Probability and Random Processes 2024

Assignment 1 Assigned: Thursday, Jan 18, 2024 Due: Thursday, Jan 25, 2024

M. Skoglund

Problem 1.1: For sequences $\{x_n\}$ and $\{y_n\}$,

- 1. define $\limsup x_n$ and $\liminf x_n$
- 2. prove that

 $\limsup(x_n + y_n) \le \limsup x_n + \limsup y_n$

3. if $\lim y_n < \infty$ exists, prove that

$$\limsup(x_n + y_n) = \limsup x_n + \lim y_n$$

4. let

$$a_n = \frac{1}{n} \sum_{k=1}^n x_k$$

prove that

 $\liminf x_n \le \liminf a_n \le \limsup a_n \le \limsup x_n,$

and conclude that if $\lim x_n$ exists, so does $\lim a_n$; does the converse hold?

Problem 1.2: Prove that a function f(x) is continuous iff $f^{-1}(O)$ is open for every open $O \subset \mathbb{R}$

Problem 1.3: Define Lebesgue outer measure λ^* , and explain what goes wrong when trying to use λ^* as a universal measure for "length" on the real line. Then define Lebesgue measure λ and motivate the definition.

Problem 1.4: For a function f(x), define what it means for f to be Lebesgue measurable. Based on the definition, argue that all continuous functions are Lebesgue measurable but there are Lebesgue measurable functions that are not continuous.