
A General Formula for Channel Capacity

1 Definitions

• Information variable ω ∈ {1, . . . ,M}, p(i) = Pr(ω = i)

• Channel input X ∈ X and output Y ∈ Y, finite alphabets

• Codewords {xN
1 (i) : i = 1, . . . ,M}, xn ∈ X

• Rate R = N−1 lnM

• A sequence of channel uses,

Pr(Y N
1 = yN

1 |XN
1 = xN

1 ) = p(yN
1 |xN

1 )

defined for for each N , including N → ∞

– a discrete channel with completely arbitrary memory behavior

• Decoder,
ω̂ = i if Y N

1 ∈ Fi

where {Fi} is a partition of YN

• Error probabilities,

P (N)
e =

M
∑

i=1

Pr
(

Y N
1 ∈ F c

i |X
N
1 = xN

1 (i)
)

p(i)

λ(N) = max
{

Pr
(

Y N
1 ∈ F c

i |X
N
1 = xN

1 (i)
)}M

i=1

• Information density

iN (xN
1 ; yN

1 ) = ln
p(xN

1 , yN
1 )

p(xN
1 )p(yN

1 )

• Liminf in probability of {An},

α = liminfp {An}

= supremum of all α for which Pr(An ≤ α) → 0 as n → ∞

• Rate R achievable if there exists a sequence of codes such that λ(N) → 0
when N → ∞

• C = supremum of all achievable rates
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2 Feinstein’s Lemma and a Converse

Lemma 1 Given M and a > 0 and an input distribution p(xN
1 ), there exist

xN
1 (i) ∈ XN , i = 1, . . . ,M , and a partition F1, . . . , FM of YN such that

Pr
(

Y N
1 /∈ Fi|X

N
1 = xN

1 (i)
)

≤ Me−a + Pr
(

iN (XN
1 ;Y N

1 ) ≤ a
)

In particular, choosing a = lnM + Nγ, with γ > 0, gives

Pr
(

Y N
1 /∈ Fi|X

N
1 = xN

1 (i)
)

≤ e−γN + Pr

(

1

N
iN (XN

1 ;Y N
1 ) ≤

1

N
lnM + γ

)

Lemma 1 (Feinstein’s Lemma [1]) implies that for any given p(xN
1 ) there

exists a code of rate R such that, for any γ > 0 and N > 0

λ(N) ≤ e−γN + Pr

(

1

N
iN (XN

1 ;Y N
1 ) ≤ R + γ

)

where

iN (xN
1 ; yN

1 ) = ln
p(xN

1 , yN
1 )

p(xN
1 )p(yN

1 )
= ln

p(yN
1 |xN

1 )
∑

xN

1
p(yN

1 |xN
1 )p(xN

1 )

for the given p(xN
1 ) and p(yN

1 |xN
1 ) (the latter given by the channel in consider-

ation).

Proof

We use the notation x = xN
1 , y = yN

1 , X̄ = XN and Ȳ = YN , for simplicity,
where N is the fixed codeword length. Define G = {(x, y) : iN (x, y) > a}. Set

ε = Me−a + Pr(iN ≤ a) = Me−a + P (Gc)

and assume ε < 1 and hence also that P (Gc) ≤ ε < 1 and therefore that

Pr(iN > a) = P (G) > 1 − ε > 0

Letting Gx = {y : (x, y) ∈ G} this implies that in defining

A = {x : P (Gx|x) > 1 − ε}

it holds that P (A) > 0. Choose x1 ∈ A and let F1 = Gx1
. Next choose if

possible x2 ∈ A such that P (Gx2
− F1|x2) > 1 − ε and let F2 = Gx2

− F1.
Continue in this way until either M points have been selected or all points in
A have been exhausted. That is, given {xj , Fj}, j = 1, . . . , i− 1, find an xi ∈ A
for which

P (Gxi
−

⋃

j<i

Fj |xi) > 1 − ε

and let Fi = Gxi
−

⋃

j<i Fj . If this terminates before M points have been
collected, denote the final point’s index by n. Observe that

P (F c
i |xi) ≤ P (Gc

xi
|xi) ≤ ε, i = 1, . . . , n

and hence the lemma will be proved if we can show that n cannot be strictly
less than M .
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Define F =
⋃n

i=1 Fi and consider the probability

P (G) = P (G ∩ (X̄ × F )) + P (G ∩ (X̄ × F c))

The first term is bounded as

P (G ∩ (X̄ × F )) ≤ P (X̄ × F ) = P (F ) =

n
∑

i=1

P (Fi)

Let

f(x, y) =
p(x, y)

p(x)p(y)

(i.e., iN = ln f(x, y) ). We get

P (Fi) =
∑

y∈Fi

p(y) ≤
∑

y∈Gxi

p(y) ≤
∑

y∈Gxi

f(xi, y)

ea
p(y)

≤ e−a
∑

y

p(y|xi) = e−a

and hence
P (G ∩ (X̄ × F )) ≤ ne−a

Now consider

P (G ∩ (X̄ × F c)) =
∑

x

P (G ∩ (X̄ × F c)|x)p(x)

=
∑

x

P (Gx ∩ F c|x)p(x) =
∑

x

P (Gx −
n
⋃

i=1

Fi|x)p(x)

Defining

B = {x : P (Gx −

n
⋃

i=1

Fi|x) > 1 − ε}

it must hold that P (B) = 0, or there would be a point xn+1 for which

P (Gxn+1
−

n+1
⋃

i=1

Fi|xn+1) > 1 − ε

Hence
P (G ∩ (A × F c)) ≤ 1 − ε

so we get
P (G) ≤ ne−a + 1 − ε

From the definition of ε we have also that

P (G) = 1 − P (Gc) = 1 − ε + Me−a

so M ≤ n must hold, completing the proof.

Let a reliable code sequence be a sequence of codes that achieve λ(N) → 0 at
a fixed rate R < C. Since

P̄ (N)
e ,

1

M

M
∑

i=1

P
(

F c
i |x

N
1 (i)

)

≤ λ(N)
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it holds, for a reliable code sequence, that P̄
(N)
e → 0 for any {p(i)}. Hence if a

sequence of codes gives
P̄ (N)

e > 0

for all N , the sequence cannot be reliable. Thus, to prove a converse we can
assume, without loss of generality, that p(i) = M−1 and study the resulting

average error probability P
(N)
e .

The following lemma is adopted from [2].

Lemma 2 Assume that {xN
1 (i)}M

i=1 is the codebook of any code used in encod-

ing equiprobable information symbols ω ∈ {1, . . . ,M}, and let {Fi}
M
i=1 be the

corresponding decoding sets. Then

P (N)
e =

M
∑

i=1

1

M
Pr

(

Y N
1 /∈ Fi|X

N
1 = xN

1 (i)
)

≥ Pr
(

N−1iN (XN
1 ;Y N

1 ) ≤ N−1 lnM − γ
)

− e−γN

for any γ > 0, and where iN (xN
1 ; yN

1 ) is evaluated with p(xN
1 ) = 1/M .

Proof

As before, we use the notation x = xN
1 , y = yN

1 , where N is the fixed codeword

length. Let ε = P
(N)
e , β = e−γN , and

L = {(x, y) : p(x|y) ≤ β}

and note that

P (L) = Pr
(

p(x|y) ≤ e−γN
)

= Pr(N−1 iN ≤ N−1 lnM − γ)

We hence need to show that

P (L) ≤ ε + β

holds for any code {xi}, with xi = xN
1 (i) and decoding sets {Fi}. Letting

Li = {y : p(xi|y) ≤ β}

we can write

P (L) =
∑

i

M−1P (Li|xi) =
∑

i

M−1P (Li ∩ F c
i |xi) +

∑

i

M−1P (Li ∩ Fi|xi)

≤
∑

i

M−1P (F c
i |xi) +

∑

i

M−1P (Li ∩ Fi|xi)

= ε +
∑

i

∑

y∈Li∩Fi

p(xi|y)p(y) ≤ ε + β
∑

i

∑

y∈Li∩Fi

p(y)

≤ ε + β
∑

i

∑

y∈Fi

p(y) ≤ ε + β
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A General Formula for Channel Capacity [2]

Theorem 1

C = sup
{p(xN

1
)}

{

liminfp
1

N
iN (XN

1 ;Y N
1 )

}

where the supremum is over all possible sequences {p(xN
1 )} = {p(xN

1 )}∞N=1.

Proof

Let

R∗ = liminfp
1

N
iN (XN

1 ;Y N
1 )

for any given {p(xN
1 )}, and let

C∗ = sup
{p(xN

1
)}

R∗

For any δ > 0 assume R = R∗ − δ. In Feinstein’s lemma, fix N , let γ = δ/2,
and note that

Pr

(

1

N
iN (XN

1 ;Y N
1 ) ≤ R + δ/2

)

= Pr

(

1

N
iN (XN

1 ;Y N
1 ) ≤ R∗ − δ/2

)

and because of the definition of R∗

lim
N→∞

Pr

(

1

N
iN (XN

1 ;Y N
1 ) ≤ R∗ − δ/2

)

= 0

Thus R is an achievable rate for any {p(xN
1 )} and δ > 0, which means that

C ≥ C∗.
Now assume for γ > 0 that R = C∗ + 2γ is the rate of any code of length N

that codes equally likely symbols, and note in that case that

Pr
(

N−1iN (XN
1 ;Y N

1 ) ≤ R − γ
)

= Pr
(

N−1iN (XN
1 ;Y N

1 ) ≤ C∗ + γ
)

As N → ∞ this probability cannot vanish, due to the definition of C∗. Hence
by Lemma 2, R is not achievable for any γ, which means that C ≤ C∗.

3 Example

Assume that p(yN
1 |xN

1 ) = p(y1|x1) · · · p(yN |xN ) (stationary and memoryless
channel). In [2, Theorem 10] it is shown that for such channels the p(xN

1 )
that achieves the supremum in the formula for C is of the form

p(xN
1 ) = p(x1) · · · p(xN )

That is, the optimal input distribution is stationary and memoryless. Hence,
assuming this form for p(xN

1 ) it holds that

liminfp
1

N
iN (XN

1 ;Y N
1 ) = I(X;Y )
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evaluated for p(x) = p(x1) and p(y|x) = p(y1|x1), since the information density
converges in probability to the mutual information [3]. Hence, we get Shannon’s
formula

C = sup
p(x)

I(X;Y )

(where the sup is a max, since I(X;Y ) is concave in p(x)).
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