Probability and Random Processes Lecture 3

• General measure theory

Mikael Skoglund, Probability...

1/13

Measure

- For the generalization of "length" (to Lebesgue measure), we required
 - length $(A) \ge 0$ for all A
 - $\operatorname{length}(A) = b a$ if A is an interval with endpoints $a \leq b$
 - $\operatorname{length}(B) = \operatorname{length}(B_1) + \operatorname{length}(B_2)$ if $B = B_1 \cup B_2$ and $B_1 \cap B_2 = \emptyset$
- How to generalize to "measure" in a much more general setting?

- An arbitrary set Ω , and a measure μ on sets from Ω
- As before, require
 - $\mu(A) \ge 0$ for all A
 - $\mu(\emptyset) = 0$
 - $\mu(B) = \mu(B_1) + \mu(B_2)$ if $B = B_1 \cup B_2$ and $B_1 \cap B_2 = \emptyset$ (finite additivity)
- To prove limit theorems and similar, we also need countable additivity,
 - for a sequence of sets $\{B_n\}$ with $B_i \cap B_j = \emptyset$ if $i \neq j$

$$\mu\left(\bigcup_{n} B_{n}\right) = \sum_{n} \mu(B_{n})$$

Mikael Skoglund, Probability...

- Ω is the universal set (\mathbb{R} in the case of Lebesgue measure), as before we cannot expect that μ can act on all subsets of Ω
 - but sets of the kind $\bigcup_n B_n$ need to be in the domain of μ
- \Rightarrow A σ -algebra is a class $\mathcal A$ of sets in Ω such that
 - $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$
 - $A_n \in \mathcal{A}, n = 1, 2, 3, \dots, \Rightarrow \cup_n A_n \in \mathcal{A}$
 - On \mathbb{R} , the set \mathcal{L} of Lebesgue measurable sets is a σ -algebra

- A set Ω, a σ-algebra A of subsets. A measure μ is a function μ : A → ℝ* such that
 - $\mu(A) \ge 0$ for all A
 - $\mu(\emptyset) = 0$
 - $\{B_n\}$ with $B_i \cap B_j = \emptyset$ if $i \neq j \Rightarrow$

$$\mu\left(\bigcup_{n} B_{n}\right) = \sum_{n} \mu(B_{n})$$

(Ω, A) is a measurable space, and (Ω, A, μ) is a measure space; the sets in A are called A-measurable

Mikael Skoglund, Probability...

Borel Measurable Sets and Functions

- σ -algebra generated by a class \mathcal{A} of sets = smallest σ -algebra that contains \mathcal{A}
- Collection of Borel sets B = σ-algebra generated by the class of open sets:
 - In general (beyond $\mathbb{R})$ the "open sets" are picked from a topology
 - For the real line, ${\cal B}$ is the smallest $\sigma\mbox{-algebra}$ that contains the open intervals
- The sets in \mathcal{B} are called Borel measurable
- On the real line, B ⊂ L, that is, Borel measurable ⇒
 Lebesgue measurable (but not vice versa)

- A function f : U → V is Borel measurable if the inverse image of any open set in V is Borel measurable in U,
 - again, "open set" and "Borel measurable" can be general (defined by topologies on U and V)
- On the real line, let $\mathcal{F} = \{$ Borel measurable functions $\}$
 - $f \in \mathcal{F}$ if the inverse image of any open set (or interval) $\subset \mathcal{B}$
 - "Borel measurable set" more general than "open set" \Rightarrow ${\cal F}$ contains the continuous functions
 - $f \in \mathcal{F} \Rightarrow f$ Lebesgue measurable (but not vice versa)
 - \mathcal{F} is closed under pointwise limits
 - $\mathcal{F} =$ smallest class of functions that contains the continuous functions and their pointwise limits,
 - c.f. the class { continuous functions } which is closed under uniform but not pointwise convergence

Mikael Skoglund, Probability...

Some Measure Spaces

- $(\mathbb{R}, \mathcal{L}, \lambda)$ and $(\mathbb{R}, \mathcal{B}, \lambda_{|\mathcal{B}})$
- $\Omega \neq \emptyset$ and $\mathcal{A} = \mathcal{P}(\Omega) = \mathsf{set}$ of all subsets. For $A \in \mathcal{A}$, let

$$\mu(A) = \begin{cases} N(A) & A \text{ finite} \\ \infty & A \text{ infinite} \end{cases}$$

where N(A) = number of elements in A; then μ is called counting measure

• $\Omega \neq \emptyset$ and $\mathcal{A} = \mathcal{P}(\Omega)$, for $A \in \mathcal{A}$ the measure

$$\delta_x(A) = \begin{cases} 1 & x \in A \\ 0 & \text{o.w.} \end{cases}$$

is called Dirac measure concentrated at x

- A measure space $(\Omega, \mathcal{A}, \mu)$ with the additional condition $\mu(\Omega) = 1$ is called a probability space and μ is a probability measure
- A measure space (Ω, A, μ). The measure μ is finite if μ(Ω) < ∞.
- Given (Ω, \mathcal{A}) a measure μ is σ -finite if there is a sequence $\{A_i\}, A_i \in \mathcal{A}$, such that $\cup_i A_i = \Omega$ and $\mu(A_i) < \infty$

Mikael Skoglund, Probability...

Complete Measure

• On the real line: $A \in \mathcal{L}$, $\lambda(A) = 0$ and $B \subset A \Rightarrow B \in \mathcal{L}$, however $A \in \mathcal{B}$, $\lambda_{|\mathcal{B}}(A) = 0$ and $B \subset A$ does in general not imply $B \in \mathcal{B}$

 \Rightarrow ($\mathbb{R}, \mathcal{B}, \lambda_{|\mathcal{B}}$) is not *complete*

- A measure space is complete if subsets of sets of measure zero are measurable
- For $(\Omega, \mathcal{A}, \mu)$, let $\overline{\mathcal{A}} =$ collection of all sets of the form $B \cup A$ where $B \in \mathcal{A}$ and $A \subset C$ for some $C \in \mathcal{A}$ with $\mu(C) = 0$. For such a set $\overline{A} = B \cup A \in \overline{\mathcal{A}}$ define $\overline{\mu}(\overline{A}) = \mu(B)$, then
 - $(\Omega, \overline{\mathcal{A}}, \overline{\mu})$ is the completion of $(\Omega, \mathcal{A}, \mu)$
 - $\mathcal{A} \subset \overline{\mathcal{A}}, \ \overline{\mu}_{|\mathcal{A}} = \mu \text{ and } \overline{\mu}(\overline{A}) = \inf\{\mu(A) : \overline{A} \subset A \in \mathcal{A}\}$
 - if $(\Omega, \mathcal{F}, \nu)$ is complete, $\mathcal{A} \subset \mathcal{F}$ and $\nu_{|\mathcal{A}} = \mu$ then $\overline{\mathcal{A}} \subset \mathcal{F}$ and $\nu_{|\overline{\mathcal{A}}} = \overline{\mu}$, i.e. completion gives the smallest complete space
 - the completion is unique if $(\Omega, \mathcal{A}, \mu)$ is σ -finite
- $(\mathbb{R}, \mathcal{L}, \lambda)$ is the completion of $(\mathbb{R}, \mathcal{B}, \lambda_{|\mathcal{B}})$

Measurable Functions

- A measure space $(\Omega, \mathcal{A}, \mu)$
- A function $f: \Omega \to \mathbb{R}$ is \mathcal{A} -measurable if $f^{-1}(O) \in \mathcal{A}$ for all open sets $O \subset \mathbb{R}$
 - If $(\Omega, \mathcal{A}, \mu)$ is a probability space $(\mu(\Omega) = 1)$, then measurable functions are called random variables
- If $(\Omega, \mathcal{A}, \mu)$ is complete, f is measurable and $g = f \mu$ -a.e., then g is measurable
- Given two measurable spaces (Ω, \mathcal{A}) and (Λ, \mathcal{S}) , a mapping $T: \Omega \to \Lambda$ is a measurable transformation if $T^{-1}(S) \in \mathcal{A}$ for each $S \in \mathcal{S}$ (note: the sets in \mathcal{S} are not necessarily "open")
- For T from (Ω, \mathcal{A}) to (Λ, \mathcal{S}) ,
 - the class $T^{-1}(\mathcal{S})$ is a σ -algebra $\subset \mathcal{A}$
 - the class $\{L \subset \Lambda : T^{-1}(L) \in \mathcal{A}\}$ is a σ -algebra $\subset S$
 - if $S = \sigma(C)$ for some C, then T is measurable (from A to S) iff $T^{-1}(C) \subset A$

Mikael Skoglund, Probability...

Almost Everywhere

- A measure space (Ω, A, μ); if a statement is true for elements from all sets in A except for those in N ∈ A with μ(N) = 0, then the statement is true μ-almost everywhere (μ-a.e.)
 - ... almost always, for almost all, almost surely, with probability one, almost certainly...
- A sequence {f_n} of A-measurable functions converges μ-a.e. to the function f if lim_{n→∞} f_n(x) = f pointwise for all x except for x in a set E ∈ A with μ(E) = 0

Convergence in Measure

• A measure space $(\Omega, \mathcal{A}, \mu)$ and a sequence $\{f_n\}$ of \mathcal{A} -measurable functions. The sequence converges in measure to the function f if

$$\lim_{n \to \infty} \mu(\{x : |f(x) - f_n(x)| \ge \varepsilon\}) = 0$$

for each $\varepsilon>0$

- If μ is finite then convergence μ -a.e. implies convergence in measure, but not vice versa
- If (Ω, A, μ) is a probability space and {f_n} are random variables, then convergence in measure is called convergence in probability, and convergence μ-a.e. is with probability one

Mikael Skoglund, Probability...