Information Theory

Lecture 5

e Continuous variables and Gaussian channels: CT8-9

e Differential entropy: CT8
e Capacity and coding for Gaussian channels: CT9
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“Entropy” of a Continuous Variable

e A continuous random variable, X, with pdf f(z).

e A quantizer z(X), with quantizer interval A

X—>J_/_,—’_II—>Z:z(X)

IN<X<(i+1D)A = Z=2(X)=u;

where

for some z; € [iA, (i + 1)A].

e The variable Z has entropy

H(Z) == _p(i)logp(i),
where p(i) = Pr(iA < X < (i +1)A).
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e Notice that

(i+1)A

p(i) = / F(x)de = ) A

JAN

for some z; € [iA, (i + 1)A]. Hence for small A, we get
H(Z) = =) _ f(z:)A log(f(2:)A)
S i:f(xi)A log f(z;) — log A
~_ /Z F(2)log f(x)dz — log A

(if f(x) is Riemann integrable).
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o Define the differential entropy h(X), or h(f), of X as

B(X) 2 - / f(x)log f(2)dz

(if the integral exists).

e Then for small A
H(Z)+log A ~ h(X)

e Note that H(Z) — oo, in general, even if h(X) exists and is finite;
e h(X) is not “entropy,” and H(Z) — h(X) does not hold!
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o Maximum differential entropy:
For any random variable X with pdf f(z) such that

BIX?] = / P2 f(z)ds = P

it holds that .
h(X) < 5 log 2me P
with equality iff f(x) = N (0, P).
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Typical Sets for Continuous Variables

A discrete-time continuous-amplitude i.i.d. process {X,,}, with
marginal pdf f(z) of support X.

It holds that

— lim llogf(Xf‘) = —Flog f(X1) = h(f) a.s.

n—oo 7,

Define the typical set A | with respect to f(x), as

AW = [at e x|~ “log f(a) ~ h(f)| < <}

For A C R", define
Vol(A) £ / dz?

A
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For n sufficiently large

Pr(X7 € AM) = " faMday >1—¢

and
Vol(A™) > (1 — )2n (=)

For all n

Vol(A(M) < gn(k(P+)

Since Vol(Ag”)) ~ 2nhl0) = (2))" h(f) is the logarithm of the

side-length of a hypercube with the same volume as A,E”).

o Low h(f) = X7 typically lives in a small subset of R".

Jointly typical sequences: Straightforward extension.
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Relative Entropy and Mutual Information

e Define the relative entropy between the pdfs f and g as

D(fllg) = /f )1og? ;dx

and the mutual information between (X,Y) ~ f(z,y) as

I(X;Y) = D(f(ivay)\\f(w)f(y))

y)
/ fxylog >f(>dxdy

e While h(X), for a continuous real-valued X, does not have an
interpretation as “entropy,” both D(f||g) and I(X;Y) have
equivalent interpretations as in the discrete case.
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e In fact, both relative entropy and mutual information exist, and their
operational interpretations stay intact, under very general conditions.

o Let X € X and Y € ) be random variables (or “measurable
functions”) defined on a common abstract probability space
(2, B, P). Let gq(x) and r(y) be “quantizers” that map X and Y,
respectively, into real-valued discrete versions ¢(X) and »(Y'). Then,
mutual information is defined as

I(X;Y) £supI(q(X);r(Y)),

over all quantizers ¢ and r. (The two previous definitions of I(X;Y)
are then special cases of this general definition.)
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The Gaussian Channel

o A continuous-alphabet memoryless channel (X, f(y|x),)) maps a
continuous real-valued channel input X € X to a continuous
real-valued channel output Y € )/, in a stochastic and memoryless
manner as described by the conditional pdf f(y|z).

e A memoryless Gaussian channel (with noise variance o2) is defined as
X =Y =R, and

1

2mo

1
202

flylz) = exp ( - —(y— w)2>-

2

That is, for a given X = x the channel adds zero mean Gaussian
“noise” Z, of variance o2, such that the variable Y =z + Z is
measured at its output.
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e Coding for a continuous X: if X is very large, or even X = R, coding
needs to be defined subject to a power constraint.
e An (M, n) code with an average power constraint P:
©® An index set Ty = {1,..., M}.
® An encoder mapping o : Ly — X™, which defines the codebook

C, = {x? cxl = ali), Vi € ZM} = {x?(l),,aj?(M)},

subject to
n

z2 (i) < P, VYieTIy.
1

S|

m=

© A decoder mapping 5 : V" — L.
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e A rate
A log M

n

is achievable (subject to the power constraint P) if there exists a
sequence of ([2"%],n) codes with codewords satisfying the power
constraint, and such that the maximal probability of error

A — max Pr(ﬁ(YfL) #i| X|' = x?@))

tends to 0 as n — oc.

The capacity C' is the supremum of all rates that
are achievable over the channel.
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Memoryless Gaussian Channel: Lower Bound for C

e Gaussian random code design: Fix the distribution

@)= 27(; 7 (_Z(Pm—ie))

and draw

I.i.d. according to

e Encoding: A message w € Z)s is encoded as X7 (w)
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e Transmission: Received sequence

Y= X7 (w) + 27

where {Z,,} are i.i.d. zero-mean Gaussian with E[Z2] = o2.

e Decoding: Declare @w = (Y{") =1 if X{'(¢) is the only codeword
such that
(XT(0), Y{") € AL

and in addition 1 3" | X2 (i) < P, otherwise set @ = 0.

e Average probability of error:
Tn = Pr(& # w) = {symmetry} = Pr(& # 1|lw = 1)

with “Pr” over the random codebook and the noise.
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o |Let |
Ey=<~- X2(1)>P
0 {nzm m()> }
and

£ {0,330+ 20) € A7)

then
WnIP(E()UEfUEQU"'UEM)

< P(Ey) + P(EY) + ZA; P(E;)

e Fix a small € > 0:

e Law of large numbers: P(Ey) < € for sufficiently large n, since
LS 1 X2(1) = P—¢ as.

o Joint AEP: P(EY) < e for sufficiently large n.
e Definition of joint typicality:

P(E;) < 2 nU(XsY)=3e) =y —9 M.
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e For sufficiently large n, we thus get

7, < 2 + 2 U(X3Y)—R—3¢)

with
1005 = [ ol a0 0wy

where f(x) = N (0, P — ¢) generated the codebook and f(y|x) is
given by the channel. Since f(y|z) = N (z,0?)

1 P-
I(X;Y) = 5 log (1 + 5)
o)
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e Aslongas R< I(X;Y)— 3¢, my, — 0 asn — oo = exists at least
one code, say C¥, with PI' — 0 for R< I(X;Y) — 3¢

e Throw away worst half of the codewords in C;; to strengthen from

Pe(n) to A(™) (the worst half has the codewords that do not satisfy the
power constraint, i.e., A\; =1) = all

P_
R<- log (1 + 5)
o
are achievable forall e >0 —

P
C > - log<1+—2>
o

Mikael Skoglund, Information Theory 17/26

Memoryless Gaussian Channel: An Upper Bound for C

e Consider any sequence of codes that can achieve the rate R, that is
AW —0and 2 30 2 (i) < P, Vn.

mlm

e Assume w € Zjps equally likely. Fano —

R<—Z[:cm m) + €n

where ¢,, = % + RPe(n) — 0 as n — oo, and where
I(xm(w) Y, ) = h(Y ) h(Zm)
1
= h(Y,) — 5 log 2mec?
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o Since E[Y2] = Py, + 02 where P, = - 31 22 (i) we get
1
h(Yi) < 5 log 2me(a? + Pp,)

and hence I (2, (w); Yin) < 3log(1l+ 1;—7;) Thus,

1 1 P,
Rgﬁg ilog(l+?)—|—en
m=1
1 1 P
2 o2
1 P 1 P
< logll+—=5)+en = Slog(l+—5 | as n—o0
2 o 2 o

for all achievable R, due to Jensen's inequality and the power
constraint —

1 P
C < §log(1+§>
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The Coding Theorem for a Memoryless Gaussian Channel

Theorem

A memoryless Gaussian channel with noise variance o> and power
constraint P has capacity

1 P
C’:§log(1—|—§>

That is, all rates R < C' and no rates R > C are achievable.
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AWGN Capacity vs. Simple Binary Scheme

I I
Capacity
2 | ——2-PAM =

-4 =2 0 2 4 6 8 10 12 14
SNR = 10 - log,, O_%
Simple binary scheme:
o Two possible input values: X € {—v/P,+/P}
o Continuous output (soft decoder): ¥ =X+ 7 €R
e Rate: I(X;Y)=h(X+Z)—h(2)
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Parallel Gaussian Channels

e Consider the scenario where there are K available channels
Y. =X+ 2%, k=1,...K,

that can be used simultaneously. Here we assume that Z;. are

zero-mean independent Gaussian, with E[ZZ] = o2,

e The capacity of the equivalent “super-channel” is obtained by
signaling independently with powers P, = E[X?] determined as

Pk:{ﬁ—o,%, o < B

0, ol >3

where [ is chosen such that ), P, = P, the total transmit power.
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B ";_“_T____T____“__"
P
, s
T i l o2 <~ “water-filling”
LT
1 ¢2 o2
LLE

e The total capacity is then the sum of the capacities of the individual

sub-channels
1 P
k
k=1 k

where P was defined previously.

e All channels “linearly related” to a set of parallel Gaussian channels
can be handled using the above results!
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Gaussian Waveform Channel

e Linear-filter waveform channel with Gaussian noise

e Independent Gaussian noise with spectral density N(f)
o Linear filter H(f)

e Input and output confined to time interval (— %, %)
e Power constraint
T/2
1 / dt < P
T/2
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e This channel has capacity (in bits per second) given by

1 H(f)]?- 8
C =— | d
2/]-“(6) TN /

"= /f@ [5 - |g<<f>)|2] S

FB)={f:N(f)-H()* < B}

and where different possible pairs (C, P) correspond to different
values of 5 € (0, c0).

where
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e That is, there exists a code (set of M possible input waveforms) such
that arbitrarily low error probability is possible as long as

_ log M

R
T

<C

and as T' — oco. For R > C the error probability is > 0.

e The famous special case of a band-limited AWGN channel:
e Perfect low-pass filter of bandwidth W

)1 I swW
H(f)—{0 W

e White Gaussian noise, with N(f) = Ny/2
e The capacity of this channel is (Shannon '48):

C=W-log (1 + ) [bits per second]

W Ny
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