Information Theory

Lecture 3

- Lossless source coding algorithms:
- Huffman: CT5.6-8
- Shannon-Fano-Elias: CT5.9
- Arithmetic: CT13.3
- Lempel-Ziv: CT13.4-5

Zero-Error Source Coding

- Huffman codes: algorithm \& optimality
- Shannon-Fano-Elias codes
- connection to Shannon(-Fano) codes, Fano codes, and per symbol arithmetic coding
- within 2(1) symbol of the entropy
- Arithmetic codes
- adaptable, probabilistic model
- within 2 bits of the entropy per sequence!
- Lempel-Ziv codes
- "basic" and "modified" LZ-algorithm
- sketch of asymptotic optimality
- 2-state Markov chain $P_{01}=P_{10}=\frac{1}{3} \Longrightarrow \mu_{0}=\mu_{1}=\frac{1}{2}$
- Sample sequence

$$
s=1000011010001111=10^{4} 1^{2} 010^{3} 1^{4}
$$

- Probabilities of 2-bit symbols

	$p(00)$	$p(01)$	$p(10)$	$p(11)$	H	$L \geq$
sample	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{1}{4}$	≈ 1.9056	16
model	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{3}$	≈ 1.9183	16

- Entropy rate

$$
H(\mathcal{S})=h\left(\frac{1}{3}\right) \approx 0.9183 \Longrightarrow L \geq\lceil 14.6928\rceil=15
$$

Huffman Coding Algorithm

- Greedy bottom-up procedure
- Builds a complete D-ary codetree by combining the D symbols of lowest probabilities
\Rightarrow need $|\mathcal{X}|=1 \quad \bmod , D-1$
\Rightarrow add dummy symbols of 0 probability if necessary
- Gives prefix code
- Probabilities of source symbols need to be available
\Rightarrow coding long strings ("super symbols") becomes complex

sample-based	model-based
$11: \frac{1}{4}$	
$10: \frac{3}{8}$	
$01: \frac{1}{8}$	
$00: \frac{1}{4}$	

Optimal Symbol Codes

- An optimal binary prefix code must satisfy

$$
p(x) \leq p(y) \Longrightarrow l(x) \geq l(y)
$$

- there are at least two codewords of maximal length
- the longest codewords can be relabeled such that the two least probable symbols differ only in their last bit
- Huffman codes are optimal prefix codes (why?)
- We know that

$$
L=H(X) \Longleftrightarrow l(x)=-\log p(x)
$$

\Longrightarrow Huffman will give $L=H(X)$ when $-\log p(x)$ are integers (a dyadic distribution)

Cumulative Distributions and Rounding

- $X \in \mathcal{X}=\{1,2, \ldots, m\} ; p(x)=\operatorname{Pr}(X=x)>0$
- Cumulative distribution function (cdf)

$$
F(x)=\sum_{x^{\prime} \leq x} p\left(x^{\prime}\right), \quad x \in[0, m]
$$

- Modified cdf

$$
\bar{F}(x)=\sum_{x^{\prime}<x} p\left(x^{\prime}\right)+\frac{1}{2} p(x), \quad x \in \mathcal{X}
$$

- only for $x \in \mathcal{X}$
- $\bar{F}(x)$ known $\Longrightarrow x$ known!
- We know that $l(x) \approx-\log p(x)$ gives a good code
- Use the binary expansion of $\bar{F}(x)$ as code for x; rounding needed
- round to $\approx-\log p(x)$ bits
- Rounding: $[0,1) \rightarrow\{0,1\}^{k}$
- Use base 2 fractions

$$
f \in[0,1) \Longrightarrow f=\sum_{i=1}^{\infty} f_{i} 2^{-i}
$$

- Take the first k bits

$$
\lfloor f\rfloor_{k}=f_{1} f_{2} \cdots f_{k} \in\{0,1\}^{k}
$$

- For example, $\frac{2}{3}=0.10101010 \cdots=0 . \overline{10} \Longrightarrow\left\lfloor\frac{2}{3}\right\rfloor_{5}=10101$

Shannon-Fano-Elias Codes

- Shannon-Fano-Elias code (as it is described in CT)
- $l(x)=\left\lceil\log \frac{1}{p(x)}\right\rceil+1 \Longrightarrow L<H(X)+2$ [bits]
- $c(x)=\lfloor\bar{F}(x)\rfloor_{l(x)}=\left\lfloor F(x)+\frac{1}{2} p(x)\right\rfloor_{l(x)}$
- Prefix-free if intervals $\left[0 . c(x), 0 . c(x)+2^{-l(x)}\right]$ disjoint (why?) \Longrightarrow instantaneous code (check)
- Example:

	sample-based				model-based			
X	$p(x)$	$l(x)$	$\bar{F}(x)$	$c(x)$	$p(x)$	$l(x)$	$\bar{F}(x)$	$c(x)$
$1(00)$	$1 / 4$	3	$1 / 8$	001	$1 / 3$	3	$1 / 6$	001
$2(01)$	$1 / 8$	4	$5 / 16$	0101	$1 / 6$	4	$5 / 12$	0110
$3(10)$	$3 / 8$	3	$9 / 16$	100	$1 / 6$	4	$7 / 12$	1001
$4(11)$	$1 / 4$	3	$7 / 8$	111	$1 / 3$	3	$5 / 6$	110
	$L=3.125<H(X)+2$	$L=3.333<H(X)+2$						

- Shannon (or Shannon-Fano) code (see HW Prob. 1)
- order the probabilities
- $l(x)=\left\lceil\log \frac{1}{p(x)}\right\rceil \Longrightarrow L<H(X)+1$
- $c(x)=\lfloor F(x)\rfloor_{l(x)}$
- Fano code (see CT p. 123)
- $L<H(X)+2$
- order the probabilities
- recursively split into subsets as nearly equiprobable as possible
- Dyadic intervals
- A binary string can represent a subinterval of $[0,1)$

$$
x_{1} x_{2} \cdots x_{m} \in\{0,1\}^{m} \Longrightarrow x=\sum_{i=1}^{m} x_{i} 2^{m-i} \in\left\{0,1, \ldots, 2^{m}-1\right\}
$$

(the usual binary representation of x), then

$$
\begin{array}{ll}
x_{1} x_{2} \cdots x_{m} \rightarrow\left[\frac{x}{2^{m}}, \frac{x+1}{2^{m}}\right) \subset[0,1) & 1 \overbrace{110}^{110} \\
, 110 \rightarrow\left[\frac{3}{4}, \frac{7}{8}\right) &
\end{array}
$$

- For example, $110 \rightarrow\left[\frac{3}{4}, \frac{7}{8}\right)$

Arithmetic Coding - Symbol

- "Algorithm"
- No preset codeword lengths for rounding off
- Instead, the largest dyadic interval inside the symbol interval gives the codeword for the symbol
- Example: Shannon-Fano-Elias vs. arithmetic symbol code

Arithmetic Coding - Stream

- Works for streams as well!
- Consider binary strings, order strings according to their corresponding integers (e.g., $0111<1000$), let
$F\left(x_{1}^{N}\right)=\sum_{y_{1}^{N} \leq x_{1}^{N}} \operatorname{Pr}\left(X_{1}^{N}=y_{1}^{N}\right)=\sum_{k: x_{k}=1} p\left(x_{1} x_{2} \cdots x_{k-1} 0\right)+p\left(x_{1}^{N}\right)$
Sum over all strings to the left of x_{1}^{N} in a binary tree (with $00 \cdots 0$ to the far left)
- Code x_{1}^{N} into largest interval inside

$$
\left[F\left(x_{1}^{N}\right)-p\left(x_{1}^{N}\right), F\left(x_{1}^{N}\right)\right)
$$

- Markov source example (model-based)

Arithmetic Coding - Adaptive

- Only the distribution of the current symbol conditioned on the past symbols is needed at every step
\Rightarrow Easily made adaptive: just estimate $p\left(x_{n+1} \mid x_{1}^{n}\right)$
- One such estimate is given by the Laplace model

$$
\operatorname{Pr}\left(x_{n+1}=x \mid x_{1}^{n}\right)=\frac{n_{x}+1}{n+|\mathcal{X}|}
$$

Lempel-Ziv: A Universal Code

- Not a symbol code
- Quite another philosophy: parsings, phrases, dictionary
- A parsing divides x_{1}^{n} into phrases $y_{1}^{c(n)}$

$$
x_{1} x_{2} \cdots x_{n} \rightarrow y_{1}, y_{2}, \ldots, y_{c(n)}
$$

- In a distinct parsing phrases do not repeat
- The LZ algorithm performs a greedy distinct parsing, whereby each new phrase extends an old phrase by just 1 bit
\Rightarrow The LZ code for the new phrase is simply the dictionary index of the old phrase followed by the extra bit
- There are several variants of LZ coding, we consider the "basic" and the "modified" LZ algorithms

The "Basic" Lempel-Ziv Algorithm

- Lempel-Ziv parsing and "basic" encoding of s

phrases	λ	1	0	00	01	10	100	011	11
indices	0	0	0	0	0	0	0	0	1
	0	0	0	0	1	1	1	1	0
	0	0	1	1	0	0	1	1	0
	0	1	0	1	0	1	0	1	0
encoding	, 1	0,0	10,0	10,1	001,0	101,0	100,1	001,1	

- Remarks
- Parsing starts with empty string
- First pointer sent is also empty
- Only "important" index bits are used
- Even so, "compressed" 16 bits to 25 bits

The "Modified" Lempel-Ziv Algorithm

- The second time a phrase occurs,
- the extra bit is known
- it cannot be extended a distinct third way
\Rightarrow the second extension may overwrite the parent
- Lempel-Ziv parsing and "modified" encoding of s

phrases	λ	1	0	00	01	10	100	011	11
indices	0	0	0	0	0	0	1	1	0
	0	0	0	1	0	1	0	0	0
	0	1	0	0	0	1	0	1	1
encoding	, 1	0,	0,0	00,	01,0	11,0	000,1	001,	

\Rightarrow saved 5 bits! (still 16:19 "compression")

- Codeword lengths of Lempel-Ziv codes satisfy (index + extra bit)

$$
l\left(x_{1}^{n}\right) \leq c(n)(\log c(n)+1)
$$

- Using a counting argument, the number of phrases $c(n)$ in a distinct parsing of a length n sequence is bounded as

$$
c(n) \leq \frac{n}{\log n}(1+o(1))
$$

- Ziv's lemma relates distinct parsings and a $k^{\text {th }}$-order Markov approximation of the underlying distribution.
- Combining the above leads to the optimality result:
- For a stationary and ergodic source $\left\{X_{n}\right\}$,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} l\left(X_{1}^{n}\right) \leq H(\mathcal{S}) \quad \text { a.s. }
$$

Generating Discrete Distributions from Fair Coins

- A natural inverse to data compression
- Source encoders aim to produce i.i.d. fair bits (symbols)
- Source decoders noiselessly reproduce the original source sequence (with the proper distribution)
\Rightarrow "Optimal" source decoders provide an efficient way to generate discrete random variables

