
Probability and Random Processes
Lecture 12

• Detection

• Estimation

• Capacity

• Information
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Detection

• A random process on (ET , ET ) with two possible distributions
µ0 and µ1

• Assume that µ0 � µ1 and µ1 � µ0 (the distributions are
equivalent)

• Observe f ∈ ET and based on the observation

decide H0 : µ0 or H1 : µ1

⇐⇒ design a measurable mapping g : ET → {0, 1}
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Criteria

• Classical: minimize

P (g(f) = 0|H1)

subject to P (g(f) = 1|H0) ≤ α
• Bayesian: minimize

Pe = P (g(f) = 0|H1)P (H1) + P (g(f) = 1|H0)P (H0)
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Bayesian detection

• Let G1 = g−1({1}), G0 = g−1({0}), assuming G1 ∪G0 = ET

and G1 ∩G0 = ∅, then

Pe = P (H1)

∫

G0

dµ1 + P (H0)

∫

G1

dµ0

= P (H1)

∫

G0

(
dµ1

dµ0
− P (H0)

P (H1)

)
dµ0 + P (H0)

• Hence, we should set

G0 =

{
f :

dµ1

dµ0
(f) <

P (H0)

P (H1)

}

G1 =

{
f :

dµ1

dµ0
(f) >

P (H0)

P (H1)

}
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• Compare the likelihood ratio

λ(f) =
dµ1

dµ0
(f)

to a threshold

• Classical ⇒ Neyman–Pearson: also based on comparing λ to
a threshold

• Given f ∈ ET , how do we compute λ(f)?
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Grenander’s theorem

• Look at (E, E) = (R,B) and T = R+

• X : (Ω,A, P )→ (RT ,BT , µ) is separable if there is a set
N ⊂ Ω for which P (N) = 0 and a sequence S = {tk} ⊂ T
such that for any open interval I and closed set C

{ω : πt(X(ω)) ∈ C, t ∈ I∩T}\{ω : πt(X(ω)) ∈ C, t ∈ I∩S} ⊂ N

• i.e., f(t) ∈ RT can be sampled without loss at the tk’s

• For any X : (Ω,A, P )→ (RT ,BT , µ) there is a
X̃ : (Ω,A, P )→ (RT ,BT , µ̃) such that X̃ is separable and

P ({ω : πt(X) = πt(X̃), t ∈ T}) = 1
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• Consider the detection problem, and assume that µ1 and µ2

when restricted to {tk}n1 , for any finite n, are both absolutely
continuous with respect to Lebesgue measure on Rn

• Observe f(t), sample as fk = f(tk) (with {tk} as in the
definition of separability), let fn = (f1, . . . , fn) and denote
the densities g1(fn) and g2(fn) (corresponding to µ1 and µ2)

• Then the entity

gn =
g1(fn)

g2(fn)

converges with probability one to λ(f) under both H0 and H1
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Gaussian waveforms

• Consider the continuous-time Gaussian example with two
possible mean-value functions, that is, f(t) is Gaussian with
E[f(t)] = mi(t) under Hi, and has a positive-definite
covariance kernel V (s, u) (under both H0 and H1)

• Without loss we can assume m0(t) = 0 and m1(t) = m(t)

• Assume that m(t) can be expressed as

m(t) =

∫
V (t, s)h(s)ds

for some h(t), then

lnλ(f) =

∫
f(t)h(t)dt− 1

2

∫
m(t)h(t)dt

(with probability one under H0 and H1)
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Estimation

Bayesian

• Two random objects X and Y on (Ω,A, P ) with range spaces
(R,B) and (E, E) (standard)

• Estimate X ∈ R from observing Y = y ∈ E; MMSE ⇒

X̂(y) = E[X|Y = y]

• That is,

X̂(y) =

∫
xdµy

where µy is the regular conditional distribution for X given
Y = y
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Classical

• For an absolutely continuous random variable X with pdf
fα(x); given the observation X = x we have the traditional
ML estimate

α̂ = arg max
α

fα(x)

• A pdf f(x) is the Radon–Nikodym derivative of the
distribution µ on (R,B) w.r.t. Lebesgue measure λ; that is, it
can be interpreted as the likelihood ratio between the
hypothesis H0 : µ = λ and H1 : µ = µX (the correct
distribution)

• In the case of a general random object X : (Ω,A, P )→
(E, E , µ), we can choose a “dummy hypothesis” H0 : µ = µ0

as a reference to H1 : µ = µα, where µα is the correct
distribution, with an unknown parameter α ∈ R
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• Then, based on the observation X = x, the ML estimate can
be computed as

α̂ = arg max
α

dµα
dµ0

(x)

• The reference distribution can be chosen e.g. such that
computing the likelihood ratio is feasible

• Note that in general, the estimate “α̂ = arg maxµα” does not
make sense; µα is a mapping from sets in E
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Channels

• Given two measurable spaces (Ω,A) and (Γ,S), a mapping
g : Ω× S → R+ is called a transition kernel (from Ω to Γ) if

1 f(ω) = g(ω, S) is measurable for any fixed S ∈ S
2 h(S) = g(ω, S) is a measure on (Γ,S) for any fixed ω ∈ Ω

If the measure h(S) in 2. is a probability measure, then g is
called a stochastic kernel

• If Y is a random object on (Ω,A, P ) with values in (E, E),
then a stochastic kernel g from Ω to E is the regular
conditional distribution of Y given G ⊂ A if

g(ω, F ) = P ({Y ∈ F}|G)(ω)

with probability one w.r.t. P and ω, and for all F ∈ E
• A regular conditional distribution for Y exists if (E, E) is

standard
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• The factorization lemma: Assume two measurable spaces
(Ω1,A1) and (Ω2,A2) and a measurable mapping
u : Ω1 → Ω2 are given. A function v : (Ω1,A1)→ (R,B) is
measurable w.r.t σ(u) ⊂ A1 iff there is a measurable mapping
φ : (Ω2,A2)→ (R,B) such that v = φ ◦ u

• Let X be an arbitrary random object on (Ω,A, P ), and let Y
be as before, with (E, E) standard. Let

g(ω, F ) = P ({Y ∈ F}|σ(X))(ω)

and let φF be the mapping in the factorization lemma
g(ω, F ) = φF (X(ω)) (w.r.t. ω for a fixed F ), then

P ({Y ∈ F}|X = x) = φF (x)

is the conditional distribution of Y given X = x
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• Assume (Ω,A, P ), a parameter set T and a process
X : (Ω,A, P )→ (ET , ET , µX) are given

• Given another function/sequence space (F T ,FT ), a channel
is a regular conditional distribution from Ω to F T given a
specific value X = x ∈ ET ; that is, for any x ∈ ET the
distribution

µx(F ) = P ({Y ∈ F}|X = x), F ∈ FT

• Interpretation: A random channel input X is generated and is
then transmitted over the channel, resulting in the channel
output Y ; given X = x the distribution for Y is µx

• A channel exists if the relevant spaces are standard
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• Given (ET , ET ) and (F T ,FT ), let ET ×FT be the product
σ-algebra on ET × F T

• Let µ̃ be defined by

µ̃(A,B) =

∫

A
P (B|X = x)dµX(x)

on rectangles, A ∈ ET , B ∈ FT
• Standard spaces ⇒ unique extension of µ̃ from rectangles to
ET ×FT ; a joint distribution µ on (ET × F T , ET ×FT )

• Also define the corresponding product distribution π,
generated as the extension of µX(A)µY (B), with

µY (B) =

∫

Ω
P (B|X = x)dµX(x)
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Channel Capacity

• Focus on T = N+ and E = F = R; a channel µx(·) with
input x ∈ RT and output y ∈ RT (sequences), resulting in the
joint distribution µ

• A rate R [bits per channel use] is achievable if information
can be transmitted at R with error probability below ε for any
ε > 0

• The capacity C of the channel = sup{R : R is achievable }
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• Let Sn = {1, 2, . . . , n}, define the information density

i(x, y) = log
dµ

dπ

(assuming π � µ), and the corresponding restricted version

in(xn, yn) = log
dµ|Sn

dπ|Sn

• Let

γ(µX) = sup
{
α : lim

n→∞
P
(
n−1in ≤ α

)
= 0
}
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• A general formula for channel capacity [Verdú–Han, ’94]:

C = sup
µX

γ(µX)

• Computing C involves the problem of characterizing the limit
γ (for each fixed µX) ⇒ ergodic theory
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Information Measures

• Given (Ω,A), a measurable partition of Ω is a finite collection
G1, . . . , Gn, Gi ∈ A, such that Gk ∩Gl = ∅ for k 6= l and
∪iGi = Ω

• Given two probability measures P and Q on (Ω,A) and a
measurable partition G = {Gi}ni=1 of Ω, define

D∗(P‖Q)(G) =
∑

G∈G
P (G) log

P (G)

Q(G)

• Then, the relative entropy between P and Q is defined as

D(P‖Q) = sup
G
D∗(P‖Q)(G)
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• If P � Q, then we get

D(P‖Q) =

∫
log

dP

dQ
(ω) dP (ω)
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• Let X and Y be two random objects on (Ω,A, P ) with range
spaces (Γ,S) and (Λ,U), and a joint distribution µXY on
(Γ× Λ,S × U) corresponding to the marginal distributions
µX and µY

• Let πXY be the corresponding product distribution

• The mutual information between X and Y is then defined as

I(X;Y ) = sup
F
D∗(µXY ‖πXY )(F)

over measurable partitions F of Γ× Λ

• The entropy of the single variable X is defined as

H(X) = I(X;X)
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• If µXY � πXY , then

I(X;Y ) =

∫
log

dµXY
dπXY

dµXY
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• Returning to the setup of transmission over a channel (with
the previous notation), if π � µ we had

in(xn, yn) = log
dµ|Sn

dπ|Sn

• If for any fixed stationary and ergodic input, with distribution
µX , the channel is such that the joint input–output process on
(RT ×RT ,BT ×BT ) is stationary and ergodic, and in addition
satisfies the finite-gap information property (below), then

1

n
in → lim

n→∞
1

n
I(Xn;Y n)

with probability one

• finite-gap information: for any n > 0 there is a k ≥ n such that

I(Xk;X
n|Xk) and I(Yk;Y

n|Y k) are both finite
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• Letting

i∞(µX) = lim
n→∞

1

n
I(Xn;Y n)

for any fixed µX , we get

C = sup
µX

i∞(µX)

• Channels that result in this formula for C have been called
information stable

• To prove this, one first needs to see that γ = i∞ for any fixed µX

such that the input, output and joint input–output are stationary

and ergodic. Then one needs to show that the supremum is

achieved in this class.
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