Information Theory

Lecture 3

e |Lossless source coding algorithms:

e Huffman: CT5.6-8

e Shannon-Fano-Elias: CT5.9
e Arithmetic: CT13.3

e Lempel-Ziv: CT13.4-5

Mikael Skoglund, Information Theory 1/21

Zero-Error Source Coding

Huffman codes: algorithm & optimality

Shannon-Fano-Elias codes

e connection to Shannon(-Fano) codes, Fano codes,
and per symbol arithmetic coding
e within 2(1) symbol of the entropy

Arithmetic codes

e adaptable, probabilistic model
e within 2 bits of the entropy per sequence!

Lempel-Ziv codes
e “basic” and “modified” LZ-algorithm
e sketch of asymptotic optimality

Mikael Skoglund, Information Theory 2/21

Example: Encoding a Markov Source

[]
—_

2-state Markov chain Py; = Pig = 3 = jo =1 = 5

Sample sequence

s = 1000011010001111 = 10*1%201 03 1*

Probabilities of 2-bit symbols

p(00) p(01) p(10) p(11) H L>
sample % % g % ~ 19056 16
model | 3 5 : s |~ 19183 16

Entropy rate
H(S) =h(}) ~ 09183 = L > [14.6928] = 15

Mikael Skoglund, Information Theory 3/21

Huffman Coding Algorithm

e Greedy bottom-up procedure

e Builds a complete D-ary codetree by combining the D
symbols of lowest probabilities

need |[X¥| =1 mod,D —1
add dummy symbols of 0 probability if necessary

4

e Gives prefix code
e Probabilities of source symbols need to be available

= coding long strings (“super symbols”) becomes complex

Mikael Skoglund, Information Theory 4/21

Huffman Code Examples

sample-based model-based
1 .1
11: 3 11: 3
10: 3 00: %
11: 00:
o1 C1 C1 o1
01: 3 ; 01: 3 10: . 10:
8 3
o1 1 o1 o1
00: ; 00: ; 01: 01: &
16, [1000001110000101| = 16 | 16, |001010000010010111| = 18

Mikael Skoglund, Information Theory 5/21

Optimal Symbol Codes

e An optimal binary prefix code must satisfy

p(z) <ply) = U(z) = U(y)

e there are at least two codewords of maximal length
e the longest codewords can be relabeled such that the two least
probable symbols differ only in their last bit

e Huffman codes are optimal prefix codes (why?)
e We know that

L=H(X) < l(x) = —logp(x)

—> Huffman will give L = H(X) when —logp(x) are integers
(a dyadic distribution)

Mikael Skoglund, Information Theory 6/21

Cumulative Distributions and Rounding

e XeX={1,2,...,m}; pla)=Pr(X=2)>0

e Cumulative distribution function (cdf) 1
F(x)=Y p@), zelo,m _
z' <z] ii p(z)
F(x) = ro-oobe-
e Modified cdf 0=
_ 1
F(x) = N = X
(z) = Y _p(a) +5p@), =€
' <x
e only forx e X
e F(x) known = x known!
Mikael Skoglund, Information Theory 7/21

e We know that [(x) ~ — log p(z) gives a good code

e Use the binary expansion of F'(z) as code for z; rounding
needed

e round to ~ — logp(x) bits
e Rounding: [0,1) — {0,1}*

e Use base 2 fractions
fel1) = f=> f2
i=1

e Take the first k£ bits

(flk=fifo- fr €{0,1}"

o For example, 2 =0.10101010--- = 0.10 = | 2], = 10101

Mikael Skoglund, Information Theory 8/21

Shannon-Fano-Elias Codes

e Shannon-Fano-Elias code (as it is described in CT)
e [(z) = [log ﬁ} +1 = L < H(X)+2 [bits]
o c(z) = [F(x)]iz) = |F(z) + 50(2)] 1()
o Prefix-free if intervals [0.c(z), 0.c(x) + 271®)] disjoint (why?)
—> instantaneous code (check)

e Example:
sample-based model-based

X px) Uz) F(z) clz) | px) Uz) Flx) c(@)
1(00) 1/4 3 1/8 ool | 1/3 3 1/6 001
2(01) 1/8 4 5/16 0101 | 1/6 4 5/12 0110
3(10) 3/8 3 9/16 100 | 1/6 4 7/12 1001
4(11) 1/4 3 7/8 111 | 1/3 3 5/6 110

L =3125 < H(X) +2 L=3333<H(X)+?2

Mikael Skoglund, Information Theory 9/21

e Shannon (or Shannon—Fano) code (see HW Prob. 1)
e order the probabilities
o l(x) = [logﬁ} — L<H(X)+1
° c(z) = [F(2)]i)

e Fano code (see CT p. 123)

e L<H(X)+2
e order the probabilities
e recursively split into subsets as nearly equiprobable as possible

Mikael Skoglund, Information Theory 10/21

Intervals

e Dyadic intervals

e A binary string can represent a subinterval of [0, 1)

m
212y w € {0,1}" = x =) 22" " €{0,1,...,2"~1}

i=1
(the usual binary representation of x), then

r x+1

x1x2”'xm_>[2_m’ o)C[O,l) .

e For example, 110 — [%7 %)

Mikael Skoglund, Information Theory

Arithmetic Coding — Symbol

e “Algorithm”

e No preset codeword lengths for rounding off
e Instead, the largest dyadic interval inside the symbol interval

gives the codeword for the symbol

110

11/21

e Example: Shannon-Fano-Elias vs. arithmetic symbol code

sample-based model-based

11F 111 11 11 k110 1

: d11
10} 100 10 10 10 1001 10

]] 01 0110 01
01f 0101 01 .

: 1010
0ol 001 00 00 F001 00

J 00 .

Mikael Skoglund, Information Theory

12/21

Arithmetic Coding — Stream

e Works for streams as well!

e Consider binary strings, order strings according to their
corresponding integers (e.g., 0111 < 1000), let

Fzt)= Y Pr(X =y")=) plaiws - z5-10)+p(z])

Sum over all strings to the left of ¥ in a binary tree
(with 00 - - -0 to the far left)

Mikael Skoglund, Information Theory 13/21

e Code I into largest interval inside

[F(a1) = plat), F(a1))

Yoy

o Markov source example (model-based)

1000011
100081

—
—

0 —
1000 —»
—

—

—

. 100
0 10
1

1.

Mikael Skoglund, Information Theory 14/21

Arithmetic Coding — Adaptive

e Only the distribution of the current symbol conditioned on the
past symbols is needed at every step

= Easily made adaptive: just estimate p(zy,+1|z7)

e One such estimate is given by the Laplace model

ng + 1
n+ |X|

Pr(wns1 = wfa}) =

Mikael Skoglund, Information Theory 15/21

Lempel-Ziv: A Universal Code

e Not a symbol code

Quite another philosophy: parsings, phrases, dictionary

A parsing divides x} into phrases yf(n)

T1X2 T = Y15, Y25 - - -5 Ye(n)

In a distinct parsing phrases do not repeat

The LZ algorithm performs a greedy distinct parsing, whereby
each new phrase extends an old phrase by just 1 bit

= The LZ code for the new phrase is simply the dictionary index
of the old phrase followed by the extra bit

e There are several variants of LZ coding, we consider the
“basic” and the “modified” LZ algorithms

Mikael Skoglund, Information Theory 16/21

The "Basic” Lempel-Ziv Algorithm

e Lempel-Ziv parsing and “basic” encoding of s

phrases A 1 0 00 01 10 100 011 11
indices 0 0 O 0 0 0 0 0 1
0 0 O 0 1 1 1 1 0
0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0
encoding ,1 00 10,0 10,1 001,0 101,0 100,1 001,1
e Remarks

e Parsing starts with empty string

e First pointer sent is also empty

e Only “important” index bits are used

e Even so, “compressed” 16 bits to 25 bits

Mikael Skoglund, Information Theory 17/21

The “Modified” Lempel-Ziv Algorithm

e The second time a phrase occurs,
e the extra bit is known

e it cannot be extended a distinct third way
= the second extension may overwrite the parent

e Lempel-Ziv parsing and “modified” encoding of s

phrases A 1 0 00 01 10 100 011 11

indices 0 0 0 O 0 0 1 1 0
0 0 O
0 1 O

1 0 1 0 0 0
0 O 1 0 1 1
encoding 1 0, 00 00, 01,0 11,0 000,1 001,

= saved 5 bits! (still 16:19 “compression”)

Mikael Skoglund, Information Theory 18/21

Asymptotic Optimality of LZ Coding

o Codeword lengths of Lempel-Ziv codes satisfy (index + extra
bit)
I(2T) < ¢(n)(logc(n) +1)

e Using a counting argument, the number of phrases c¢(n) in a
distinct parsing of a length n sequence is bounded as

n
<
c(n) < logn

(1+0(1))

e Ziv's lemma relates distinct parsings and a kt"-order Markov
approximation of the underlying distribution.

Mikael Skoglund, Information Theory 19/21

e Combining the above leads to the optimality result:
o For a stationary and ergodic source {X,},

1
limsup —I(X7) < H(S) a.s.

n— 00

Mikael Skoglund, Information Theory 20/21

Generating Discrete Distributions from Fair Coins

e A natural inverse to data compression
e Source encoders aim to produce i.i.d. fair bits (symbols)

e Source decoders noiselessly reproduce the original source
sequence (with the proper distribution)

= "Optimal” source decoders provide an efficient way to
generate discrete random variables

Mikael Skoglund, Information Theory

21/21

