
Probability and Random Processes
Lecture 10

• Random processes

• Kolmogorov’s extension theorem

• Random sequences and waveforms
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Random Objects

• A probability space (Ω,A, P ) and a measurable space (E, E)
• A measurable transformation X : (Ω,A) → (E, E), is a
random

• variable if (E, E) = (R,B)
• vector if (E, E) = (Rn,Bn)
• sequence if (E, E) = (R∞,B∞)
• object, in general
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More on Product Spaces

• (E, E) a measurable space and T an arbitrary parameter set

• ET = { all mappings from T to E }
• A measurable rectangle {f ∈ ET : f(t) ∈ At for all t ∈ S}
where S is a finite subset S ⊂ T and At ∈ E for all t ∈ S

• For U = { all measurable rectangles }, let ET = σ(U)
• For t ∈ T , define πt : E

T → E to be the evaluation map

πt(f) = f(t), for any f ∈ ET

• Then it holds that ET = σ({πt : t ∈ T}) i.e., ET is the
smallest σ-algebra such that all

πt : (E
T , ET ) → (E, E), t ∈ T

are measurable
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• For S ⊂ T define the restriction map πS : ET → ES , via
πS(f) = f |S

• For a finite S ⊂ T and AS ∈ ES , a subset F ⊂ ET is a
measurable cylinder if it has the form F = π−1

S (AS), i.e.

F = {f ∈ ET : πS(f) ∈ AS , πT\S(f) ∈ ET\S} = AS ×ET\S

• Then it holds that ET = σ({ all measurable cylinders })
• A measurable σ-cylinder is a measurable cylinder where the
set S ⊂ T is possibly infinite but countable

• Then we also have ET = { all measurable σ-cylinders },
• even when T is uncountable, membership f ∈ A ∈ ET imposes

restrictions on the values f(t) only for countably many t’s
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Random Processes

Given (Ω,A, P )

• Random process, definition 1: a collection {Xt : t ∈ T} where
for each t, Xt is a random object Xt : (Ω,A) → (E, E),

Xt : Ω → E, X−1
t : E → A

for each t, Xt maps ω into a value Xt(ω) ∈ E

• Random process, definition 2: a random object
X : (Ω,A) → (ET , ET )

X : Ω → ET , X−1 : ET → A

X maps each ω into a function Xt(ω) ∈ ET
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Extension Results

• Based on definition 2, the process distribution µX is the
distribution of the random object X, that is,

µX(A) = P ({ω : Xt(ω) ∈ A}), A ∈ ET

• For a subset S ⊂ T , restricting the process to S means that
f(t) = Xt(ω) is restricted to t ∈ S, πS(f) = f |S , with
corresponding marginal distribution µX|S on (ES , ES)

Mikael Skoglund, Probability and random processes 6/18



• Assume that (E, E , µt) are probability spaces for each t ∈ S,
where S is a finite subset S ⊂ T , and let (ES , ES , µS) be the
corresponding product measure space

• Even in the case of an uncountable T , (ES , ES , µS) can be
extended to the full space (ET , ET , µX), in the sense that
there exists a unique µX such that

µX|S(A) = µS(A)

for all A ∈ ES and any finite S ⊂ T

• Proof: The cylinder sets are a semialgebra that generates ET ;

a finite product of probability measures is a pre-measure on the

cylinders; our previous extension result for product measure can

then be extended to a countable S; finally, the fact that ET is the

class of σ-cylinders can be used to extend to the full class ET
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• Remember from the definition of product measure, that
(ES , ES , µS) corresponds to a process with independent
values Xt(ω), t ∈ S

• Hence we now know how to construct memoryless processes,
even for an uncountable T , based on marginal distributions for
each finite S

• How about completely general µX ’s?

• First result, uniqueness in the general case: for any µ
(1)
X and

µ
(2)
X on (ET , ET ), if

µ
(1)
X|S(A) = µ

(2)
X|S(A)

for all finite S ⊂ T and A ∈ ES , then µ
(1)
X = µ

(2)
X

• That is, the finite-dimensional marginal distributions uniquely
determine the process distribution, if it exists
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Existence: Kolmogorov’s Extension Theorem

• A marginal distribution µX|S , for any finite S ⊂ T , is
consistent if µX|S implies µX|V for all V ⊂ S

• of no concern for product measure, i.e., memoryless
marginals. . . (why?)

• Extension Theorem: For a given process X from (Ω,A) to
(ET , ET ), assume that a consistent distribution µX|S is
specified for any finite subset S ⊂ T . If (E, E) is standard,
then a unique process distribution µX exists on (ET , ET ) that
agrees with µX|S for all finite S ⊂ T

• Additional structure is necessary; the result does not hold for
all possible (E, E)
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Discrete-time Real-valued Random Process

• Given (Ω,A, P ), let E = R, E = B, and interpret T as “time”

• If T = Z or N, then X is a random sequence or a
discrete-time random process, that is {Xt}t∈T is a countable
collection of random variables

• (E, E) is standard
⇒ Any set of distributions for all random vectors that can be

formed by restricting to S = {t1, t2, . . . , tm} can be extended
to a unique process distribution
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Continuous-time Real-valued Random Process

• Given (Ω,A, P ), let E = R, E = B, and interpret T as “time”

• If T = R or R+, then X is a random waveform or a
continuous-time random process, that is {Xt}t∈T is an
uncountable collection of random variables

• (E, E) is standard, so consistent finite-dimensional marginals
can be extended to a unique process distribution on (ET , ET )
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Finite-energy Waveforms

• Introduce the L2 norm

∥g∥ =

(∫
|g(t)|2dt

)1/2

and let L2 = { Lebesgue measurable f such that ∥f∥2 < ∞}
• Equipped with the inner product

⟨f, g⟩ =
∫

fgdt

L2 is then a separable Hilbert space (with ∥f∥ = (⟨f, f⟩)1/2)
• With topology T determined by the metric ρ(f, g) = ∥f − g∥
the space A = (L2, T ) is Polish and (L2, σ(A)) is standard

• The resulting space (L2, σ(A)) is a model for random
finite-energy waveforms
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Continuous Waveforms

• For a closed interval T ⊂ R, let
C(T ) = { all continuous functions f : T → R }

• For g, f ∈ C(T ), define the metric

ρ(f, g) = sup{|f(t)− g(t)| : t ∈ T}

• With topology T determined by ρ, A = (C(T ), T ) is Polish
and (C(T ), σ(A)) is standard

• The resulting space (C(T ), σ(A)) is a model for continuous
waveforms on T
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Gaussian Processes

• Let T = R, R+, Z or N
• For any finite S ⊂ T , of size n, let ES = Rn and ES the
corresponding Borel sets

• Define µX|S on (ES , ES) to be the finite Borel measure with
density

fn(x
n) =

1√
(2π)n|Vn|

exp

(
−1

2
(xn −mn)V −1

n (xn −mn)′
)

with respect to n-dimensional Lebesgue measure, where Vn is
a positive-definite n× n matrix and mn ∈ Rn
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Discrete time

• For T = Z or N, the distributions specified by (mn, Vn) for all
finite n uniquely determine a Gaussian sequence {Xt} with
process distribution µX

• µX is uniquely specified by knowing

m(t) = E[Xt], V (k, l) = E[(Xk −m(k))(Xl −m(l))]

for all t, k, l ∈ T
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Continuous time

• For T = R or R+, the distributions specified by (mn, Vn) for
all finite n uniquely determine a Gaussian waveform {Xt}
with process distribution µX , specified by

m(t) = E[Xt], V (s, u) = E[(Xs −m(s))(Xu −m(u))]

for all t, s, u ∈ T

• Here we need ∫
V (t, t)dt < ∞

to get finite-energy waveforms (with probability one)
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Brownian Motion

• Given (Ω,A, P ) and C(T ) = the class of continuous
waveforms on T = [0, τ ] for τ > 0

• There is a probability space (C(T ), ET , µX) such that
• For Xt ∈ C(T ), X0(ω) = 0 for all ω ∈ Ω
• For every 0 ≤ s ≤ t ≤ τ , Y (t, s) = Xt −Xs ∼ N (0, t− s).

Also Y (t, s) and Xu are independent for all 0 ≤ u ≤ s
• ET = σ(A) on slide 13
• µX is unique

• µX = the Wiener measure (usually for T = [0,∞))

• Consequently, Xt is a Gaussian waveform with m(t) = 0 and
V (s, u) = min(s, u), and Xt(ω) is continuous on [0, τ ] for all
ω ∈ Ω

• The realizations Xt are non-differentiable Lebesgue a.e., for
all ω ∈ Ω,

• the derivative “ d
dtXt” is Gaussian “white noise”
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• Starting from a Gaussian process on (RS ,BS), S ⊂ T = [0, τ ]
and finite, with m(t) = 0 and V (s, u) = min(s, u) for t, s, u
in S, and then using the extension theorem cannot work,
because C(T ) is not in

BT = σ({measurable rectangles with sides in B })
• Given (ET , ET , µ) and G ⊂ ET (but possibly G /∈ ET )

• For any E ⊂ ET let µ∗(E) = inf{µ(E′) : E ⊂ E′, E′ ∈ ET }
• If µ∗(G) = 1 then (G,G, µ∗) with G = {G ∩ E : E ∈ ET } is a
process with all sample paths in G

• For G = C(T ), ET = RT , ET = BT and (RT ,BT , µ)
Gaussian with m(t) = 0 and V (t, s) = min(t, s), we have
µ∗(G) = 1 and the resulting space (G,G, µ∗) is Brownian
motion, with µ∗ = the Wiener measure
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