at concrete “zero-error” codes, their
performance and how to design them.
e Price to pay to get zero errors: fixed-length to variable-length
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Various Classifications

e Source alphabet
e Discrete sources
e Continuous sources
e Recovery requirement
e [ossless source coding
e |ossy source coding
e Coding method

Fixed-length to fixed-length
Fixed-length to variable-length
Variable-length to fixed-length
Variable-length to variable-length
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Zero-Error Source Coding

e Source coding theorem for symbol codes (today)

Symbol codes, code extensions

Uniquely decodable and instantaneous (prefix) codes
Kraft(-McMillan) inequality

Bounds on the optimal codelength

Source coding theorem for zero-error prefix codes

e Specific code constructions (next time)

e Symbol codes: Huffman codes, Shannon-Fano codes
e Stream codes: arithmetic codes, Lempel-Ziv codes
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What Is a Symbol Code?

e D-ary symbol code C' for a random variable X

C: X —-1{0,1,...,D—1}*

e A* = set of finite-length strings of symbols from a finite set A
e C(z) codeword for z € X
e [(x) length of C(x) (i.e. number of D-ary symbols)

e Data compression = minimize expected length

L(C,X) = 3 pa)i(a)

reX

e Extension of C'is C*: X* — {0,1,...,D — 1}*

C*(x}) = C(x1)C(z2) - - - C(xy), n=1,2,...
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Example: Encoding Coin Flips

Problem
010
10---0

Mikael Skoglund, Information Theory 17/23

Uniquely Decodable Codes

e (' is uniquely decodable if
Vx,y € X¥, x££y = C*(x) # C*(y)

e Any uniquely decodable code must satisfy the Kraft inequality

Z D—l(x) <1

TeEX

(McMillan's result, Karush's proof in C&T)

Mikael Skoglund, Information Theory 18/23



Instantaneous Codes

e (' is instantaneous (or prefix) if prefix-free
e no codeword is a prefix of any other codeword
¢ Instantaneous codes are uniquely decodable
— prefix codes satisfy the Kraft inequality

e Given a set of codeword lengths that satisfy the Kraft
inequality there exists a prefix code with those codeword
lengths.

— there is a prefix code for every set of codeword lengths that
allow a uniquely decodable code
— no loss of generality in studying only prefix codes
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Most Compression Possible?

For any uniquely decodable D-ary symbol code C'
(defining Hp(X)= — > p(z)logp p(x)),

L(C,X) = ) p(z)logp D'
TEX

— )+ Z p(x) log (x)

D p-i(z)

reX
log-sum () | 1
> Hp(X)+1-logp -
ZxEXD =)
Kraft
>  Hp(X)
with equality iff p(x) (@) je. l(z) = —logpp(x)
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How Close Can We Get?

e The optimal length [(z) = logp zﬁ need not be an integer

o Use I(z) = [1ogD ﬁ}
e These codeword lengths satisfy the Kraft inequality

Z D_POgD ﬁw < Z D~ logp H — Zp(x) =1

TeX reX rzeX

—> There exists a (uniquely decodable) prefix code with these
codeword lengths

e For such a code C,

l(x) < —logpp(x)+1 = L(C,X) < Hp(X)+1
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Source Coding Theorem
Uniquely Decodable Zero-Error Codes

e The best uniquely decodable D-ary symbol code can compress
to within 1 symbol of the entropy

CIFI)lrieIflixL(C,X) € [Hp(X),Hp(X)+1)

e Coding blocks of source symbols gives

min L(C, X}) € [Hp(X]), Hp(X) + 1)
prefix

e The minimum expected codeword length per symbol satisfies

L(C, XT) — Hp(S),

min
C'prefix

where Hp(S) is the entropy rate (base D) of the source.
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Penalty for the Wrong Code

o X ~pla)
o Cy: l(x) = {log ﬁw
e Using C, to code X, the expected codeword length satisfies

H(p) + D(pllq) < L(Cy, X) < H(p) + D(pllq) +1

—> D(pl|q) is the penalty for mismatch

1 X 1
Ly~ Eplog —— = E,log L = Ep log ——+E, log
p p

q(X) (X)q(X) (X)

p(X)
q(X)
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