Probability and Random Processes
 2024

Assignment 5

Assigned: Thursday, February 15, 2024
Due: Thursday, February 22, 2024
M. Skoglund

In solving the problems below, given (Ω, \mathcal{A}, P) the following results can be used without proof:
For sets $A_{1} \subset A_{2} \subset A_{3} \subset \cdots$ in \mathcal{A}, it holds that

$$
P\left(\bigcup_{n} A_{n}\right)=\lim _{n} P\left(A_{n}\right)
$$

For sets $A_{1} \supset A_{2} \supset A_{3} \supset \cdots$ in \mathcal{A}, it holds that

$$
P\left(\bigcap_{n} A_{n}\right)=\lim _{n} P\left(A_{n}\right)
$$

Also, for any sequence $\left\{A_{n}\right\}$ of sets from \mathcal{A}, it holds that $\limsup _{n} P\left(A_{n}\right) \leq P\left(\left\{A_{n}\right.\right.$ i.o $\left.\}\right)$
Problem 5.1: Define/explain the concepts: probability space, event, probability, and independence (pairwise and mutual)

Problem 5.2: Define/explain the concepts: random variable, distribution, probability distribution function, expectation

Problem 5.3: Prove the Borel-Cantelli lemma.

Problem 5.4: Given (Ω, \mathcal{A}, P) and a sequence of random variables $\left\{X_{n}\right\}$, show that

$$
\left\{\omega: \lim _{n \rightarrow \infty} X_{n}(\omega)=X(\omega)\right\}=\bigcap_{m=1}^{\infty}\left(\bigcup_{n=1}^{\infty}\left(\bigcap_{k=1}^{\infty}\left\{\omega:\left|X_{n+k}(\omega)-X_{n}(\omega)\right|<\frac{1}{m}\right\}\right)\right)
$$

Hint: a sequence $\left\{a_{n}\right\}$ of real numbers converges iff it's a Cauchy sequence, i.e. iff for any $\varepsilon>0$ there is an N such that $\left|a_{n}-a_{m}\right|<\varepsilon$ for all $n, m>N$.

Problem 5.5: For mutually independent random variables $\left\{X_{n}\right\}$ with $E\left[X_{n}\right]=0$ and $\sum_{n} \operatorname{Var}\left(X_{n}\right)<\infty$, use the result in Problem 5.4 and Kolmogorov's inequality (without proof) to show that $\sum_{n} X_{n}$ converges with probability one.

Problem 5.6: Given an iid sequence of zero-mean random variables $\left\{X_{n}\right\}$, let $Y_{n}=X_{n} \chi_{\left\{\left|X_{n}\right| \leq n \mid\right\}}$, show that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}} \operatorname{Var}\left[Y_{n}\right]<\infty
$$

Problem 5.7: Prove the (strong) law of large numbers. You can use Lemma 1-3 from the lecture slides, the result in Problem 5.6 and also the Borel-Cantelli lemma, without proof.

