Probability and Random Processes
Lecture 11

Measurable dynamical systems

Random processes as dynamical systems

Stationarity

Ergodic theory
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Measurable Dynamical System

e A probability space (2,4, P)
e A measurable transformation ¢ : (2, 4) — (2, A)

e The space (2, A, P, ¢) is called a measurable dynamical
system
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Interpretation
e Nature selects an initial state w = wy

e Forn > 0, time acts on w € {2 to 'move around’ points in €2,

Wnt1 = ¢(wy) = { notation } = ¢w,, = & Lwg

producing an orbit {wy, }

e The orbit is random because wy is selected at random
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Random Process as Dynamical System

e There are several ways to model a random process as a
dynamical system — consider a discrete-time process {X;}, for
teT and with T'=N

e Approach 1: {X;} is a collection of random variables
X : 2 — R where for each ¢ and w

Xi(w) = X (¢'w)

for some fixed random variable X
e Approach 2: Define ¢ implicitly on €2 by specifying a
time-shift ¢’ on T', i.e., ¢'(t) =t + 1 and

(X07X17X27X37 .. ) 2} (X17X2aX37X47 <. )
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e The model X;(w) = X (¢'w) fits with interpreting {X;} as a
collection or random variables

e Note that we can also consider (ET,ST,,LL, ®), i.e., the
evolution of the process is described by ¢ : ET — ET

o for example, ¢(f(¢)) = f(t+1)
which fits better with the time-shift in approach 2

Mikael Skoglund, Probability and random processes 5/13

Continuous Time

We will focus on systems (2, A, P, ¢) interpreting ¢ as 'one
discrete action of time' — i.e., discrete-time systems

Continuous-time systems can be modeled using a family
{¢t}ico of transformations, with @ = R or R, such that

¢t+s = ¢t ¢s

That is ¢ sw = Qrosw
The family {¢,} is called a flow

A random waveform can be defined, e.g., as

Xi(w) = X(¢w)
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Stationarity

A dynamical system (Q, A, P, ¢)

The system is stationary if

P(A) = P(¢p~1(A)), forallAc A

(where ¢~ 1(A) = {w: pw € A} C A)
The system is asymptotically mean stationary (AMS) if the
limit

n—1
lim ~ 3" P(67(A)) = P(A)
1=0

n—o00 N 4

exists pointwise for all A € A

(2, A, P,¢) AMS = P is a probability measure and
(2, A, P, ¢) is stationary )
(of course) stationary == AMS and P = P
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Recurrence

A dynamical system (Q, A, P, ¢)

A point w € A is said to be recurrent with respect to A € A if
there is a finite N = N4 (w) such that ¢Vw € A

e weE A= wreturns to A in finite time

o A€ Ais recurrent if P(A) > 0 and

P({w € A: w is not recurrent w.r.t. A}) =0
o (U, A, P, ¢)is recurrent if all A € A are recurrent
e stationary = recurrent
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Ergodicity

A dynamical system (2, A, P, ¢)
If A€ Aissuch that ¢71(A) = A then A is invariant

Let Z = { all invariant A € A}
e T is a o-algebra (why?)
(Q, A, P,¢) is ergodic if P(B) =1or 0 forall BeT
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The Ergodic Theorem

e Theorem: If (2, A, P, ¢) is AMS and X is a random variable
such that

/X(w)dp < o0
then

n—1
.1 i N E
n11_>rrolo - E_O X(¢p'w) = E[X|I]

with probability one (under P and P), where E[X|Z] is
conditional expectation w.r.t. P and where 7 is the o-algebra
of invariant events
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o Let
_ R .
X fim 52 X(0)
then X is an Z-measurable random variable

e Note that
/E@:/X@

and that if (2, A, P, ¢), in addition, is ergodic then
X:/X@,Pae

e In particular, if (2, A, P, ¢) is stationary and ergodic, then
X = E[X] with probability one
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Ergodic Decomposition

e Fix a standard measurable space (2,.4) and ¢ : Q2 —

e Assume there is a P such that (2, A, P, ¢) is stationary

e Then there are a standard space (I',S), a family { P, },cr and
a measurable transformation 7 : 2 — I" such that

@ 7 is invariant (7(¢w) = 7(w))
® (A, P, ¢) is stationary and ergodic, for each y € I’
® if 7 induces P*(S) = P(t71(S)) on (I, S), then for all A € A

P(A) = [ Pry()iPw) = [ P,(4)aP ()

O if [ f(w)dP(w) < oo then

/fdP:/{/fdPT(w)}dP /{/fdP }dP*( )
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e For any stationary (€2, A, P, ¢) we can decompose P into a
mixture of stationary and ergodic components P,

e For A € A, the component in effect is characterized by
Py(A) = P(A|lr =7)

(regular conditional probability, given the exact outcome 7 of the
random object 7 : (2, 4) — (T',S))
e Interpretation: when time starts, Nature selects which
component P, will be active, with probability P* on (I',S),
= the output from a stationary system always “looks ergodic,”
however we do not know beforehand which ergodic component
will be active
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