Information Theory Lecture 7

- Finite fields continued: MWS4.1–MWS4.5 (MWS4.6–8)
 - the field $GF(p^m),\ldots$
- Cyclic Codes
 - Intro. to cyclic codes: MWS7 (not MWS7.7)

Mikael Skoglund, Information Theory

The Field $GF(p^m)$

• $\pi(x)$ irreducible degree-m over $\mathrm{GF}(p)$, p a prime,

 $\operatorname{GF}(p^m) =$ all polynomials over $\operatorname{GF}(p)$ of degree $\leq m-1$, with calculations modulo p and $\pi(x)$

- modulo $\pi(x) \leftrightarrow$ use $\pi(x) = 0$ to reduce x^m to degree < m
- without loss of generality, $\pi(x)$ can be assumed *monic*
- The prime number p is called the *characteristic* of $GF(p^m)$; smallest p such that $\sum_{i=1}^{p} 1 = 0$
- $GF(p^m)$ is a linear vector space of dimension m over GF(p)
- For s < r, $\operatorname{GF}(p^s) \subset \operatorname{GF}(p^r) \iff s|r|$
- For $\beta \in \operatorname{GF}(p^r)$, $\beta \in \operatorname{GF}(p^s) \iff \beta^{p^s} = \beta$

The Cyclic Group $G = GF(p^m) \setminus \{0\}$

- For any β ∈ GF(p^m), the smallest r > 0 such that β^r = 1 is called the *order* of β.
- The elements in $G = GF(p^m) \setminus \{0\}$ form a *cyclic group*;
 - There exists an element $\alpha \in GF(p^m)$ of order $r = p^m 1$ that generates all the non-zero elements of $GF(p^m)$, that is

$$G = \{1, \alpha, \alpha^2, \dots, \alpha^{r-1}\}$$

• Any such α is called a *primitive element*

 \implies Fermat's theorem: Any $\beta \in GF(q)$ satisfies $\beta^q = \beta$, that is

$$x^{q} - x = \prod_{\beta \in GF(q)} (x - \beta) = x \prod_{i=1}^{r-1} (x - \alpha^{i})$$

Mikael Skoglund, Information Theory

Polynomial Factorizations

- For β ∈ GF(p^m) the minimal polynomial of β is the lowest degree monic polynomial m(x) over GF(p) with β as a root
- m(x) is irreducible, has degree $s \leq m$ such that s|m, and roots

$$\beta, \beta^p, \beta^{2p}, \ldots, \beta^{(s-1)p}$$

called *conjugates*

• If $f(\beta) = 0$ for $f(x) \neq m(x)$ over GF(p), then m(x)|f(x);

$$f(\beta)=0\implies f(\beta^p)=0$$

• The minimal polynomial of a primitive element in $GF(p^m)$ has degree m, and is called a *primitive polynomial*

- A field has at least one primitive element.
 - When generating $GF(p^m)$ using $\pi(x)$ with roots $\alpha, \alpha^p, \ldots, \alpha^{(m-1)p}$, the element α is primitive in $GF(p^m)$; this is our "standard" primitive element, henceforth denoted α
- Let $m^{(i)}(x)$ be the minimal polynomial of $\alpha^i \in GF(q)$, then

$$x^{q-1} - 1 = \prod_{t} m^{(t)}(x)$$

over all $t \in \{1, 2, \dots, q-1\}$ that give different $m^{(t)}(x)$'s

- An independent statement is: x^{p^m} − x = product of all monic irreducible polynomials over GF(p) with degrees that divide m ⇒ help to identify the m⁽ⁱ⁾(x)'s
- $m^{(i)}(x)$ of degree $s \implies m^{(-i)}(x) = x^s m^{(i)}(x^{-1})$

Mikael Skoglund, Information Theory

Cyclic Codes

• \mathcal{C} over GF(q) is *cyclic* $\iff \mathcal{C}$ is linear and

$$(c_0,\ldots,c_{n-1}) \in \mathcal{C} \implies (c_{n-1},c_0,\ldots,c_{n-2}) \in \mathcal{C}$$

• For a cyclic code C, let $\mathbf{c} = (c_0, \dots, c_{n-1}) \in C$ correspond to a *codeword polynomial* c(x) over GF(q), such that

$$c(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_{n-1} x^{n-1}$$

• A cyclic shift \leftrightarrow multiplication with x modulo $x^n - 1$

- Let $\mathcal{R}_n =$ "the set of all polynomials over GF(q) that are equal modulo $x^n 1$ " (a *ring* of dimension n)
- Given $g(x) \in \mathcal{R}_n$, let

$$\langle g(x) \rangle = \{ c(x) : c(x) = u(x)g(x), \text{ over all } u(x) \in \mathcal{R}_n \}$$

 A cyclic code of length n with generator polynomial g(x) ∈ R_n is then formally defined as

$$\mathcal{C} = \langle g(x) \rangle$$

Mikael Skoglund, Information Theory

The Generator Polynomial g(x)

- For $\mathcal{C} = \langle g(x) \rangle$,
 - g(x) is the unique monic polynomial in $\mathcal C$ of minimal degree r
 - the dimension of C is k = n r
 - $g(x)|x^n-1|$
 - any u(x) over GF(q) of degree < n r corresponds uniquely to a $c(x) \in C$ via c(x) = u(x)g(x) over GF(q)
- k message symbols $(u_0, \ldots, u_{k-1}), u_l \in GF(q)$, give a codeword c(x) as

$$c(x) = u(x)g(x), \ u(x) = u_0 + u_1x + \dots + u_{k-1}x^{k-1}$$

• C.f., $\mathbf{c} \in \mathbf{C} \iff \mathbf{c} = \mathbf{u}\mathbf{G}$

The Parity Check Polynomial h(x)

• The polynomial

$$h(x) = \frac{x^n - 1}{g(x)}$$

is the parity check polynomial of the cyclic code $\langle g(x)\rangle$ of length n

• g(x)h(x) = 0, and $c(x) \in \langle g(x) \rangle \iff c(x)h(x) = 0$ in \mathcal{R}_n ; c.f.,

$$\mathbf{G}\mathbf{H}^T = \mathbf{0}$$
 and, $\mathbf{c} \in \mathcal{C} \iff \mathbf{c}\mathbf{H}^T = \mathbf{0}$

• h(x) has degree $k = \text{dimension of } \langle g(x) \rangle$

Mikael Skoglund, Information Theory

${\bf G}$ and ${\bf H}$ matrices

• For a cyclic code with

$$g(x) = g_r x^r + g_{r-1} x^{r-1} + \dots + g_0$$

$$h(x) = h_k x^k + h_{k-1} x^{k-1} + \dots + h_0$$

we get ${\bf G}$ and ${\bf H}$ in cyclic form as

$$\mathbf{G} = \begin{bmatrix} g_0 & g_1 & \cdots & g_r & 0 & 0 & \cdots & 0 \\ 0 & g_0 & g_1 & \cdots & g_r & 0 & \cdots & 0 \\ & & & \ddots & & \\ 0 & 0 & \cdots & 0 & g_0 & g_1 & \cdots & g_r \end{bmatrix}$$
$$\mathbf{H} = \begin{bmatrix} 0 & 0 & \cdots & 0 & h_k & h_{k-1} & \cdots & h_0 \\ 0 & \cdots & 0 & h_k & h_{k-1} & \cdots & h_0 & 0 \\ & & & \ddots & & \\ h_k & h_{k-1} & \cdots & h_0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

Why Polynomials?

- Encoding and decoding circuitry based on simple logical operations straightforward to derive...
- Construct and analyze (cyclic) codes based on finite field theory and polynomial factorizations

Mikael Skoglund, Information Theory

Factors of $x^n - 1$

- Cyclic code over GF(q): g(x)h(x) = xⁿ − 1 = ∏{ irreducible factors } ⇒ code can be constructed based on the factors
- Assume (always) n and q relatively prime (no common factors) ⇒ exists a smallest m such that n|q^m − 1
- The *n* zeros of $x^n 1 \in GF(q^m)$ and no smaller field,

$$x^n - 1 = \prod_{i=1}^n (x - \alpha_i)$$

for some $\{\alpha_1, \ldots, \alpha_n\} \subset \operatorname{GF}(q^m)$ with the α_i 's distinct

• The *n*th roots of unity; $GF(q^m)$ is the splitting field of $x^n - 1$

- $n = q^m 1 \iff \alpha$ is a primitive element in $\operatorname{GF}(q^m)$ • Assume α a primitive *n*th root of unity $\in GF(q^m)$ where *m* is
 - the smallest integer such that $n|q^m 1$, $p^{(i)}(x) =$ minimal polynomial of $\alpha^i \in GF(q^m) \implies$

• The roots $\{\alpha_1, \ldots, \alpha_n\}$ form a cyclic group $\subset \mathrm{GF}(q^m)$, that is, there is an $\alpha \in \mathrm{GF}(q^m)$, the *primitive* nth root of unity,

 $x^{n} - 1 = \prod_{i=0}^{n-1} (x - \alpha^{i})$

$$x^n - 1 = \prod_j p^{(j)}(x)$$

over all $j \in \{0, \ldots, n-1\}$ that give different $p^{(j)}(x)$'s

Mikael Skoglund, Information Theory

such that

Given a factorization

$$x^n - 1 = \prod_j p^{(j)}(x)$$

some of the $p^{(j)}(x)$'s can form g(x) and the others h(x);

• The zeros of a code,

- let $C = \langle g(x) \rangle$ of length n, and let $K = \{k : p^{(k)}(x) | g(x)\}$, then $\{\alpha^k : k \in K\}$ are called the zeros of the code;
 - i.e., all roots of q(x)
- α^i for $i \notin K$ $(i \leq n-1)$ are the *nonzeros* (all roots of h(x))
 - the nonzeros of C are the zeros of C^{\perp} and vice versa

Mikael Skoglund, Information Theory

13/14