Probability and Random Processes

Lecture 9

® Extensions to measures

® Product measure
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Cartesian Product

® For a finite number of sets Aq,..., A,

xzzlAk:{(al,...,an):ak EAk,k:1,...,n}

® notation A" if Ay =---=A,

® For an arbitrarily indexed collection of sets {A; }er

Xter Ay = {functions f from T to User Ay @ f(t) € A, t € T}

® Ay = Aforallt €T, then AT = {all functions from T to A}

® For a finite T the two definitions are equivalent (why?)
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® For a set {2, a collection C of subsets is a semialgebra if

®e ABeC=AnBeC
® if C' € C then there is a pairwise disjoint and finite sequence of
sets in C whose union is C*

e |If Cq,...,C, are semialgebras on 24, ...,8, then
{Xx3_1Cf : Cr € Cx, 1 <k <n}

: : n
is a semialgebra on x}'_, )
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Extension

This is how we constructed the Lebesgue measure on R:
® Forany ACR

A*(A) = inf {ZE(In) : {I,,} open intervals, UIn D A}

(where ¢ = "length of interval”)
® Aset £ C R is Lebesgue measurable if for any W C R
NW)=X(WnNE)+ A(WnNE°

® The Lebesgue measurable sets £ form a o-algebra containing

all intervals
® )\ = \* restricted to £ is a measure on £, and A(I) = ¢(I) for
intervals
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We started with a set function ¢ for intervals I C R
® the intervals form a semialgebra
Then we extended ¢ to work for any set A C R

® here we used outer measure for the extension

We found a o-algebra of measurable sets,

® based on a criterion relating to the union of disjoint sets

Finally we restricted the extension to the o-algebra L, to
arrive at a measure space (R, £, \)
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® Given () and and a semialgebra C of subsets, assume we can
find a set function m on sets from C, such that

O if)eC(i.e. C#{Q}) then m(D) =0
® if {C,}}_, is a finite sequence of pairwise disjoint sets from C
such that UpC C C, then

m (U ck> = m(Cr)
k=1 k=1
®ifC,C,Cy,...areinC and C C U,,C,, then

m(C) <Y m(Ch)

Call such a function m a pre-measure
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For a set (), a semialgebra C and a pre-measure m, define the
set function u* by

1 (A) = inf {Zm(C’n) {CntncC|JCn D A}

Then p* is called the outer measure induced by m and C

A set £ C Qis u*-measurable if
pwW) =p (WnE)+p (WnE)

for all W € Q. Let A denote the class of y*-measurable sets

A DC and A is a o-algebra

® = ”TA is a measure on A
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The Extension Theorem

@ Given a set (), a semialgebra C of subsets and a pre-measure
m on C. Let u* be the outer measure induced by m and C and
A the corresponding collection of p*-measurable sets, then

® A>C and Ais a o-algebra
° = “TA is a measure on A
® pe=m

Also, the resulting measure space (2, A, i) is complete

® Let £ =0(C) C A. If there exists a sequence of sets {C},} in
C such that
e U,C,, =1, and
* m(C,) <o
then the extension ,urg IS unique,

® thatis, if v is another measure on & such that v(C') = 11/ (C)
for all C' € C then v = ,uJ|*5 also on &
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® Note that £ C A in general, and ,u|*g may not be complete
® In fact, (92, A, ,uT‘A) is the completion of (Q,S,urg),

® on R, ", corresponds to Lebesgue measure and . to Borel
Hy 4 Y Hie
measure

® Also compare the condition in 2. to the definition of o-finite
measure:

® Given (Q2,.A) a measure p is o-finite if there is a sequence
{Al}, A; € A, such that U;A; = Q and [L(Al) < 0

® Given a space (€, A, ;1) and its completion (Q, A, ji), we have
i(B) =inf{u(A): BC Ae A}

for B € A, and [i is unique if p is o-finite

® |f the condition in 2. is fulfilled for m, then u|*g is the unique
o-finite measure on £ that extends m

® |f the condition in 2. is fulfilled for m, then ,urA is the unique
complete and o-finite measure on A that extends m
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Extension in Standard Spaces

® Consider a (metrizable) topological space €2 and assume that
C is a algebra of subsets (i.e., also a semialgebra)

® Algebra: closed under set complement and finite unions

® An algebra C has the countable extension property [Gray], if
for every function m on C such that m(€2) =1 and

® for any finite sequence {C}}}_, of pairwise disjoint sets from

C we get . .
k=1 k=1

then also the following holds:

® |f there is a sequence {G,}, G,, € C, such that G, C G,
and limN,,G,, = 0, then lim, m(G,) =0

e If C is (already) a o-algebra, then these two facts (finite
additivity and continuity) imply countable additivity
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Any algebra on ) is said to be standard (according to Gray) if
it has the countable extension property

A measurable space (£2,.4) is standard if A = o (C) for a
standard C on ()

o If £=(Q,T) is Polish, then (Q,0()) is standard
® Note that if £ = (2, 7)) is Polish, then (2,0(€)) is also
“standard Borel” = for Polish spaces the two definitions of
“standard” are essentially equivalent
® again, we take the (Q2,0(€)) from Polish space as our default
standard space
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Extension and Completion in Standard Spaces

For (2, 7) Polish and (£2,.A) the corresponding standard
(Borel) space, there is always an algebra C on 2 with the
countable extension property, and such that A = o(C)

Thus, for any normalized and finitely additive m on C

@ m can always be extended to a measure on (€2, .A)
@® the extension is unique

Let (2, A, p) be the corresponding extension (p(€2) = 1)

Also let (€2, A, p) be the completion. Then (2, A4, p) is
isomorphic mod 0 to ([0, 1], £([0, 1]), A)
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Product Measure Spaces

® For an arbitrary (possibly infinite/uncountable) set T', let
(€2, A¢) be measurable spaces indexed by t € T

® A measurable rectangle = any set O C X4 7€) of the form
O ={f € x4er : f(t) € Ay for all t € S}

where S is a finite subset S C T and A; € A; forallt € S

® Given T and (€, A;), t € T, the smallest o-algebra
containing all measurable rectangles is called the resulting
product o-algebra

® Example: T =N, Q; =R, A; = B give the
infinite-dimensional Borel space (R>°, 5°)
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For a finite set I, of size n, assume that (€);, A;, ;) are
measure spaces indexed by ¢ € [

Let U = { all measurable rectangles } corresponding to
(Qi,AZ’), 1€ 1
Let Q2 = x;Q; and A = O'(Z/{)

Define the product pre-measure m by

m(4) = [ ni(4)

forany A, € A;,i€1,and A= x;A;, €U
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® The measurable rectangles &/ form a semialgebra

® The product pre-measure m is a pre-measure on U

® Given (Q;, A;, 1), it =1,...,n, let m be the corresponding
product pre-measure. Then m can be extended from U/ to a
o-algebra containing A = o(U). The resulting measure m* is
complete.
@ If each of the (€, A;, i;)'s is o-finite then the restriction mT‘A
IS unique.
® Proof: (9;, A;, 11;) o-finite = condition 2. on slide 8. fulfilled

® If the (€2, .A;, u;)'s are o-finite, then the unique measure
= mI*A on (R2,.A) is called product measure and (€2, A, u) is
the product measure space corresponding to (£2;, A;, ),
1=1,....n
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n-dimensional Lebesgue Measure

o let (2, A, i) = (R, L, \) (Lebesgue measure on R) for
i=1,...,n. Note that (R, L, \) is o-finite. Let p denote the
corresponding product measure on R"

® Per definition, the 'n-dimensional Lebesgue measure’ u
constructed like this, based on 2. (on slide 8), is unique but
not complete

® Using instead the construction in 1. as the definition, we get a
unique and complete version corresponding to the completion
of u

® The completion ji of the n-product of Lebesgue measure is
called n-dimensional Lebesgue measure
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