Probability and Random Processes 2024

Assignment 5 Assigned: Thursday, February 15, 2024 Due: Thursday, February 22, 2024

M. Skoglund

In solving the problems below, given (Ω, \mathcal{A}, P) the following results can be used without proof: For sets $A_1 \subset A_2 \subset A_3 \subset \cdots$ in \mathcal{A} , it holds that

$$P\left(\bigcup_{n} A_{n}\right) = \lim_{n} P(A_{n})$$

For sets $A_1 \supset A_2 \supset A_3 \supset \cdots$ in \mathcal{A} , it holds that

$$P\left(\bigcap_{n} A_{n}\right) = \lim_{n} P(A_{n})$$

Also, for any sequence $\{A_n\}$ of sets from \mathcal{A} , it holds that $\limsup_n P(A_n) \leq P(\{A_n \text{ i.o}\})$

Problem 5.1: Define/explain the concepts: probability space, event, probability, and independence (pairwise and mutual)

Problem 5.2: Define/explain the concepts: random variable, distribution, probability distribution function, expectation

Problem 5.3: Prove the Borel–Cantelli lemma.

Problem 5.4: Given (Ω, \mathcal{A}, P) and a sequence of random variables $\{X_n\}$, show that

$$\{\omega: \lim_{n \to \infty} X_n(\omega) = X(\omega)\} = \bigcap_{m=1}^{\infty} \left(\bigcup_{n=1}^{\infty} \left(\bigcap_{k=1}^{\infty} \{\omega: |X_{n+k}(\omega) - X_n(\omega)| < \frac{1}{m} \} \right) \right)$$

Hint: a sequence $\{a_n\}$ of real numbers converges iff it's a *Cauchy sequence*, i.e. iff for any $\varepsilon > 0$ there is an N such that $|a_n - a_m| < \varepsilon$ for all n, m > N.

Problem 5.5: For mutually independent random variables $\{X_n\}$ with $E[X_n] = 0$ and $\sum_n \operatorname{Var}(X_n) < \infty$, use the result in Problem 5.4 and Kolmogorov's inequality (without proof) to show that $\sum_n X_n$ converges with probability one.

Problem 5.6: Given an iid sequence of zero-mean random variables $\{X_n\}$, let $Y_n = X_n \chi_{\{|X_n| \le n|\}}$, show that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \operatorname{Var}[Y_n] < \infty$$

Problem 5.7: Prove the (strong) law of large numbers. You can use Lemma 1–3 from the lecture slides, the result in Problem 5.6 and also the Borel–Cantelli lemma, without proof.