# Information Theory 

## Lecture 7

- Finite fields continued: MWS4.1-MWS4.5 (MWS4.6-8)
- the field GF $\left(p^{m}\right), \ldots$


## - Cyclic Codes

- Intro. to cyclic codes: MWS7 (not MWS7.7)


## The Field GF $\left(p^{m}\right)$

- $\pi(x)$ irreducible degree- $m$ over $\operatorname{GF}(p), p$ a prime,
$\operatorname{GF}\left(p^{m}\right)=$ all polynomials over $\mathrm{GF}(p)$ of degree $\leq m-1$, with calculations modulo $p$ and $\pi(x)$
- modulo $\pi(x) \leftrightarrow$ use $\pi(x)=0$ to reduce $x^{m}$ to degree $<m$
- without loss of generality, $\pi(x)$ can be assumed monic
- The prime number $p$ is called the characteristic of $\operatorname{GF}\left(p^{m}\right)$; smallest $p$ such that $\sum_{i=1}^{p} 1=0$
- $\mathrm{GF}\left(p^{m}\right)$ is a linear vector space of dimension $m$ over $\operatorname{GF}(p)$
- For $s<r, \operatorname{GF}\left(p^{s}\right) \subset \mathrm{GF}\left(p^{r}\right) \Longleftrightarrow s \mid r$
- For $\beta \in \operatorname{GF}\left(p^{r}\right), \beta \in \mathrm{GF}\left(p^{s}\right) \Longleftrightarrow \beta^{p^{s}}=\beta$


## The Cyclic Group $G=\operatorname{GF}\left(p^{m}\right) \backslash\{0\}$

- For any $\beta \in \operatorname{GF}\left(p^{m}\right)$, the smallest $r>0$ such that $\beta^{r}=1$ is called the order of $\beta$.
- The elements in $G=\operatorname{GF}\left(p^{m}\right) \backslash\{0\}$ form a cyclic group;
- There exists an element $\alpha \in \operatorname{GF}\left(p^{m}\right)$ of order $r=p^{m}-1$ that generates all the non-zero elements of $\operatorname{GF}\left(p^{m}\right)$, that is

$$
G=\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{r-1}\right\}
$$

- Any such $\alpha$ is called a primitive element
$\Longrightarrow$ Fermat's theorem: Any $\beta \in \operatorname{GF}(q)$ satisfies $\beta^{q}=\beta$, that is

$$
x^{q}-x=\prod_{\beta \in \mathrm{GF}(q)}(x-\beta)=x \prod_{i=1}^{r-1}\left(x-\alpha^{i}\right)
$$

## Polynomial Factorizations

- For $\beta \in \mathrm{GF}\left(p^{m}\right)$ the minimal polynomial of $\beta$ is the lowest degree monic polynomial $m(x)$ over $\mathrm{GF}(p)$ with $\beta$ as a root
- $m(x)$ is irreducible, has degree $s \leq m$ such that $s \mid m$, and roots

$$
\beta, \beta^{p}, \beta^{2 p}, \ldots, \beta^{(s-1) p}
$$

called conjugates

- If $f(\beta)=0$ for $f(x) \neq m(x)$ over $\operatorname{GF}(p)$, then $m(x) \mid f(x)$;

$$
f(\beta)=0 \Longrightarrow f\left(\beta^{p}\right)=0
$$

- The minimal polynomial of a primitive element in $\mathrm{GF}\left(p^{m}\right)$ has degree $m$, and is called a primitive polynomial
- A field has at least one primitive element.
- When generating $\operatorname{GF}\left(p^{m}\right)$ using $\pi(x)$ with roots $\alpha, \alpha^{p}, \ldots, \alpha^{(m-1) p}$, the element $\alpha$ is primitive in $\operatorname{GF}\left(p^{m}\right)$; this is our "standard" primitive element, henceforth denoted $\alpha$
- Let $m^{(i)}(x)$ be the minimal polynomial of $\alpha^{i} \in \mathrm{GF}(q)$, then

$$
x^{q-1}-1=\prod_{t} m^{(t)}(x)
$$

over all $t \in\{1,2, \ldots, q-1\}$ that give different $m^{(t)}(x)^{\prime}$ 's

- An independent statement is: $x^{p^{m}}-x=$ product of all monic irreducible polynomials over $\mathrm{GF}(p)$ with degrees that divide $m$ $\Longrightarrow$ help to identify the $m^{(i)}(x)^{\prime} \mathrm{s}$
- $m^{(i)}(x)$ of degree $s \Longrightarrow m^{(-i)}(x)=x^{s} m^{(i)}\left(x^{-1}\right)$


## Cyclic Codes

- $\mathcal{C}$ over $\mathrm{GF}(q)$ is cyclic $\Longleftrightarrow \mathcal{C}$ is linear and

$$
\left(c_{0}, \ldots, c_{n-1}\right) \in \mathcal{C} \Longrightarrow\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in \mathcal{C}
$$

- For a cyclic code $\mathcal{C}$, let $\mathbf{c}=\left(c_{0}, \ldots, c_{n-1}\right) \in \mathcal{C}$ correspond to a codeword polynomial $c(x)$ over $\operatorname{GF}(q)$, such that

$$
c(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n-1} x^{n-1}
$$

- A cyclic shift $\leftrightarrow$ multiplication with $x$ modulo $x^{n}-1$
- Let $\mathcal{R}_{n}=$ "the set of all polynomials over $\operatorname{GF}(q)$ that are equal modulo $x^{n}-1$ "
- Given $g(x) \in \mathcal{R}_{n}$, let

$$
\langle g(x)\rangle=\left\{c(x): c(x)=u(x) g(x), \text { over all } u(x) \in \mathcal{R}_{n}\right\}
$$

- A cyclic code of length $n$ with generator polynomial $g(x) \in \mathcal{R}_{n}$ is then formally defined as

$$
\mathcal{C}=\langle g(x)\rangle
$$

## The Generator Polynomial $g(x)$

- For $\mathcal{C}=\langle g(x)\rangle$,
- $g(x)$ is the unique monic polynomial in $\mathcal{C}$ of minimal degree $r$
- the dimension of $\mathcal{C}$ is $k=n-r$
- $g(x) \mid x^{n}-1$
- any $u(x)$ over $\mathrm{GF}(q)$ of degree $<n-r$ corresponds uniquely to a $c(x) \in \mathcal{C}$ via $c(x)=u(x) g(x)$ over $\mathrm{GF}(q)$
- $k$ message symbols $\left(u_{0}, \ldots, u_{k-1}\right), u_{l} \in \mathrm{GF}(q)$, give a codeword $c(x)$ as

$$
c(x)=u(x) g(x), u(x)=u_{0}+u_{1} x+\cdots+u_{k-1} x^{k-1}
$$

- C.f., $\mathbf{c} \in \mathbf{C} \Longleftrightarrow \mathbf{c}=\mathbf{u G}$


## The Parity Check Polynomial $h(x)$

- The polynomial

$$
h(x)=\frac{x^{n}-1}{g(x)}
$$

is the parity check polynomial of the cyclic code $\langle g(x)\rangle$ of length $n$

- $g(x) h(x)=0$, and $c(x) \in\langle g(x)\rangle \Longleftrightarrow c(x) h(x)=0$ in $\mathcal{R}_{n} ;$ c.f.,

$$
\mathbf{G H}^{T}=\mathbf{0} \text { and, } \mathbf{c} \in \mathcal{C} \Longleftrightarrow \mathbf{c H}^{T}=\mathbf{0}
$$

- $h(x)$ has degree $k=$ dimension of $\langle g(x)\rangle$


## G and H matrices

- For a cyclic code with

$$
\begin{aligned}
& g(x)=g_{r} x^{r}+g_{r-1} x^{r-1}+\cdots+g_{0} \\
& h(x)=h_{k} x^{k}+h_{k-1} x^{k-1}+\cdots+h_{0}
\end{aligned}
$$

we get $\mathbf{G}$ and $\mathbf{H}$ in cyclic form as

$$
\begin{aligned}
\mathbf{G} & =\left[\begin{array}{cccccccc}
g_{0} & g_{1} & \cdots & g_{r} & 0 & 0 & \cdots & 0 \\
0 & g_{0} & g_{1} & \cdots & g_{r} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & g_{0} & g_{1} & \cdots & g_{r}
\end{array}\right] \\
\mathbf{H} & =\left[\begin{array}{cccccccc}
0 & 0 & \cdots & 0 & h_{k} & h_{k-1} & \cdots & h_{0} \\
0 & \cdots & 0 & h_{k} & h_{k-1} & \cdots & h_{0} & 0 \\
h_{k} & h_{k-1} & \cdots & h_{0} & 0 & 0 & \cdots & 0
\end{array}\right]
\end{aligned}
$$

- Encoding and decoding circuitry based on simple logical operations straightforward to derive...
- Construct and analyze (cyclic) codes based on finite field theory and polynomial factorizations


## Factors of $x^{n}-1$

- Cyclic code over $\mathrm{GF}(q): g(x) h(x)=x^{n}-1=\prod\{$ irreducible factors $\} \Longrightarrow$ code can be constructed based on the factors
- Assume (always) $n$ and $q$ relatively prime (no common factors) $\Longrightarrow$ exists a smallest $m$ such that $n \mid q^{m}-1$
- The $n$ zeros of $x^{n}-1 \in \operatorname{GF}\left(q^{m}\right)$ and no smaller field,

$$
x^{n}-1=\prod_{i=1}^{n}\left(x-\alpha_{i}\right)
$$

for some $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset \operatorname{GF}\left(q^{m}\right)$ with the $\alpha_{i}$ 's distinct

- The $n$th roots of unity; $\mathrm{GF}\left(q^{m}\right)$ is the splitting field of $x^{n}-1$
- The roots $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ form a cyclic group $\subset \mathrm{GF}\left(q^{m}\right)$, that is, there is an $\alpha \in \operatorname{GF}\left(q^{m}\right)$, the primitive $n$th root of unity, such that

$$
x^{n}-1=\prod_{i=0}^{n-1}\left(x-\alpha^{i}\right)
$$

- $n=q^{m}-1 \Longleftrightarrow \alpha$ is a primitive element in $\operatorname{GF}\left(q^{m}\right)$
- Assume $\alpha$ a primitive $n$th root of unity $\in \mathrm{GF}\left(q^{m}\right)$ where $m$ is the smallest integer such that $n \mid q^{m}-1$, $p^{(i)}(x)=$ minimal polynomial of $\alpha^{i} \in \mathrm{GF}\left(q^{m}\right) \Longrightarrow$

$$
x^{n}-1=\prod_{j} p^{(j)}(x)
$$

over all $j \in\{0, \ldots, n-1\}$ that give different $p^{(j)}(x)$ 's

- Given a factorization

$$
x^{n}-1=\prod_{j} p^{(j)}(x)
$$

some of the $p^{(j)}(x)$ 's can form $g(x)$ and the others $h(x)$;

- The zeros of a code,
- let $\mathcal{C}=\langle g(x)\rangle$ of length $n$, and let $K=\left\{k: p^{(k)}(x) \mid g(x)\right\}$, then $\left\{\alpha^{k}: k \in K\right\}$ are called the zeros of the code;
- i.e., all roots of $g(x)$
- $\alpha^{i}$ for $i \notin K(i \leq n-1)$ are the nonzeros (all roots of $h(x)$ )
- the nonzeros of $\mathcal{C}$ are the zeros of $\mathcal{C}^{\perp}$ and vice versa

