Probability and Random Processes Lecture 12

- Detection
- Estimation
- Capacity
- Information

Mikael Skoglund, Probability and random processes

1/24

Detection

- A random process on (E^T, \mathcal{E}^T) with two possible distributions μ_0 and μ_1
- Assume that $\mu_0 \gg \mu_1$ and $\mu_1 \gg \mu_0$ (the distributions are equivalent)
- Observe $f \in E^T$ and based on the observation

decide $H_0: \mu_0$ or $H_1: \mu_1$

 \iff design a measurable mapping $g: E^T \to \{0, 1\}$

Criteria

• Classical: minimize

$$P(g(f) = 0|H_1)$$

subject to $P(g(f) = 1|H_0) \leq \alpha$

• Bayesian: minimize

$$P_e = P(g(f) = 0|H_1)P(H_1) + P(g(f) = 1|H_0)P(H_0)$$

Mikael Skoglund, Probability and random processes

Bayesian detection

• Let $G_1 = g^{-1}(\{1\})$, $G_0 = g^{-1}(\{0\})$, assuming $G_1 \cup G_0 = E^T$ and $G_1 \cap G_0 = \emptyset$, then

$$P_e = P(H_1) \int_{G_0} d\mu_1 + P(H_0) \int_{G_1} d\mu_0$$

= $P(H_1) \int_{G_0} \left(\frac{d\mu_1}{d\mu_0} - \frac{P(H_0)}{P(H_1)} \right) d\mu_0 + P(H_0)$

• Hence, we should set

$$G_0 = \left\{ f : \frac{d\mu_1}{d\mu_0}(f) < \frac{P(H_0)}{P(H_1)} \right\}$$
$$G_1 = \left\{ f : \frac{d\mu_1}{d\mu_0}(f) > \frac{P(H_0)}{P(H_1)} \right\}$$

• Compare the likelihood ratio

$$\lambda(f) = \frac{d\mu_1}{d\mu_0}(f)$$

to a threshold

- Classical \Rightarrow Neyman–Pearson: also based on comparing λ to a threshold
- Given $f \in E^T$, how do we compute $\lambda(f)$?

Mikael Skoglund, Probability and random processes

Grenander's theorem

- Look at $(E, \mathcal{E}) = (\mathbb{R}, \mathcal{B})$ and $T = \mathbb{R}^+$
- $X : (\Omega, \mathcal{A}, P) \to (\mathbb{R}^T, \mathcal{B}^T, \mu)$ is separable if there is a set $N \subset \Omega$ for which P(N) = 0 and a sequence $S = \{t_k\} \subset T$ such that for any open interval I and closed set C

$$\{\omega: \pi_t(X(\omega)) \in C, \ t \in I \cap T\} \setminus \{\omega: \pi_t(X(\omega)) \in C, \ t \in I \cap S\} \subset N$$

- i.e., $f(t) \in \mathbb{R}^T$ can be sampled without loss at the t_k 's
- For any $X : (\Omega, \mathcal{A}, P) \to (\mathbb{R}^T, \mathcal{B}^T, \mu)$ there is a $\tilde{X} : (\Omega, \mathcal{A}, P) \to (\mathbb{R}^T, \mathcal{B}^T, \tilde{\mu})$ such that \tilde{X} is separable and

$$P(\{\omega: \pi_t(X) = \pi_t(\tilde{X}), t \in T\}) = 1$$

- Consider the detection problem, and assume that μ_1 and μ_2 when restricted to $\{t_k\}_1^n$, for any finite n, are both absolutely continuous with respect to Lebesgue measure on \mathbb{R}^n
- Observe f(t), sample as $f_k = f(t_k)$ (with $\{t_k\}$ as in the definition of separability), let $f^n = (f_1, \ldots, f_n)$ and denote the densities $g_1(f^n)$ and $g_2(f^n)$ (corresponding to μ_1 and μ_2)
- Then the entity

$$g_n = \frac{g_1(f^n)}{g_2(f^n)}$$

converges with probability one to $\lambda(f)$ under both H_0 and H_1

Mikael Skoglund, Probability and random processes

Gaussian waveforms

- Consider the continuous-time Gaussian example with two possible mean-value functions, that is, f(t) is Gaussian with $E[f(t)] = m_i(t)$ under H_i , and has a positive-definite covariance kernel V(s, u) (under both H_0 and H_1)
- Without loss we can assume $m_0(t) = 0$ and $m_1(t) = m(t)$
- Assume that m(t) can be expressed as

$$m(t) = \int V(t,s)h(s)ds$$

for some h(t), then

$$\ln \lambda(f) = \int f(t)h(t)dt - \frac{1}{2}\int m(t)h(t)dt$$

(with probability one under H_0 and H_1)

8/24

Estimation

Bayesian

- Two random objects X and Y on (Ω, A, P) with range spaces (ℝ, B) and (E, E) (standard)
- Estimate $X \in \mathbb{R}$ from observing $Y = y \in E$; MMSE \Rightarrow

$$\hat{X}(y) = E[X|Y = y]$$

• That is,

$$\hat{X}(y) = \int x d\mu_y$$

where μ_y is the regular conditional distribution for X given Y=y

Mikael Skoglund, Probability and random processes

9/24

Classical

• For an absolutely continuous random variable X with pdf $f_{\alpha}(x)$; given the observation X = x we have the traditional ML estimate

$$\hat{\alpha} = \arg\max_{\alpha} f_{\alpha}(x)$$

- A pdf f(x) is the Radon–Nikodym derivative of the distribution μ on (ℝ, ℬ) w.r.t. Lebesgue measure λ; that is, it can be interpreted as the likelihood ratio between the hypothesis H₀ : μ = λ and H₁ : μ = μ_X (the correct distribution)
- In the case of a general random object X : (Ω, A, P) → (E, E, μ), we can choose a "dummy hypothesis" H₀ : μ = μ₀ as a reference to H₁ : μ = μ_α, where μ_α is the correct distribution, with an unknown parameter α ∈ ℝ

• Then, based on the observation X = x, the ML estimate can be computed as

$$\hat{\alpha} = \arg\max_{\alpha} \frac{d\mu_{\alpha}}{d\mu_0}(x)$$

- The reference distribution can be chosen e.g. such that computing the likelihood ratio is feasible
- Note that in general, the estimate "
 α = arg max μ_α" does not make sense; μ_α is a mapping from sets in *E*

Mikael Skoglund, Probability and random processes

Channels

- Given two measurable spaces (Ω, A) and (Γ, S), a mapping g : Ω × S → ℝ⁺ is called a transition kernel (from Ω to Γ) if
 - **1** $f(\omega) = g(\omega, S)$ is measurable for any fixed $S \in S$ **2** $h(S) = g(\omega, S)$ is a measure on (Γ, S) for any fixed $\omega \in \Omega$

If the measure h(S) in 2. is a probability measure, then g is called a stochastic kernel

 If Y is a random object on (Ω, A, P) with values in (E, E), then a stochastic kernel g from Ω to E is the regular conditional distribution of Y given G ⊂ A if

$$g(\omega, F) = P(\{Y \in F\} | \mathcal{G})(\omega)$$

with probability one w.r.t. P and $\omega,$ and for all $F\in\mathcal{E}$

• A regular conditional distribution for Y exists if (E, \mathcal{E}) is standard

12/24

- The factorization lemma: Assume two measurable spaces

 (Ω₁, A₁) and (Ω₂, A₂) and a measurable mapping
 u: Ω₁ → Ω₂ are given. A function v : (Ω₁, A₁) → (ℝ, B) is
 measurable w.r.t σ(u) ⊂ A₁ iff there is a measurable mapping
 φ: (Ω₂, A₂) → (ℝ, B) such that v = φ ∘ u
- Let X be an arbitrary random object on (Ω, \mathcal{A}, P) , and let Y be as before, with (E, \mathcal{E}) standard. Let

$$g(\omega, F) = P(\{Y \in F\} | \sigma(X))(\omega)$$

and let ϕ_F be the mapping in the factorization lemma $g(\omega, F) = \phi_F(X(\omega))$ (w.r.t. ω for a fixed F), then

$$P(\{Y \in F\} | X = x) = \phi_F(x)$$

is the conditional distribution of Y given X = x

Mikael Skoglund, Probability and random processes

- Assume (Ω, \mathcal{A}, P) , a parameter set T and a process $X : (\Omega, \mathcal{A}, P) \to (E^T, \mathcal{E}^T, \mu_X)$ are given
- Given another function/sequence space (F^T, \mathcal{F}^T) , a channel is a regular conditional distribution from Ω to F^T given a specific value $X = x \in E^T$; that is, for any $x \in E^T$ the distribution

$$\mu_x(F) = P(\{Y \in F\} | X = x), \ F \in \mathcal{F}^T$$

- Interpretation: A random channel input X is generated and is then transmitted over the channel, resulting in the channel output Y; given X = x the distribution for Y is μ_x
- A channel exists if the relevant spaces are standard

- Given (E^T, \mathcal{E}^T) and (F^T, \mathcal{F}^T) , let $\mathcal{E}^T \times \mathcal{F}^T$ be the product σ -algebra on $E^T \times F^T$
- Let $\tilde{\mu}$ be defined by

$$\tilde{\mu}(A,B) = \int_A P(B|X=x) d\mu_X(x)$$

on rectangles, $A \in \mathcal{E}^T, B \in \mathcal{F}^T$

- Standard spaces \Rightarrow unique extension of $\tilde{\mu}$ from rectangles to $\mathcal{E}^T \times \mathcal{F}^T$; a joint distribution μ on $(E^T \times F^T, \mathcal{E}^T \times \mathcal{F}^T)$
- Also define the corresponding product distribution π , generated as the extension of $\mu_X(A)\mu_Y(B)$, with

$$\mu_Y(B) = \int_{\Omega} P(B|X=x) d\mu_X(x)$$

Mikael Skoglund, Probability and random processes

Channel Capacity

- Focus on $T = \mathbb{N}^+$ and $E = F = \mathbb{R}$; a channel $\mu_x(\cdot)$ with input $x \in \mathbb{R}^T$ and output $y \in \mathbb{R}^T$ (sequences), resulting in the joint distribution μ
- A rate R [bits per channel use] is achievable if information can be transmitted at R with error probability below ε for any $\varepsilon > 0$
- The capacity C of the channel $= \sup\{R : R \text{ is achievable }\}$

• Let $S_n = \{1, 2, \dots, n\}$, define the information density

$$i(x,y) = \log \frac{d\mu}{d\pi}$$

(assuming $\pi \gg \mu$), and the corresponding restricted version

$$i_n(x^n, y^n) = \log \frac{d\mu_{|S_n|}}{d\pi_{|S_n|}}$$

• Let

$$\gamma(\mu_X) = \sup\left\{\alpha : \lim_{n \to \infty} P(n^{-1}i_n \le \alpha) = 0\right\}$$

Mikael Skoglund, Probability and random processes

17/24

• A general formula for channel capacity [Verdú-Han, '94]:

$$C = \sup_{\mu_X} \gamma(\mu_X)$$

• Computing C involves the problem of characterizing the limit γ (for each fixed μ_X) \Rightarrow ergodic theory

Information Measures

- Given (Ω, \mathcal{A}) , a measurable partition of Ω is a finite collection G_1, \ldots, G_n , $G_i \in \mathcal{A}$, such that $G_k \cap G_l = \emptyset$ for $k \neq l$ and $\cup_i G_i = \Omega$
- Given two probability measures P and Q on (Ω, A) and a measurable partition $\mathcal{G} = \{G_i\}_{i=1}^n$ of Ω , define

$$D^*(P||Q)(\mathcal{G}) = \sum_{G \in \mathcal{G}} P(G) \log \frac{P(G)}{Q(G)}$$

• Then, the relative entropy between P and Q is defined as

$$D(P||Q) = \sup_{\mathcal{G}} D^*(P||Q)(\mathcal{G})$$

Mikael Skoglund, Probability and random processes

19/24

• If $P \ll Q$, then we get

$$D(P||Q) = \int \log \frac{dP}{dQ}(\omega) \, dP(\omega)$$

- Let X and Y be two random objects on (Ω, A, P) with range spaces (Γ, S) and (Λ, U), and a joint distribution μ_{XY} on (Γ × Λ, S × U) corresponding to the marginal distributions μ_X and μ_Y
- Let π_{XY} be the corresponding product distribution
- The mutual information between X and Y is then defined as

 $I(X;Y) = \sup_{\mathcal{F}} D^*(\mu_{XY} || \pi_{XY})(\mathcal{F})$

over measurable partitions ${\cal F}$ of $\Gamma \times \Lambda$

• The entropy of the single variable X is defined as

H(X) = I(X;X)

Mikael Skoglund, Probability and random processes

21/24

• If $\mu_{XY} \ll \pi_{XY}$, then

$$I(X;Y) = \int \log \frac{d\mu_{XY}}{d\pi_{XY}} d\mu_{XY}$$

• Returning to the setup of transmission over a channel (with the previous notation), if $\pi \gg \mu$ we had

$$i_n(x^n, y^n) = \log \frac{d\mu_{|S_n|}}{d\pi_{|S_n|}}$$

• If for any fixed stationary and ergodic input, with distribution μ_X , the channel is such that the joint input-output process on $(\mathbb{R}^T \times \mathbb{R}^T, \mathcal{B}^T \times \mathcal{B}^T)$ is stationary and ergodic, and in addition satisfies the finite-gap information property (below), then

$$\frac{1}{n}i_n \to \lim_{n \to \infty} \frac{1}{n}I(X^n;Y^n)$$

with probability one

• finite-gap information: for any n > 0 there is a $k \ge n$ such that $I(X_k; X^n | X^k)$ and $I(Y_k; Y^n | Y^k)$ are both finite

Mikael Skoglund, Probability and random processes

• Letting

$$i_{\infty}(\mu_X) = \lim_{n \to \infty} \frac{1}{n} I(X^n; Y^n)$$

for any fixed μ_X , we get

$$C = \sup_{\mu_X} i_{\infty}(\mu_X)$$

- Channels that result in this formula for C have been called information stable
- To prove this, one first needs to see that $\gamma = i_{\infty}$ for any fixed μ_X such that the input, output and joint input-output are stationary and ergodic. Then one needs to show that the supremum is achieved in this class.