A General Formula for Channel Capacity

1 Definitions

e Information variable w € {1,..., M}, p(i) = Pr(w = 1)

e Channel input X € X and output Y € Y, finite alphabets

e Codewords {zN(i):i=1,...,M}, , € X

e Rate R=N"1'InM

e A sequence of channel uses,
Pr(Y{" =y’ X7 = a7') = p(y1' 27

defined for for each N, including N — oo
— a discrete channel with completely arbitrary memory behavior

e Decoder,
o=iif YN eF

where {F;} is a partition of YV

e Error probabilities,

M
POV =3 P (VY € Y = o7 (0) (0
=1

M
i=1

AN = max { Pr (Y{¥ € FFlxY =2 (i)}
e Information density

: (N, N p(z{, yl')
in(zy sy ) =In —F——x~
b (Y )p(yl)
e Liminf in probability of {4,},
a = liminfp {A,}

= supremum of all « for which Pr(4, < a) — 0asn — o

e Rate R achievable if there exists a sequence of codes such that A(N) — 0
when N — oo

e (' = supremum of all achievable rates



2 Feinstein’s Lemma and a Converse

Lemma 1 Given M and a > 0 and an input distribution p(zl), there exist
2N(@) e XN i=1,..., M, and a partition Fy,..., Fy of YV such that

Pr (Y] ¢ Fi|X{ =2 (1)) < Me * +Pr (in(X]; YY) < a)
In particular, choosing a =1n M + N, with v > 0, gives

1 1
Pr (YN ¢ F|X{ =20 (i) <e "N 4+ Pr (NiN(XfV;YlN) < NlnM+’y)

Lemma 1 (Feinstein’s Lemma [1]) implies that for any given p(x2) there
exists a code of rate R such that, for any v > 0 and N >0

1
AN <N 4 pr (iN(X{V;YlN) < R+7>

N
where NN NN
zN(x{Vy{v) _ p(z1, 1) _ p(yp |z1")
p(@1)p(yr) >an Pyl |21 )p(a))

for the given p(z)) and p(y¥|zd) (the latter given by the channel in consider-
ation).

Proof

We use the notation 2 = 28V, y = yI¥, X = XN and Y = YV, for simplicity,
where N is the fixed codeword length. Define G = {(z,y) : in(x,y) > a}. Set

e=Me *+Pr(iy <a)=Me™*+ P(G°)
and assume € < 1 and hence also that P(G°) < ¢ < 1 and therefore that
Pr(ixn >a)=P(G)>1—-e>0
Letting G, = {y : (z,y) € G} this implies that in defining
A={x: P(G;lx) >1—¢}

it holds that P(A) > 0. Choose z; € A and let F} = G,,. Next choose if
possible x5 € A such that P(G,, — Fi|xs) > 1 — ¢ and let F» = G,, — F}.
Continue in this way until either M points have been selected or all points in
A have been exhausted. That is, given {z;, F;},j=1,...,i—1, findanz; € A
for which
P(Gy, — | Fjlzi) > 1—¢
i<i

and let F; = Ga, — ;. Fj. If this terminates before M points have been
collected, denote the final point’s index by n. Observe that

P(Fflz;) < P(GY |z;) <€, i=1,...,n

and hence the lemma will be proved if we can show that n cannot be strictly
less than M.



Define F = |J;_, F; and consider the probability
P(G)=P(GN(X x F)) + P(GN (X x F°)

The first term is bounded as
P(GN(X x F)) < P(X x F) = P(F) =Y _ P(F))

Let

(ie., iy =In f(z,y) ). We get

PFE)=Ypm)< > py)< > 1@y)

yeF; y€Gy; y€Gy;

<e ) plyle) =€
Y

and hence -
P(GN(X x F)) <ne™®

Now consider

P(GN(X x F%) =Y P(GN(X x F°)|x)p(x)

=Y P(G. N Fela)p(z) = > P(G, — U Filz)p(x)

Defining
B={z: PG, — UFZ|:L‘) >1—¢}

i=1
it must hold that P(B) = 0, or there would be a point x,; for which

n+1
P(Gmn+1 — U Fi|l‘n+1) >1—¢
=1

Hence
PGNAXxF)<1l-—¢

so we get
P(G)<ne *+1-c¢

From the definition of € we have also that
P(G)=1-P(G)=1—¢e+ Me™“
so M < n must hold, completing the proof.
Let a reliable code sequence be a sequence of codes that achieve AV) — 0 at

a fixed rate R < C'. Since

M
PO 2 LS P(RT () < A
i=1



it holds, for a reliable code sequence, that 15(

sequence of codes gives

— 0 for any {p(i)}. Hence if a

PN >0

for all N, the sequence cannot be reliable. Thus, to prove a converse we can

assume, without loss of generality, that p(i) = M~! and study the resulting

average error probability PS(N).

The following lemma is adopted from [2].

Lemma 2 Assume that {zV (i)}, is the codebook of any code used m encod-

ing equiprobable information symbols w € {1,..., M}, and let {F;}M, be the
corresponding decoding sets. Then

Z— Pr (Y] ¢ F| X = 2 (i)
> Pr (N XD YY) S NT'InM — ) —e N
for any v > 0, and where in(z;ylN) is evaluated with p(xl¥) = 1/M.

Proof

As before, we use the notation x = zV, y = y¥, where N is the fixed codeword
length. Let ¢ = Pe(N), B=e " and

L={(z,y): p(zly) < B}
and note that
P(L) =Pr (p(zly) <e ™) =Pr(N 'iy <N 'InM —~)
We hence need to show that
P(L)<z+p
holds for any code {x;}, with z; = 2} (i) and decoding sets {F;}. Letting
Li = {y : plxily) < B}
we can write
L)=Y M7'P(Lilx;) = > M7'P(L; N Ffla;) + Y M™'P(L; N F|x;)

<ZM*1P Fflz;) JrZM*lP L; N Flx;)

—s—i—z Z p(zily)p <5+BZ Z

i yeL;NF; i yeL;NF;

<e+BY Y ply)<e+8

i yeF;



A General Formula for Channel Capacity [2]

Theorem 1

1
C= sup {liminfp —in(XY; YlN)}
{p())} N

where the supremum is over all possible sequences {p(z)} = {p(z})}3_,.

Proof
Let 1

R* = liminfp N@'N(va; YN
for any given {p(z)}, and let

C*= sup R*
{p(=z})}

For any § > 0 assume R = R* — §. In Feinstein’s lemma, fix N, let v = §/2,
and note that

Pr (le in(X; YY) <R+ 6/2> = Pr (i, in(XT5 YY) < R - 5/2>

and because of the definition of R*

N—o0

lim Pr <Jif in(XY; YN < RF— 5/2> =0

Thus R is an achievable rate for any {p(z})} and § > 0, which means that
C>C*

Now assume for v > 0 that R = C* 4 2+ is the rate of any code of length N
that codes equally likely symbols, and note in that case that

Pr(N7hin(X{; YY) < R—7) = Pr(N~lin (X5 YY) < C* +79)

As N — oo this probability cannot vanish, due to the definition of C*. Hence
by Lemma 2, R is not achievable for any v, which means that C' < C*.

3 Example

Assume that p(y]|zd) = p(yi|r1) - p(yn|rn) (stationary and memoryless
channel). In [2, Theorem 10] it is shown that for such channels the p(z})
that achieves the supremum in the formula for C' is of the form

p(a1’) = pla1) - play)

That is, the optimal input distribution is stationary and memoryless. Hence,
assuming this form for p(x?¥) it holds that

1
liminfp NiN(X{V YY) = I(X;Y)



evaluated for p(x) = p(z1) and p(y|z) = p(y1|z1), since the information density
converges in probability to the mutual information [3]. Hence, we get Shannon’s
formula
C=supl(X;Y)
p(z)

(where the sup is a max, since I(X;Y) is concave in p(z)).
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