
Information Theory
Lecture 3

• Lossless source coding algorithms:
• Huffman: CT5.6–8
• Shannon-Fano-Elias: CT5.9
• Arithmetic: CT13.3
• Lempel-Ziv: CT13.4–5

Mikael Skoglund, Information Theory 1/21

Zero-Error Source Coding

• Huffman codes: algorithm & optimality

• Shannon-Fano-Elias codes
• connection to Shannon(-Fano) codes, Fano codes,

and per symbol arithmetic coding
• within 2(1) symbol of the entropy

• Arithmetic codes
• adaptable, probabilistic model
• within 2 bits of the entropy per sequence!

• Lempel-Ziv codes
• “basic” and “modified” LZ-algorithm
• sketch of asymptotic optimality

Mikael Skoglund, Information Theory 2/21

Example: Encoding a Markov Source

• 2-state Markov chain P01 = P10 = 1
3 =⇒ µ0 = µ1 = 1

2

• Sample sequence

s = 1000011010001111 = 1 04 12 0 1 03 14

• Probabilities of 2-bit symbols
p(00) p(01) p(10) p(11) H L ≥

sample 1
4

1
8

3
8

1
4 ≈ 1.9056 16

model 1
3

1
6

1
6

1
3 ≈ 1.9183 16

• Entropy rate
H(S) = h(13) ≈ 0.9183 =⇒ L ≥ d14.6928e = 15

Mikael Skoglund, Information Theory 3/21

Huffman Coding Algorithm

• Greedy bottom-up procedure

• Builds a complete D-ary codetree by combining the D
symbols of lowest probabilities

⇒ need |X | = 1 mod, D − 1

⇒ add dummy symbols of 0 probability if necessary

• Gives prefix code

• Probabilities of source symbols need to be available

⇒ coding long strings (“super symbols”) becomes complex

Mikael Skoglund, Information Theory 4/21

Huffman Code Examples

sample-based model-based

�
�
�
�

@@

��
@
@
@
@

00: 1
4

01: 1
8

10: 3
8

11: 1
4

3
8 �

�
�
�

@@
@@
@@

00: 1
4

01: 1
8

11: 1
4

10: 3
8

3
8 �

�
�
�

@@

��
@
@
@
@

01: 1
6

10: 1
6

00: 1
3

11: 1
3

1
3 �

�
�
�

@@
@@
@@

01: 1
6

10: 1
6

00: 1
3

11: 1
3

1
3

16, |1000001110000101| = 16 16, |001010000010010111| = 18

Mikael Skoglund, Information Theory 5/21

Optimal Symbol Codes

• An optimal binary prefix code must satisfy

p(x) ≤ p(y) =⇒ l(x) ≥ l(y)

• there are at least two codewords of maximal length
• the longest codewords can be relabeled such that the two least

probable symbols differ only in their last bit

• Huffman codes are optimal prefix codes (why?)
• We know that

L = H(X) ⇐⇒ l(x) = − log p(x)

=⇒ Huffman will give L = H(X) when − log p(x) are integers
(a dyadic distribution)

Mikael Skoglund, Information Theory 6/21

Cumulative Distributions and Rounding

• X ∈ X = {1, 2, . . . ,m}; p(x) = Pr(X = x) > 0

• Cumulative distribution function (cdf)

0

1

x

F (x)
p(x)

F (x) =
∑

x′≤x
p(x′), x ∈ [0,m]

• Modified cdf

F̄ (x) =
∑

x′<x

p(x′) +
1

2
p(x), x ∈ X

• only for x ∈ X
• F̄ (x) known =⇒ x known!

Mikael Skoglund, Information Theory 7/21

• We know that l(x) ≈ − log p(x) gives a good code

• Use the binary expansion of F̄ (x) as code for x; rounding
needed

• round to ≈ − log p(x) bits

• Rounding: [0, 1)→ {0, 1}k
• Use base 2 fractions

f ∈ [0, 1) =⇒ f =

∞∑

i=1

fi2
−i

• Take the first k bits

bfck = f1f2 · · · fk ∈ {0, 1}k

• For example, 2
3 = 0.10101010 · · · = 0.10 =⇒

⌊
2
3

⌋
5

= 10101

Mikael Skoglund, Information Theory 8/21

Shannon-Fano-Elias Codes

• Shannon-Fano-Elias code (as it is described in CT)
• l(x) = dlog 1

p(x)e+ 1 =⇒ L < H(X) + 2 [bits]

• c(x) = bF̄ (x)cl(x) = bF (x) + 1
2p(x)cl(x)

• Prefix-free if intervals [0.c(x), 0.c(x) + 2−l(x)] disjoint (why?)
=⇒ instantaneous code (check)

• Example:
sample-based model-based

X p(x) l(x) F̄ (x) c(x) p(x) l(x) F̄ (x) c(x)

1(00) 1/4 3 1/8 001 1/3 3 1/6 001
2(01) 1/8 4 5/16 0101 1/6 4 5/12 0110
3(10) 3/8 3 9/16 100 1/6 4 7/12 1001
4(11) 1/4 3 7/8 111 1/3 3 5/6 110

L = 3.125 < H(X) + 2 L = 3.333 < H(X) + 2

Mikael Skoglund, Information Theory 9/21

• Shannon (or Shannon–Fano) code (see HW Prob. 1)
• order the probabilities
• l(x) = dlog 1

p(x)e =⇒ L < H(X) + 1

• c(x) = bF (x)cl(x)
• Fano code (see CT p. 123)

• L < H(X) + 2
• order the probabilities
• recursively split into subsets as nearly equiprobable as possible

Mikael Skoglund, Information Theory 10/21

Intervals

• Dyadic intervals
• A binary string can represent a subinterval of [0, 1)

x1x2 · · ·xm ∈ {0, 1}m =⇒ x =
m∑

i=1

xi2
m−i ∈ {0, 1, . . . , 2m−1}

(the usual binary representation of x), then

x1x2 · · ·xm →
[
x

2m
,
x+ 1

2m

)
⊂ [0, 1)

• For example, 110→
[
3
4 ,

7
8

)
0

1

110

Mikael Skoglund, Information Theory 11/21

Arithmetic Coding – Symbol

• “Algorithm”
• No preset codeword lengths for rounding off
• Instead, the largest dyadic interval inside the symbol interval

gives the codeword for the symbol
• Example: Shannon-Fano-Elias vs. arithmetic symbol code

sample-based model-based

00

01

10

11

001

0101

100

111

6
?

6?

6
?

6
?

00

01

10

11

00

010

10

11

00

01

10

11

001

0110

1001

110

00

01

10

11

6
?

6?
6?

6
?

00

011
100

11

Mikael Skoglund, Information Theory 12/21

Arithmetic Coding – Stream

• Works for streams as well!

• Consider binary strings, order strings according to their
corresponding integers (e.g., 0111 < 1000), let

F (xN1) =
∑

yN1 ≤xN
1

Pr(XN
1 = yN1) =

∑

k:xk=1

p(x1x2 · · ·xk−10)+p(xN1)

Sum over all strings to the left of xN1 in a binary tree
(with 00 · · · 0 to the far left)

Mikael Skoglund, Information Theory 13/21

• Code xN1 into largest interval inside

[F (xN1)− p(xN1), F (xN1))

• Markov source example (model-based)

0. 1.
-1
-10
-100
-1000
-10000
-100001
-1000011

Mikael Skoglund, Information Theory 14/21

Arithmetic Coding – Adaptive

• Only the distribution of the current symbol conditioned on the
past symbols is needed at every step

⇒ Easily made adaptive: just estimate p(xn+1|xn1)

• One such estimate is given by the Laplace model

Pr(xn+1 = x|xn1) =
nx + 1

n+ |X |

Mikael Skoglund, Information Theory 15/21

Lempel-Ziv: A Universal Code

• Not a symbol code

• Quite another philosophy: parsings, phrases, dictionary

• A parsing divides xn1 into phrases y
c(n)
1

x1x2 · · ·xn → y1, y2, . . . , yc(n)

• In a distinct parsing phrases do not repeat

• The LZ algorithm performs a greedy distinct parsing, whereby
each new phrase extends an old phrase by just 1 bit

⇒ The LZ code for the new phrase is simply the dictionary index
of the old phrase followed by the extra bit

• There are several variants of LZ coding, we consider the
“basic” and the “modified” LZ algorithms

Mikael Skoglund, Information Theory 16/21

The “Basic” Lempel-Ziv Algorithm

• Lempel-Ziv parsing and “basic” encoding of s
phrases λ 1 0 00 01 10 100 011 11
indices 0 0 0 0 0 0 0 0 1

0 0 0 0 1 1 1 1 0
0 0 1 1 0 0 1 1 0
0 1 0 1 0 1 0 1 0

encoding ,1 0,0 10,0 10,1 001,0 101,0 100,1 001,1

• Remarks
• Parsing starts with empty string
• First pointer sent is also empty
• Only “important” index bits are used
• Even so, “compressed” 16 bits to 25 bits

Mikael Skoglund, Information Theory 17/21

The “Modified” Lempel-Ziv Algorithm

• The second time a phrase occurs,
• the extra bit is known
• it cannot be extended a distinct third way
⇒ the second extension may overwrite the parent

• Lempel-Ziv parsing and “modified” encoding of s
phrases λ 1 0 00 01 10 100 011 11
indices 0 0 0 0 0 0 1 1 0

0 0 0 1 0 1 0 0 0
0 1 0 0 0 1 0 1 1

encoding ,1 0, 0,0 00, 01,0 11,0 000,1 001,

⇒ saved 5 bits! (still 16:19 “compression”)

Mikael Skoglund, Information Theory 18/21

Asymptotic Optimality of LZ Coding

• Codeword lengths of Lempel-Ziv codes satisfy (index + extra
bit)

l(xn1) ≤ c(n)(log c(n) + 1)

• Using a counting argument, the number of phrases c(n) in a
distinct parsing of a length n sequence is bounded as

c(n) ≤ n

log n
(1 + o(1))

• Ziv’s lemma relates distinct parsings and a kth-order Markov
approximation of the underlying distribution.

Mikael Skoglund, Information Theory 19/21

• Combining the above leads to the optimality result:
• For a stationary and ergodic source {Xn},

lim sup
n→∞

1

n
l(Xn

1) ≤ H(S) a.s.

Mikael Skoglund, Information Theory 20/21

Generating Discrete Distributions from Fair Coins

• A natural inverse to data compression

• Source encoders aim to produce i.i.d. fair bits (symbols)

• Source decoders noiselessly reproduce the original source
sequence (with the proper distribution)

⇒ “Optimal” source decoders provide an efficient way to
generate discrete random variables

Mikael Skoglund, Information Theory 21/21

