Probability and Random Processes Lecture 10

- Random processes
- Kolmogorov's extension theorem
- Random sequences and waveforms

Mikael Skoglund, Probability and random processes

1/18

Random Objects

- A probability space (Ω, \mathcal{A}, P) and a measurable space (E, \mathcal{E})
- A measurable transformation $X : (\Omega, \mathcal{A}) \to (E, \mathcal{E})$, is a random
 - variable if $(E, \mathcal{E}) = (\mathbb{R}, \mathcal{B})$
 - vector if $(E, \mathcal{E}) = (\mathbb{R}^n, \mathcal{B}^n)$
 - sequence if $(E, \mathcal{E}) = (\mathbb{R}^{\infty}, \mathcal{B}^{\infty})$
 - object, in general

More on Product Spaces

- (E, \mathcal{E}) a measurable space and T an arbitrary parameter set
- $E^T = \{ \text{ all mappings from } T \text{ to } E \}$
- A measurable rectangle $\{f \in E^T : f(t) \in A_t \text{ for all } t \in S\}$ where S is a finite subset $S \subset T$ and $A_t \in \mathcal{E}$ for all $t \in S$
- For $\mathcal{U} = \{ \text{ all measurable rectangles } \}, \text{ let } \mathcal{E}^T = \sigma(\mathcal{U})$
- For $t \in T$, define $\pi_t : E^T \to E$ to be the evaluation map

$$\pi_t(f) = f(t), \text{ for any } f \in E^T$$

• Then it holds that $\mathcal{E}^T = \sigma(\{\pi_t : t \in T\})$ i.e., \mathcal{E}^T is the smallest σ -algebra such that all

$$\pi_t: (E^T, \mathcal{E}^T) \to (E, \mathcal{E}), \ t \in T$$

are measurable

Mikael Skoglund, Probability and random processes

- For $S \subset T$ define the restriction map $\pi_S : E^T \to E^S$, via $\pi_S(f) = f|_S$
- For a finite $S \subset T$ and $A_S \in \mathcal{E}^S$, a subset $F \subset E^T$ is a measurable cylinder if it has the form $F = \pi_S^{-1}(A_S)$, i.e.

$$F = \{ f \in E^T : \pi_S(f) \in A_S, \ \pi_{T \setminus S}(f) \in E^{T \setminus S} \} = A_S \times E^{T \setminus S}$$

- Then it holds that $\mathcal{E}^T = \sigma(\{ \text{ all measurable cylinders } \})$
- A measurable σ-cylinder is a measurable cylinder where the set S ⊂ T is possibly infinite but countable
- Then we also have $\mathcal{E}^T = \{ \text{ all measurable } \sigma \text{-cylinders } \},$
 - even when T is uncountable, membership $f \in A \in \mathcal{E}^T$ imposes restrictions on the values f(t) only for countably many t's

Random Processes

Given (Ω, \mathcal{A}, P)

Random process, definition 1: a collection {X_t : t ∈ T} where for each t, X_t is a random object X_t : (Ω, A) → (E, E),

 $X_t: \Omega \to E, \quad X_t^{-1}: \mathcal{E} \to \mathcal{A}$

for each t, X_t maps ω into a value $X_t(\omega) \in E$

• Random process, definition 2: a random object $X : (\Omega, \mathcal{A}) \to (E^T, \mathcal{E}^T)$

 $X: \Omega \to E^T, \quad X^{-1}: \mathcal{E}^T \to \mathcal{A}$

X maps each ω into a function $X_t(\omega) \in E^T$

Mikael Skoglund, Probability and random processes

Extension Results

• Based on definition 2, the process distribution μ_X is the distribution of the random object X, that is,

$$\mu_X(A) = P(\{\omega : X_t(\omega) \in A\}), \quad A \in \mathcal{E}^T$$

• For a subset $S \subset T$, restricting the process to S means that $f(t) = X_t(\omega)$ is restricted to $t \in S$, $\pi_S(f) = f|_S$, with corresponding marginal distribution $\mu_{X|S}$ on (E^S, \mathcal{E}^S)

- Assume that (E, \mathcal{E}, μ_t) are probability spaces for each $t \in S$, where S is a finite subset $S \subset T$, and let $(E^S, \mathcal{E}^S, \mu^S)$ be the corresponding product measure space
- Even in the case of an uncountable T, $(E^S, \mathcal{E}^S, \mu^S)$ can be extended to the full space $(E^T, \mathcal{E}^T, \mu_X)$, in the sense that there exists a unique μ_X such that

$$\mu_{X|S}(A) = \mu^S(A)$$

for all $A \in \mathcal{E}^S$ and any finite $S \subset T$

Proof: The cylinder sets are a semialgebra that generates *E^T*; a finite product of probability measures is a pre-measure on the cylinders; our previous extension result for product measure can then be extended to a countable *S*; finally, the fact that *E^T* is the class of *σ*-cylinders can be used to extend to the full class *E^T*

Mikael Skoglund, Probability and random processes

- Remember from the definition of product measure, that $(E^S, \mathcal{E}^S, \mu^S)$ corresponds to a process with independent values $X_t(\omega)$, $t \in S$
- Hence we now know how to construct memoryless processes, even for an uncountable T, based on marginal distributions for each finite S
- How about completely general μ_X 's?
- First result, uniqueness in the general case: for any $\mu_X^{(1)}$ and $\mu_X^{(2)}$ on (E^T, \mathcal{E}^T) , if

$$\mu_{X|S}^{(1)}(A) = \mu_{X|S}^{(2)}(A)$$

for all finite $S \subset T$ and $A \in \mathcal{E}^S$, then $\mu_X^{(1)} = \mu_X^{(2)}$

• That is, the finite-dimensional marginal distributions uniquely determine the process distribution, if it exists

Existence: Kolmogorov's Extension Theorem

- A marginal distribution μ_{X|S}, for any finite S ⊂ T, is consistent if μ_{X|S} implies μ_{X|V} for all V ⊂ S
 - of no concern for product measure, i.e., memoryless marginals...(why?)
- Extension Theorem: For a given process X from (Ω, A) to (E^T, E^T), assume that a consistent distribution μ_{X|S} is specified for any finite subset S ⊂ T. If (E, E) is standard, then a unique process distribution μ_X exists on (E^T, E^T) that agrees with μ_{X|S} for all finite S ⊂ T
- Additional structure is necessary; the result does not hold for all possible (E, \mathcal{E})

Mikael Skoglund, Probability and random processes

Discrete-time Real-valued Random Process

- Given (Ω, \mathcal{A}, P) , let $E = \mathbb{R}$, $\mathcal{E} = \mathcal{B}$, and interpret T as "time"
- If T = Z or N, then X is a random sequence or a discrete-time random process, that is {X_t}_{t∈T} is a countable collection of random variables
- (E, \mathcal{E}) is standard
- \Rightarrow Any set of distributions for all random vectors that can be formed by restricting to $S = \{t_1, t_2, \dots, t_m\}$ can be extended to a unique process distribution

Continuous-time Real-valued Random Process

- Given (Ω, \mathcal{A}, P) , let $E = \mathbb{R}$, $\mathcal{E} = \mathcal{B}$, and interpret T as "time"
- If T = ℝ or ℝ⁺, then X is a random waveform or a continuous-time random process, that is {X_t}_{t∈T} is an uncountable collection of random variables
- (E, \mathcal{E}) is standard, so consistent finite-dimensional marginals can be extended to a unique process distribution on (E^T, \mathcal{E}^T)

Mikael Skoglund, Probability and random processes

Finite-energy Waveforms

• Introduce the L_2 norm

$$\|g\| = \left(\int |g(t)|^2 dt\right)^{1/2}$$

and let $\mathcal{L}_2 = \{$ Lebesgue measurable f such that $\|f\|^2 < \infty \}$

• Equipped with the inner product

$$\langle f,g \rangle = \int fgdt$$

 \mathcal{L}_2 is then a separable Hilbert space (with $\|f\| = (\langle f, f \rangle)^{1/2}$)

- With topology \mathcal{T} determined by the metric $\rho(f,g) = ||f g||$ the space $\mathcal{A} = (\mathcal{L}_2, \mathcal{T})$ is Polish and $(\mathcal{L}_2, \sigma(\mathcal{A}))$ is standard
- The resulting space (L₂, σ(A)) is a model for random finite-energy waveforms

Continuous Waveforms

- For a closed interval $T \subset \mathbb{R}$, let $C(T) = \{ \text{ all continuous functions } f : T \to \mathbb{R} \}$
- For $g, f \in C(T)$, define the metric

$$\rho(f,g) = \sup\{|f(t) - g(t)| : t \in T\}$$

- With topology \mathcal{T} determined by ρ , $\mathcal{A} = (C(T), \mathcal{T})$ is Polish and $(C(T), \sigma(\mathcal{A}))$ is standard
- The resulting space $(C(T),\sigma(\mathcal{A}))$ is a model for continuous waveforms on T

Mikael Skoglund, Probability and random processes

Gaussian Processes

- Let $T = \mathbb{R}$, \mathbb{R}^+ , \mathbb{Z} or \mathbb{N}
- For any finite $S \subset T$, of size n, let $E^S = \mathbb{R}^n$ and \mathcal{E}^S the corresponding Borel sets
- Define $\mu_{X|S}$ on (E^S, \mathcal{E}^S) to be the finite Borel measure with density

$$f_n(x^n) = \frac{1}{\sqrt{(2\pi)^n |V_n|}} \exp\left(-\frac{1}{2}(x^n - m^n)V_n^{-1}(x^n - m^n)'\right)$$

with respect to n-dimensional Lebesgue measure, where V_n is a positive-definite $n\times n$ matrix and $m^n\in\mathbb{R}^n$

Discrete time

- For T = Z or N, the distributions specified by (mⁿ, V_n) for all finite n uniquely determine a Gaussian sequence {X_t} with process distribution μ_X
- μ_X is uniquely specified by knowing

$$m(t) = E[X_t], \quad V(k,l) = E[(X_k - m(k))(X_l - m(l))]$$

for all $t, k, l \in T$

Mikael Skoglund, Probability and random processes

15/18

Continuous time

 For T = ℝ or ℝ⁺, the distributions specified by (mⁿ, V_n) for all finite n uniquely determine a Gaussian waveform {X_t} with process distribution μ_X, specified by

$$m(t) = E[X_t], \quad V(s, u) = E[(X_s - m(s))(X_u - m(u))]$$

for all $t, s, u \in T$

• Here we need

$$\int V(t,t)dt < \infty$$

to get finite-energy waveforms (with probability one)

Brownian Motion

- Given (Ω, \mathcal{A}, P) and C(T) = the class of continuous waveforms on $T = [0, \tau]$ for $\tau > 0$
- There is a probability space $(C(T), \mathcal{E}^T, \mu_X)$ such that
 - For $X_t \in C(T)$, $X_0(\omega) = 0$ for all $\omega \in \Omega$
 - For every $0 \le s \le t \le \tau$, $Y(t,s) = X_t X_s \sim \mathcal{N}(0,t-s)$. Also Y(t,s) and X_u are independent for all $0 \le u \le s$
 - $\mathcal{E}^T = \sigma(\mathcal{A})$ on slide 13
 - μ_X is unique
- μ_X = the Wiener measure (usually for $T = [0, \infty)$)
- Consequently, X_t is a Gaussian waveform with m(t) = 0 and $V(s, u) = \min(s, u)$, and $X_t(\omega)$ is continuous on $[0, \tau]$ for all $\omega \in \Omega$
- The realizations X_t are non-differentiable Lebesgue a.e., for all $\omega \in \Omega$,
 - the derivative " $\frac{d}{dt}X_t$ " is Gaussian "white noise"

 $\mathcal{B}^T = \sigma(\{\text{ measurable rectangles with sides in } \mathcal{B}\})$

- Given $(E^T, \mathcal{E}^T, \mu)$ and $G \subset E^T$ (but possibly $G \notin \mathcal{E}^T$)
- For any $E \subset E^T$ let $\mu^*(E) = \inf \{ \mu(E') : E \subset E', E' \in \mathcal{E}^T \}$
- If $\mu^*(G) = 1$ then (G, \mathcal{G}, μ^*) with $\mathcal{G} = \{G \cap E : E \in \mathcal{E}^T\}$ is a process with all sample paths in G
- For G = C(T), $E^T = \mathbb{R}^T$, $\mathcal{E}^T = \mathcal{B}^T$ and $(\mathbb{R}^T, \mathcal{B}^T, \mu)$ Gaussian with m(t) = 0 and $V(t, s) = \min(t, s)$, we have $\mu^*(G) = 1$ and the resulting space (G, \mathcal{G}, μ^*) is Brownian motion, with $\mu^* =$ the Wiener measure

```
17/18
```