
Information Theory
Lecture 5

• Continuous variables and Gaussian channels: CT8–9
• Differential entropy: CT8
• Capacity and coding for Gaussian channels: CT9
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“Entropy” of a Continuous Variable

• A continuous random variable, X, with pdf f(x).

• A quantizer z(X), with quantizer interval ∆

X Z = z(X)

where
i∆ ≤ X < (i+ 1)∆ =⇒ Z = z(X) = xi

for some xi ∈ [i∆, (i+ 1)∆].

• The variable Z has entropy

H(Z) = −
∑
i

p(i) log p(i),

where p(i) = Pr
(
i∆ ≤ X < (i+ 1)∆

)
.
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• Notice that

p(i) =

∫ (i+1)∆

i∆
f(x)dx = f(xi)∆

for some xi ∈ [i∆, (i+ 1)∆]. Hence for small ∆, we get

H(Z) = −
∑
i

f(xi)∆ log
(
f(xi)∆

)
= −

∑
i

f(xi)∆ log f(xi)− log ∆

≈ −
∫ ∞
−∞

f(x) log f(x)dx− log ∆

(if f(x) is Riemann integrable).
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• Define the differential entropy h(X), or h(f), of X as

h(X) , −
∫
f(x) log f(x)dx

(if the integral exists).

• Then for small ∆

H(Z) + log ∆ ≈ h(X)

• Note that H(Z)→∞, in general, even if h(X) exists and is finite;

• h(X) is not “entropy,” and H(Z)→ h(X) does not hold!
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• Maximum differential entropy:
For any random variable X with pdf f(x) such that

E[X2] =

∫
x2f(x)dx = P

it holds that

h(X) ≤ 1

2
log 2πeP

with equality iff f(x) = N (0, P ).
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Typical Sets for Continuous Variables

• A discrete-time continuous-amplitude i.i.d. process {Xm}, with
marginal pdf f(x) of support X .

• It holds that

− lim
n→∞

1

n
log f(Xn

1 ) = −E log f(X1) = h(f) a.s.

• Define the typical set A
(n)
ε , with respect to f(x), as

A(n)
ε =

{
xn1 ∈ X n :

∣∣∣− 1

n
log f(xn1 )− h(f)

∣∣∣ ≤ ε}
• For A ⊂ Rn, define

Vol(A) ,
∫
A
dxn1
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• For n sufficiently large

Pr
(
Xn

1 ∈ A(n)
ε

)
=

∫
A

(n)
ε

f(xn1 )dxn1 > 1− ε

and
Vol
(
A(n)
ε

)
≥ (1− ε)2n(h(f)−ε)

• For all n
Vol
(
A(n)
ε

)
≤ 2n(h(f)+ε)

• Since Vol
(
A

(n)
ε

)
≈ 2nh(f) =

(
2h(f)

)n
, h(f) is the logarithm of the

side-length of a hypercube with the same volume as A
(n)
ε .

• Low h(f) =⇒ Xn
1 typically lives in a small subset of Rn.

• Jointly typical sequences: Straightforward extension.
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Relative Entropy and Mutual Information

• Define the relative entropy between the pdfs f and g as

D(f‖g) =

∫
f(x) log

f(x)

g(x)
dx

and the mutual information between (X,Y ) ∼ f(x, y) as

I(X;Y ) = D
(
f(x, y)‖f(x)f(y)

)
=

∫∫
f(x, y) log

f(x, y)

f(x)f(y)
dxdy

• While h(X), for a continuous real-valued X, does not have an
interpretation as “entropy,” both D(f‖g) and I(X;Y ) have
equivalent interpretations as in the discrete case.
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• In fact, both relative entropy and mutual information exist, and their
operational interpretations stay intact, under very general conditions.

• Let X ∈ X and Y ∈ Y be random variables (or “measurable
functions”) defined on a common abstract probability space
(Ω,B, P ). Let q(x) and r(y) be “quantizers” that map X and Y ,
respectively, into real-valued discrete versions q(X) and r(Y ). Then,
mutual information is defined as

I(X;Y ) , sup I
(
q(X); r(Y )

)
,

over all quantizers q and r. (The two previous definitions of I(X;Y )
are then special cases of this general definition.)
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The Gaussian Channel

• A continuous-alphabet memoryless channel (X , f(y|x),Y) maps a
continuous real-valued channel input X ∈ X to a continuous
real-valued channel output Y ∈ Y, in a stochastic and memoryless
manner as described by the conditional pdf f(y|x).

• A memoryless Gaussian channel (with noise variance σ2) is defined as
X = Y = R, and

f(y|x) =
1√

2πσ2
exp

(
− 1

2σ2
(y − x)2

)
.

That is, for a given X = x the channel adds zero mean Gaussian
“noise” Z, of variance σ2, such that the variable Y = x+ Z is
measured at its output.
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• Coding for a continuous X : if X is very large, or even X = R, coding
needs to be defined subject to a power constraint.

• An (M,n) code with an average power constraint P :

1 An index set IM , {1, . . . ,M}.
2 An encoder mapping α : IM 7−→ Xn, which defines the codebook

Cn ,
{
xn1 : xn1 = α(i), ∀ i ∈ IM

}
=
{
xn1 (1), . . . , xn1 (M)

}
,

subject to

1

n

n∑
m=1

x2m(i) ≤ P, ∀ i ∈ IM .

3 A decoder mapping β : Yn 7−→ IM .
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• A rate

R ,
logM

n

is achievable (subject to the power constraint P ) if there exists a
sequence of (d2nRe, n) codes with codewords satisfying the power
constraint, and such that the maximal probability of error

λ(n) = max
i

Pr
(
β(Y n

1 ) 6= i | Xn
1 = xn1 (i)

)
tends to 0 as n→∞.

The capacity C is the supremum of all rates that
are achievable over the channel.
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Memoryless Gaussian Channel: Lower Bound for C

• Gaussian random code design: Fix the distribution

f(x) =
1√

2π(P − ε)
exp

(
− x2

2(P − ε)

)
and draw

Cn =
{
Xn

1 (1), . . . , Xn
1 (M)

}
i.i.d. according to

f(xn1 ) =
∏
m

f(xm).

• Encoding: A message ω ∈ IM is encoded as Xn
1 (ω)
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• Transmission: Received sequence

Y n
1 = Xn

1 (ω) + Zn1

where {Zm} are i.i.d. zero-mean Gaussian with E[Z2
m] = σ2.

• Decoding: Declare ω̂ = β(Y n
1 ) = i if Xn

1 (i) is the only codeword
such that

(Xn
1 (i), Y n

1 ) ∈ A(n)
ε

and in addition 1
n

∑n
m=1X

2
m(i) ≤ P , otherwise set ω̂ = 0.

• Average probability of error:

πn = Pr(ω̂ 6= ω) =
{

symmetry
}

= Pr(ω̂ 6= 1|ω = 1)

with “Pr” over the random codebook and the noise.
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• Let

E0 =

{
1

n

∑
m
X2
m(1) > P

}
and

Ei =
{(
Xn

1 (i), Xn
1 (1) + Zn1

)
∈ A(n)

ε

}
then

πn = P (E0 ∪ Ec1 ∪ E2 ∪ · · · ∪ EM )

≤ P (E0) + P (Ec1) +
∑M

i=2
P (Ei)

• Fix a small ε > 0:

• Law of large numbers: P (E0) < ε for sufficiently large n, since
1
n

∑n
m=1X

2
m(1)→ P − ε a.s.

• Joint AEP: P (Ec
1) < ε for sufficiently large n.

• Definition of joint typicality:

P (Ei) ≤ 2−n(I(X;Y )−3ε), i = 2, . . . ,M.
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• For sufficiently large n, we thus get

πn ≤ 2ε+ 2−n(I(X;Y )−R−3ε)

with

I(X;Y ) =

∫∫
f(y|x)f(x) log

f(y|x)∫
f(y|x)f(x)dx

dxdy

where f(x) = N (0, P − ε) generated the codebook and f(y|x) is
given by the channel. Since f(y|x) = N (x, σ2)

I(X;Y ) =
1

2
log

(
1 +

P − ε
σ2

)
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• As long as R < I(X;Y )− 3ε, πn → 0 as n→∞ =⇒ exists at least
one code, say C∗n, with Pne → 0 for R < I(X;Y )− 3ε

• Throw away worst half of the codewords in C∗n to strengthen from

P
(n)
e to λ(n) (the worst half has the codewords that do not satisfy the

power constraint, i.e., λi = 1) =⇒ all

R <
1

2
log

(
1 +

P − ε
σ2

)
are achievable for all ε > 0 =⇒

C ≥ 1

2
log

(
1 +

P

σ2

)
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Memoryless Gaussian Channel: An Upper Bound for C

• Consider any sequence of codes that can achieve the rate R, that is
λ(n) → 0 and 1

n

∑n
m=1 x

2
m(i) ≤ P, ∀n.

• Assume ω ∈ IM equally likely. Fano =⇒

R ≤ 1

n

n∑
m=1

I(xm(ω);Ym) + εn

where εn = 1
n +RP

(n)
e → 0 as n→∞, and where

I(xm(ω);Ym) = h(Ym)− h(Zm)

= h(Ym)− 1

2
log 2πeσ2
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• Since E[Y 2
m] = Pm + σ2 where Pm = 1

M

∑M
i=1 x

2
m(i) we get

h(Ym) ≤ 1

2
log 2πe(σ2 + Pm)

and hence I(xm(ω);Ym) ≤ 1
2 log(1 + Pm

σ2 ). Thus,

R ≤ 1

n

n∑
m=1

1

2
log

(
1 +

Pm
σ2

)
+ εn

≤ 1

2
log

(
1 +

1
n

∑
m Pm

σ2

)
+ εn

≤ 1

2
log

(
1 +

P

σ2

)
+ εn →

1

2
log

(
1 +

P

σ2

)
as n→∞

for all achievable R, due to Jensen’s inequality and the power
constraint =⇒

C ≤ 1

2
log

(
1 +

P

σ2

)
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The Coding Theorem for a Memoryless Gaussian Channel

Theorem

A memoryless Gaussian channel with noise variance σ2 and power
constraint P has capacity

C =
1

2
log

(
1 +

P

σ2

)
That is, all rates R < C and no rates R > C are achievable.
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AWGN Capacity vs. Simple Binary Scheme
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0

1

2

SNR = 10 · log10 P
σ2

b
p

cs

Capacity

2-PAM

Simple binary scheme:

• Two possible input values: X ∈ {−
√
P ,
√
P}

• Continuous output (soft decoder): Y = X + Z ∈ R
• Rate: I(X;Y ) = h(X + Z)− h(Z)
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Parallel Gaussian Channels

• Consider the scenario where there are K available channels

Yk = Xk + Zk, k = 1, . . .K,

that can be used simultaneously. Here we assume that Zk are
zero-mean independent Gaussian, with E[Z2

k ] = σ2
k.

• The capacity of the equivalent “super-channel” is obtained by
signaling independently with powers Pk = E[X2

k ] determined as

Pk =

{
β − σ2

k, σ2
k < β

0, σ2
k ≥ β

where β is chosen such that
∑

k Pk = P , the total transmit power.
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β

σ2
1

σ2
2

σ2
3

σ2
4

P1

P2

P3

“water-filling”

• The total capacity is then the sum of the capacities of the individual
sub-channels

C =
1

2

K∑
k=1

log

(
1 +

Pk
σ2
k

)
,

where Pk was defined previously.

• All channels “linearly related” to a set of parallel Gaussian channels
can be handled using the above results!
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Gaussian Waveform Channel

X(t)(
− T

2
, T

2

) H(f) +

N(f)

Y (t)(
− T

2
, T

2

)

• Linear-filter waveform channel with Gaussian noise

• Independent Gaussian noise with spectral density N(f)

• Linear filter H(f)

• Input and output confined to time interval
(
− T

2 ,
T
2

)
• Power constraint

1

T

∫ T/2

−T/2

E[X2(t)]dt ≤ P
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N(f)/|H(f)|2

β

S(f)

f

• This channel has capacity (in bits per second) given by

C =
1

2

∫
F(β)

log
|H(f)|2 · β
N(f)

df

P =

∫
F(β)

[
β − N(f)

|H(f)|2

]
df

where
F(β) =

{
f : N(f) · |H(f)|−2 ≤ β

}
and where different possible pairs (C,P ) correspond to different
values of β ∈ (0,∞).
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• That is, there exists a code (set of M possible input waveforms) such
that arbitrarily low error probability is possible as long as

R =
logM

T
< C

and as T →∞. For R > C the error probability is > 0.

• The famous special case of a band-limited AWGN channel:
• Perfect low-pass filter of bandwidth W

H(f) =

{
1 |f | ≤W
0 |f | > W

• White Gaussian noise, with N(f) = N0/2

• The capacity of this channel is (Shannon ’48):

C = W · log

(
1 +

P

WN0

)
[bits per second]
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