Information Theory Lecture 3

- Lossless source coding algorithms:
 - Huffman: CT5.6–8
 - Shannon-Fano-Elias: CT5.9
 - Arithmetic: CT13.3
 - Lempel-Ziv: CT13.4-5

Mikael Skoglund, Information Theory

Zero-Error Source Coding

- Huffman codes: algorithm & optimality
- Shannon-Fano-Elias codes
 - connection to Shannon(-Fano) codes, Fano codes, and *per symbol* arithmetic coding
 - within 2(1) symbol of the entropy
- Arithmetic codes
 - adaptable, probabilistic model
 - within 2 bits of the entropy per sequence!
- Lempel-Ziv codes
 - "basic" and "modified" LZ-algorithm
 - sketch of asymptotic optimality

2/21

Example: Encoding a Markov Source

- 2-state Markov chain $P_{01} = P_{10} = \frac{1}{3} \implies \mu_0 = \mu_1 = \frac{1}{2}$
- Sample sequence

 $s = 1000011010001111 = 10^4 1^2 0 10^3 1^4$

• Probabilities of 2-bit symbols

	p(00)	p(01)	p(10)	p(11)	H	$L \ge$
sample	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{1}{4}$	≈ 1.9056	16
model	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{3}$	≈ 1.9183	16

• Entropy rate $H(S) = h(\frac{1}{3}) \approx 0.9183 \implies L \ge \lceil 14.6928 \rceil = 15$

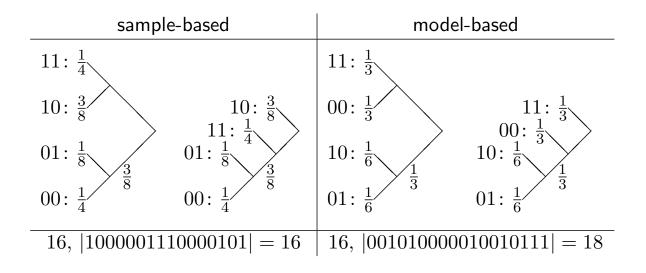
Mikael Skoglund, Information Theory

3/21

Huffman Coding Algorithm

- Greedy bottom-up procedure
- Builds a complete *D*-ary codetree by combining the *D* symbols of lowest probabilities
- \Rightarrow need $|\mathcal{X}| = 1 \mod, D-1$
- \Rightarrow add dummy symbols of 0 probability if necessary
 - Gives prefix code
 - Probabilities of source symbols need to be available
- \Rightarrow coding long strings ("super symbols") becomes complex

Huffman Code Examples



Mikael Skoglund, Information Theory

5/21

Optimal Symbol Codes

• An optimal binary prefix code must satisfy

$$p(x) \le p(y) \implies l(x) \ge l(y)$$

- there are at least two codewords of maximal length
- the longest codewords can be relabeled such that the two least probable symbols differ only in their last bit
- *Huffman codes are optimal prefix codes* (why?)
 - We know that

$$L = H(X) \iff l(x) = -\log p(x)$$

 $\implies \text{Huffman will give } L = H(X) \text{ when } -\log p(x) \text{ are integers} \\ \text{(a dyadic distribution)}$

Cumulative Distributions and Rounding

- $X \in \mathcal{X} = \{1, 2, \dots, m\}; \ p(x) = \Pr(X = x) > 0$
- Cumulative distribution function (cdf)

$$F(x) = \sum_{x' \le x} p(x'), \quad x \in [0, m]$$

1>

x

Modified cdf

$$\bar{F}(x) = \sum_{x' < x} p(x') + \frac{1}{2} p(x), \quad x \in \mathcal{X}$$

- only for $x \in \mathcal{X}$
- $\overline{F}(x)$ known $\implies x$ known!

Mikael Skoglund, Information Theory

- We know that $l(x) \approx -\log p(x)$ gives a good code
- Use the binary expansion of $\overline{F}(x)$ as code for x; rounding needed
 - round to $\approx -\log p(x)$ bits
- Rounding: $[0,1) \to \{0,1\}^k$
 - Use base 2 fractions

$$f \in [0,1) \implies f = \sum_{i=1}^{\infty} f_i 2^{-i}$$

• Take the first k bits

$$\lfloor f \rfloor_k = f_1 f_2 \cdots f_k \in \{0, 1\}^k$$

• For example, $\frac{2}{3} = 0.10101010 \cdots = 0.\overline{10} \implies \lfloor \frac{2}{3} \rfloor_5 = 10101$

Shannon-Fano-Elias Codes

- Shannon-Fano-Elias code (as it is described in CT)
 - $l(x) = \lceil \log \frac{1}{p(x)} \rceil + 1 \implies L < H(X) + 2$ [bits]
 - $c(x) = \lfloor \bar{F}(x) \rfloor_{l(x)} = \lfloor F(x) + \frac{1}{2}p(x) \rfloor_{l(x)}$
- Prefix-free if intervals $[0.c(x), 0.c(x) + 2^{-l(x)}]$ disjoint (why?) \implies instantaneous code (check)
- Example:

		sampl	e-based		model-based					
X	p(x)	l(x)	$\bar{F}(x)$	c(x)	p(x)	l(x)	$\bar{F}(x)$	c(x)		
1(00)	1/4	3	1/8	001	1/3	3	1/6	001		
2(01)	1/8	4	5/16	0101	1/6	4	5/12	0110		
3(10)	3/8	3	9/16	100	1/6	4	7/12	1001		
4(11)	1/4	3	7/8	111	1/3	3	5/6	110		
L = 3.125 < H(X) + 2						L = 3.333 < H(X) + 2				

Mikael Skoglund, Information Theory

- Shannon (or Shannon–Fano) code (see HW Prob. 1)
 - order the probabilities
 - $l(x) = \lceil \log \frac{1}{p(x)} \rceil \implies L < H(X) + 1$
 - $c(x) = \lfloor F(x) \rfloor_{l(x)}$
- Fano code (see CT p. 123)
 - L < H(X) + 2
 - order the probabilities
 - recursively split into subsets as nearly equiprobable as possible

Intervals

- Dyadic intervals
 - A binary string can represent a subinterval of [0,1)

$$x_1 x_2 \cdots x_m \in \{0, 1\}^m \implies x = \sum_{i=1}^m x_i 2^{m-i} \in \{0, 1, \dots, 2^m - 1\}$$

(the usual binary representation of x), then

$$x_1 x_2 \cdots x_m \rightarrow \left[\frac{x}{2^m}, \frac{x+1}{2^m}\right) \subset [0, 1) \qquad 1$$
• For example, $110 \rightarrow \left[\frac{3}{4}, \frac{7}{8}\right) \qquad 0$

11/21

Arithmetic Coding – Symbol

- "Algorithm"
 - No preset codeword lengths for rounding off
 - Instead, the largest dyadic interval inside the symbol interval gives the codeword for the symbol
 - Example: Shannon-Fano-Elias vs. arithmetic symbol code

sample-based	model-based			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 11 \\ -110 \\ 10 \\ -1001 \\ 01 \\ -0110 \\ 00 \end{bmatrix} $ $ \begin{bmatrix} 11 \\ 10 \\ 10 \\ 01 \\ 01 \\ 01 \end{bmatrix} $ $ \begin{bmatrix} 11 \\ 10 \\ 100 \\ 011 \\ 001 \end{bmatrix} $ $ \begin{bmatrix} 10 \\ 011 \\ 001 \end{bmatrix} $ $ \begin{bmatrix} 10 \\ 011 \\ 001 \end{bmatrix} $			

Arithmetic Coding – Stream

- Works for streams as well!
- Consider binary strings, order strings according to their corresponding integers (e.g., 0111 < 1000), let

$$F(x_1^N) = \sum_{y_1^N \le x_1^N} \Pr(X_1^N = y_1^N) = \sum_{k:x_k=1} p(x_1 x_2 \cdots x_{k-1} 0) + p(x_1^N)$$

Sum over all strings to the left of x_1^N in a binary tree (with $00 \cdots 0$ to the far left)

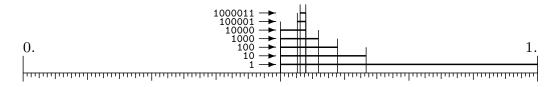
Mikael Skoglund, Information Theory

13/21

• Code x_1^N into largest interval inside

$$[F(x_1^N) - p(x_1^N), F(x_1^N))$$

Markov source example (model-based)



Arithmetic Coding – Adaptive

- Only the distribution of the current symbol conditioned on the past symbols is needed at every step
- \Rightarrow Easily made adaptive: just estimate $p(x_{n+1}|x_1^n)$
 - One such estimate is given by the Laplace model

$$\Pr(x_{n+1} = x | x_1^n) = \frac{n_x + 1}{n + |\mathcal{X}|}$$

Mikael Skoglund, Information Theory

15/21

Lempel-Ziv: A Universal Code

- Not a symbol code
- Quite another philosophy: parsings, phrases, dictionary
- A parsing divides x_1^n into phrases $y_1^{c(n)}$

 $x_1 x_2 \cdots x_n \rightarrow y_1, y_2, \dots, y_{c(n)}$

- In a distinct parsing phrases do not repeat
- The LZ algorithm performs a greedy distinct parsing, whereby each new phrase extends an old phrase by just 1 bit
- ⇒ The LZ code for the new phrase is simply the dictionary index of the old phrase followed by the extra bit
 - There are several variants of LZ coding, we consider the "basic" and the "modified" LZ algorithms

The "Basic" Lempel-Ziv Algorithm

• Lempel-Ziv parsing and "basic" encoding of \boldsymbol{s} phrases λ indices .1 10,1 001,0 encoding 0.0 10.0 101.0 100.1 001.1

Remarks

- Parsing starts with empty string
- First pointer sent is also empty
- Only "important" index bits are used
- Even so, "compressed" 16 bits to 25 bits

Mikael Skoglund, Information Theory

17/21

The "Modified" Lempel-Ziv Algorithm

- The second time a phrase occurs,
 - the extra bit is known
 - it cannot be extended a distinct third way
 - \Rightarrow the second extension may overwrite the parent

• Lempel-Ziv parsing and "modified" encoding of s										
	phrases	λ	1	0	00	01	10	100	011	11
	indices	0	0	0	0	0	0	1	1	0
		0	0	0	1	0	1	0	0	0
		0	1	0	0	0	1	0	1	1
	encoding		,1	0,	0,0	00,	01,0	11,0	000,1	001,
\Rightarrow	\Rightarrow saved 5 bits! (still 16:19 "compression")									

Asymptotic Optimality of LZ Coding

Codeword lengths of Lempel-Ziv codes satisfy (index + extra bit)

$$l(x_1^n) \le c(n)(\log c(n) + 1)$$

• Using a counting argument, the number of phrases c(n) in a distinct parsing of a length n sequence is bounded as

$$c(n) \le \frac{n}{\log n} (1 + o(1))$$

• Ziv's lemma relates distinct parsings and a kth-order Markov approximation of the underlying distribution.

Mikael Skoglund, Information Theory

- Combining the above leads to the optimality result:
 - For a stationary and ergodic source $\{X_n\}$,

$$\limsup_{n \to \infty} \frac{1}{n} l(X_1^n) \le H(\mathcal{S}) \qquad \text{a.s.}$$

Generating Discrete Distributions from Fair Coins

- A natural inverse to data compression
- Source encoders aim to produce i.i.d. fair bits (symbols)
- Source decoders *noiselessly* reproduce the original source sequence (with the proper distribution)
- ⇒ "Optimal" source decoders provide an *efficient* way to generate discrete random variables