
Probability and Random Processes
Lecture 9

• Extensions to measures

• Product measure
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Cartesian Product

• For a finite number of sets A1, . . . , An

×n
k=1Ak = {(a1, . . . , an) : ak ∈ Ak, k = 1, . . . , n}

• notation An if A1 = · · · = An

• For an arbitrarily indexed collection of sets {At}t∈T

×t∈TAt = {functions f from T to ∪t∈TAt : f(t) ∈ At, t ∈ T}

• At = A for all t ∈ T , then AT = { all functions from T to A }
• For a finite T the two definitions are equivalent (why?)
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• For a set Ω, a collection C of subsets is a semialgebra if
• A,B ∈ C ⇒ A ∩B ∈ C
• if C ∈ C then there is a pairwise disjoint and finite sequence of

sets in C whose union is Cc

• If C1, . . . , Cn are semialgebras on Ω1, . . . ,Ωn then

{×n
k=1Ck : Ck ∈ Ck, 1 ≤ k ≤ n}

is a semialgebra on ×n
k=1Ωk
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Extension

This is how we constructed the Lebesgue measure on R:

• For any A ⊂ R

λ∗(A) = inf

{∑

n

`(In) : {In} open intervals,
⋃

n

In ⊃ A
}

(where ` = “length of interval”)

• A set E ⊂ R is Lebesgue measurable if for any W ⊂ R

λ∗(W ) = λ∗(W ∩ E) + λ∗(W ∩ Ec)

• The Lebesgue measurable sets L form a σ-algebra containing
all intervals

• λ = λ∗ restricted to L is a measure on L, and λ(I) = `(I) for
intervals
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• We started with a set function ` for intervals I ⊂ R
• the intervals form a semialgebra

• Then we extended ` to work for any set A ⊂ R
• here we used outer measure for the extension

• We found a σ-algebra of measurable sets,
• based on a criterion relating to the union of disjoint sets

• Finally we restricted the extension to the σ-algebra L, to
arrive at a measure space (R,L, λ)
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• Given Ω and and a semialgebra C of subsets, assume we can
find a set function m on sets from C, such that

1 if ∅ ∈ C (i.e. C 6= {Ω}) then m(∅) = 0

2 if {Ck}nk=1 is a finite sequence of pairwise disjoint sets from C
such that ∪kCk ⊂ C, then

m

(
n⋃

k=1

Ck

)
=

n∑

k=1

m(Ck)

3 if C,C1, C2, . . . are in C and C ⊂ ∪nCn, then

m(C) ≤
∑

n

m(Cn)

Call such a function m a pre-measure
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• For a set Ω, a semialgebra C and a pre-measure m, define the
set function µ∗ by

µ∗(A) = inf

{∑

n

m(Cn) : {Cn}n ⊂ C,
⋃

n

Cn ⊃ A
}

Then µ∗ is called the outer measure induced by m and C
• A set E ⊂ Ω is µ∗-measurable if

µ∗(W ) = µ∗(W ∩ E) + µ∗(W ∩ Ec)

for all W ∈ Ω. Let A denote the class of µ∗-measurable sets

• A ⊃ C and A is a σ-algebra

• µ = µ∗|A is a measure on A
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The Extension Theorem

1 Given a set Ω, a semialgebra C of subsets and a pre-measure
m on C. Let µ∗ be the outer measure induced by m and C and
A the corresponding collection of µ∗-measurable sets, then
• A ⊃ C and A is a σ-algebra
• µ = µ∗|A is a measure on A
• µ|C = m

Also, the resulting measure space (Ω,A, µ) is complete

2 Let E = σ(C) ⊂ A. If there exists a sequence of sets {Cn} in
C such that
• ∪nCn = Ω, and
• m(Cn) <∞

then the extension µ∗|E is unique,

• that is, if ν is another measure on E such that ν(C) = µ∗|E(C)
for all C ∈ C then ν = µ∗|E also on E
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• Note that E ⊂ A in general, and µ∗|E may not be complete

• In fact, (Ω,A, µ∗|A) is the completion of (Ω, E , µ∗|E),

• on R, µ∗|A corresponds to Lebesgue measure and µ∗|E to Borel
measure

• Also compare the condition in 2. to the definition of σ-finite
measure:
• Given (Ω,A) a measure µ is σ-finite if there is a sequence
{Ai}, Ai ∈ A, such that ∪iAi = Ω and µ(Ai) <∞

• Given a space (Ω,A, µ) and its completion (Ω, Ā, µ̄), we have

µ̄(B) = inf{µ(A) : B ⊂ A ∈ A}

for B ∈ Ā, and µ̄ is unique if µ is σ-finite

• If the condition in 2. is fulfilled for m, then µ∗|E is the unique
σ-finite measure on E that extends m

• If the condition in 2. is fulfilled for m, then µ∗|A is the unique
complete and σ-finite measure on A that extends m
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Extension in Standard Spaces

• Consider a (metrizable) topological space Ω and assume that
C is a algebra of subsets (i.e., also a semialgebra)
• Algebra: closed under set complement and finite unions

• An algebra C has the countable extension property [Gray], if
for every function m on C such that m(Ω) = 1 and
• for any finite sequence {Ck}nk=1 of pairwise disjoint sets from
C we get

m

(
n⋃

k=1

Ck

)
=

n∑

k=1

m(Ck)

then also the following holds:
• If there is a sequence {Gn}, Gn ∈ C, such that Gn+1 ⊂ Gn

and lim∩nGn = ∅, then limnm(Gn) = 0

• If C is (already) a σ-algebra, then these two facts (finite
additivity and continuity) imply countable additivity
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• Any algebra on Ω is said to be standard (according to Gray) if
it has the countable extension property

• A measurable space (Ω,A) is standard if A = σ(C) for a
standard C on Ω

• If E = (Ω, T ) is Polish, then (Ω, σ(E)) is standard
• Note that if E = (Ω, T ) is Polish, then (Ω, σ(E)) is also

“standard Borel” ⇒ for Polish spaces the two definitions of
“standard” are essentially equivalent
• again, we take the (Ω, σ(E)) from Polish space as our default

standard space
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Extension and Completion in Standard Spaces

• For (Ω, T ) Polish and (Ω,A) the corresponding standard
(Borel) space, there is always an algebra C on Ω with the
countable extension property, and such that A = σ(C)
• Thus, for any normalized and finitely additive m on C

1 m can always be extended to a measure on (Ω,A)

2 the extension is unique

• Let (Ω,A, ρ) be the corresponding extension (ρ(Ω) = 1)

• Also let (Ω, Ā, ρ̄) be the completion. Then (Ω, Ā, ρ̄) is
isomorphic mod 0 to ([0, 1],L([0, 1]), λ)
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Product Measure Spaces

• For an arbitrary (possibly infinite/uncountable) set T , let
(Ωt,At) be measurable spaces indexed by t ∈ T
• A measurable rectangle = any set O ⊂ ×t∈TΩt of the form

O = {f ∈ ×t∈TΩt : f(t) ∈ At for all t ∈ S}

where S is a finite subset S ⊂ T and At ∈ At for all t ∈ S
• Given T and (Ωt,At), t ∈ T , the smallest σ-algebra

containing all measurable rectangles is called the resulting
product σ-algebra
• Example: T = N, Ωt = R, At = B give the

infinite-dimensional Borel space (R∞,B∞)
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• For a finite set I, of size n, assume that (Ωi,Ai, µi) are
measure spaces indexed by i ∈ I
• Let U = { all measurable rectangles } corresponding to

(Ωi,Ai), i ∈ I
• Let Ω = ×iΩi and A = σ(U)

• Define the product pre-measure m by

m(A) =
∏

i

µi(Ai)

for any Ai ∈ Ai, i ∈ I, and A = ×iAi ∈ U
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• The measurable rectangles U form a semialgebra

• The product pre-measure m is a pre-measure on U
1 Given (Ωi,Ai, µi), i = 1, . . . , n, let m be the corresponding

product pre-measure. Then m can be extended from U to a
σ-algebra containing A = σ(U). The resulting measure m∗ is
complete.

2 If each of the (Ωi,Ai, µi)’s is σ-finite then the restriction m∗|A
is unique.
• Proof: (Ωi,Ai, µi) σ-finite ⇒ condition 2. on slide 8. fulfilled

• If the (Ωi,Ai, µi)’s are σ-finite, then the unique measure
µ = m∗|A on (Ω,A) is called product measure and (Ω,A, µ) is

the product measure space corresponding to (Ωi,Ai, µi),
i = 1, . . . , n
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n-dimensional Lebesgue Measure

• Let (Ωi,Ai, µi) = (R,L, λ) (Lebesgue measure on R) for
i = 1, . . . , n. Note that (R,L, λ) is σ-finite. Let µ denote the
corresponding product measure on Rn

• Per definition, the ’n-dimensional Lebesgue measure’ µ
constructed like this, based on 2. (on slide 8), is unique but
not complete

• Using instead the construction in 1. as the definition, we get a
unique and complete version corresponding to the completion
of µ

• The completion µ̄ of the n-product of Lebesgue measure is
called n-dimensional Lebesgue measure
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