Probability and Random Processes
 Lecture 0

- Course introduction
- Some basics

Why This Course?

- Provide a first principles introduction to measure theory, probability and random processes
- Tailor the course to PhD students in information and signal theory, decision and control, and learning
- Why? - many very important results require that the reader knows at least the language/basics of measure theoretic probability
- $\mathbb{R}=$ the real numbers
- $\mathbb{R}^{*}=\mathbb{R} \cup\{\infty,-\infty\}=$ the extended real numbers
- $\mathbb{Q}=$ the rational numbers
- $\mathbb{Z}=$ the integers
- $\mathbb{N}=$ the positive integers (natural numbers)
- A set A of real numbers
- $a=\sup A=$ least upper bound $=$ smallest number a such that $x \leq a$ for all $x \in A$
- $b=\inf A=$ greatest lower bound $=$ largest number b such that $x \geq b$ for all $x \in A$
- Density of \mathbb{Q} in \mathbb{R}
- between any two real numbers, there is a rational number
- between any two rational numbers, there is a real number
- A set $A \subset \mathbb{R}$ is open if for any $x \in A$ there is an $\varepsilon>0$ such that $(x-\varepsilon, x+\varepsilon) \subset A$
- $A \subset \mathbb{R}$ is an open set $\Longleftrightarrow A=$ countable union of disjoint open intervals
- The number b is a limit point of the set B if any open set (open interval) containing b also contains a point from B
- The closure of $B=\{$ all B 's limit points $\}$
- B is closed if it's equal to its closure $\Longleftrightarrow B^{c}$ is open
- A sequence $\left\{x_{n}\right\}, x_{n} \in \mathbb{R}$
- $a=\limsup x_{n} \Longleftrightarrow$ for any $\varepsilon>0$ there is an N such that
- $x_{n}<a+\varepsilon$ for all $n>N$
- $x_{n}>a-\varepsilon$ for infinitely many $n>N$
- $b=\liminf x_{n} \Longleftrightarrow$ for any $\varepsilon>0$ there is an N such that
- $x_{n}>b-\varepsilon$ for all $n>N$
- $x_{n}<b+\varepsilon$ for infinitely many $n>N$
- $c=\lim x_{n} \Longleftrightarrow a=b=c$
- A function $f: \mathbb{R} \rightarrow \mathbb{R}$
- $a=\lim _{x \rightarrow b} f(x) \Longleftrightarrow$ for any $\varepsilon>0$ there is a $\delta>0$ such that $|f(x)-a|<\varepsilon$ for all $x \in(b-\delta, b+\delta) \backslash\{b\}$
- f is continuous if $\lim _{x \rightarrow b} f(x)=f(b)$
$\Longleftrightarrow f^{-1}(A)$ open for each open $A \subset \mathbb{R}$, where

$$
f^{-1}(A)=\{x: f(x) \in A\}
$$

- A sequence of functions $\left\{f_{n}(x)\right\}$
- $f_{n} \rightarrow f$ pointwise if $\left\{f_{n}(a)\right\}$ has a limit for any fixed number a, that is, for any $\varepsilon>0$ there is an $N(a)$ such that $\left|f_{n}(a)-f(a)\right|<\varepsilon$ for all $n>N(a)$
- $f_{n} \rightarrow f$ uniformly if for any $\varepsilon>0$ there is an N (that does not depend on x) such that $\left|f_{n}(x)-f(x)\right|<\varepsilon$ for all $n>N$ and for all x
- The set of continuous functions is closed under uniform but not under pointwise convergence
- If all the f_{n} 's in $\left\{f_{n}(x)\right\}$ are Riemann integrable, then $f=\lim f_{n}$ is Riemann integrable if the convergence is uniform, but not necessarily if it's pointwise
- important part of the reason that we will need to look at the Lebesgue integral instead...

