Probability and Random Processes
 Lecture 9

- Extensions to measures
- Product measure

Cartesian Product

- For a finite number of sets A_{1}, \ldots, A_{n}

$$
\times_{k=1}^{n} A_{k}=\left\{\left(a_{1}, \ldots, a_{n}\right): a_{k} \in A_{k}, k=1, \ldots, n\right\}
$$

- notation A^{n} if $A_{1}=\cdots=A_{n}$
- For an arbitrarily indexed collection of sets $\left\{A_{t}\right\}_{t \in T}$
$\times_{t \in T} A_{t}=\left\{\right.$ functions f from T to $\left.\cup_{t \in T} A_{t}: f(t) \in A_{t}, t \in T\right\}$
- $A_{t}=A$ for all $t \in T$, then $A^{T}=\{$ all functions from T to $A\}$
- For a finite T the two definitions are equivalent (why?)
- For a set Ω, a collection \mathcal{C} of subsets is a semialgebra if
- $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$
- if $C \in \mathcal{C}$ then there is a pairwise disjoint and finite sequence of sets in \mathcal{C} whose union is C^{c}
- If $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$ are semialgebras on $\Omega_{1}, \ldots, \Omega_{n}$ then

$$
\left\{\times_{k=1}^{n} C_{k}: C_{k} \in \mathcal{C}_{k}, 1 \leq k \leq n\right\}
$$

is a semialgebra on $\times_{k=1}^{n} \Omega_{k}$

Extension

This is how we constructed the Lebesgue measure on \mathbb{R} :

- For any $A \subset \mathbb{R}$

$$
\lambda^{*}(A)=\inf \left\{\sum_{n} \ell\left(I_{n}\right):\left\{I_{n}\right\} \text { open intervals, } \bigcup_{n} I_{n} \supset A\right\}
$$

(where $\ell=$ "length of interval")

- A set $E \subset \mathbb{R}$ is Lebesgue measurable if for any $W \subset \mathbb{R}$

$$
\lambda^{*}(W)=\lambda^{*}(W \cap E)+\lambda^{*}\left(W \cap E^{c}\right)
$$

- The Lebesgue measurable sets \mathcal{L} form a σ-algebra containing all intervals
- $\lambda=\lambda^{*}$ restricted to \mathcal{L} is a measure on \mathcal{L}, and $\lambda(I)=\ell(I)$ for intervals
- We started with a set function ℓ for intervals $I \subset \mathbb{R}$
- the intervals form a semialgebra
- Then we extended ℓ to work for any set $A \subset \mathbb{R}$
- here we used outer measure for the extension
- We found a σ-algebra of measurable sets,
- based on a criterion relating to the union of disjoint sets
- Finally we restricted the extension to the σ-algebra \mathcal{L}, to arrive at a measure space $(\mathbb{R}, \mathcal{L}, \lambda)$
- Given Ω and and a semialgebra \mathcal{C} of subsets, assume we can find a set function m on sets from \mathcal{C}, such that
(1) if $\emptyset \in \mathcal{C}$ (i.e. $\mathcal{C} \neq\{\Omega\}$) then $m(\emptyset)=0$
(2) if $\left\{C_{k}\right\}_{k=1}^{n}$ is a finite sequence of pairwise disjoint sets from \mathcal{C} such that $\cup_{k} C_{k} \subset \mathcal{C}$, then

$$
m\left(\bigcup_{k=1}^{n} C_{k}\right)=\sum_{k=1}^{n} m\left(C_{k}\right)
$$

(3) if C, C_{1}, C_{2}, \ldots are in \mathcal{C} and $C \subset \cup_{n} C_{n}$, then

$$
m(C) \leq \sum_{n} m\left(C_{n}\right)
$$

Call such a function m a pre-measure

- For a set Ω, a semialgebra \mathcal{C} and a pre-measure m, define the set function μ^{*} by

$$
\mu^{*}(A)=\inf \left\{\sum_{n} m\left(C_{n}\right):\left\{C_{n}\right\}_{n} \subset \mathcal{C}, \bigcup_{n} C_{n} \supset A\right\}
$$

Then μ^{*} is called the outer measure induced by m and \mathcal{C}

- A set $E \subset \Omega$ is μ^{*}-measurable if

$$
\mu^{*}(W)=\mu^{*}(W \cap E)+\mu^{*}\left(W \cap E^{c}\right)
$$

for all $W \in \Omega$. Let \mathcal{A} denote the class of μ^{*}-measurable sets

- $\mathcal{A} \supset \mathcal{C}$ and \mathcal{A} is a σ-algebra
- $\mu=\mu_{\|_{\mathcal{A}}}^{*}$ is a measure on \mathcal{A}

The Extension Theorem

(1) Given a set Ω, a semialgebra \mathcal{C} of subsets and a pre-measure m on \mathcal{C}. Let μ^{*} be the outer measure induced by m and \mathcal{C} and \mathcal{A} the corresponding collection of μ^{*}-measurable sets, then

- $\mathcal{A} \supset \mathcal{C}$ and \mathcal{A} is a σ-algebra
- $\mu=\mu_{\mid \mathcal{A}}^{*}$ is a measure on \mathcal{A}
- $\mu_{\mid \mathcal{C}}=m$

Also, the resulting measure space $(\Omega, \mathcal{A}, \mu)$ is complete
(2) Let $\mathcal{E}=\sigma(\mathcal{C}) \subset \mathcal{A}$. If there exists a sequence of sets $\left\{C_{n}\right\}$ in \mathcal{C} such that

- $\cup_{n} C_{n}=\Omega$, and
- $m\left(C_{n}\right)<\infty$
then the extension $\mu_{\mid \mathcal{E}}^{*}$ is unique,
- that is, if ν is another measure on \mathcal{E} such that $\nu(C)=\mu_{\mathcal{E}}^{*}(C)$ for all $C \in \mathcal{C}$ then $\nu=\mu_{\mid \mathcal{E}}^{*}$ also on \mathcal{E}
- Note that $\mathcal{E} \subset \mathcal{A}$ in general, and $\mu_{\mid \mathcal{E}}^{*}$ may not be complete
- In fact, $\left(\Omega, \mathcal{A}, \mu_{\mid \mathcal{A}}^{*}\right)$ is the completion of $\left(\Omega, \mathcal{E}, \mu_{\mid \mathcal{E}}^{*}\right)$,
- on $\mathbb{R}, \mu_{\mid \mathcal{A}}^{*}$ corresponds to Lebesgue measure and $\mu_{\mid \mathcal{E}}^{*}$ to Borel measure
- Also compare the condition in 2 . to the definition of σ-finite measure:
- Given (Ω, \mathcal{A}) a measure μ is σ-finite if there is a sequence $\left\{A_{i}\right\}, A_{i} \in \mathcal{A}$, such that $\cup_{i} A_{i}=\Omega$ and $\mu\left(A_{i}\right)<\infty$
- Given a space $(\Omega, \mathcal{A}, \mu)$ and its completion $(\Omega, \overline{\mathcal{A}}, \bar{\mu})$, we have

$$
\bar{\mu}(B)=\inf \{\mu(A): B \subset A \in \mathcal{A}\}
$$

for $B \in \overline{\mathcal{A}}$, and $\bar{\mu}$ is unique if μ is σ-finite

- If the condition in 2 . is fulfilled for m, then $\mu_{\mid \mathcal{E}}^{*}$ is the unique σ-finite measure on \mathcal{E} that extends m
- If the condition in 2 . is fulfilled for m, then $\mu_{\mid \mathcal{A}}^{*}$ is the unique complete and σ-finite measure on \mathcal{A} that extends m

Extension in Standard Spaces

- Consider a (metrizable) topological space Ω and assume that \mathcal{C} is a algebra of subsets (i.e., also a semialgebra)
- Algebra: closed under set complement and finite unions
- An algebra \mathcal{C} has the countable extension property [Gray], if for every function m on \mathcal{C} such that $m(\Omega)=1$ and
- for any finite sequence $\left\{C_{k}\right\}_{k=1}^{n}$ of pairwise disjoint sets from \mathcal{C} we get

$$
m\left(\bigcup_{k=1}^{n} C_{k}\right)=\sum_{k=1}^{n} m\left(C_{k}\right)
$$

then also the following holds:

- If there is a sequence $\left\{G_{n}\right\}, G_{n} \in \mathcal{C}$, such that $G_{n+1} \subset G_{n}$ and $\lim \cap_{n} G_{n}=\emptyset$, then $\lim _{n} m\left(G_{n}\right)=0$
- If \mathcal{C} is (already) a σ-algebra, then these two facts (finite additivity and continuity) imply countable additivity
- Any algebra on Ω is said to be standard (according to Gray) if it has the countable extension property
- A measurable space (Ω, \mathcal{A}) is standard if $\mathcal{A}=\sigma(\mathcal{C})$ for a standard \mathcal{C} on Ω
- If $\mathcal{E}=(\Omega, \mathcal{T})$ is Polish, then $(\Omega, \sigma(\mathcal{E}))$ is standard
- Note that if $\mathcal{E}=(\Omega, \mathcal{T})$ is Polish, then $(\Omega, \sigma(\mathcal{E}))$ is also "standard Borel" \Rightarrow for Polish spaces the two definitions of "standard" are essentially equivalent
- again, we take the $(\Omega, \sigma(\mathcal{E}))$ from Polish space as our default standard space

Extension and Completion in Standard Spaces

- For (Ω, \mathcal{T}) Polish and (Ω, \mathcal{A}) the corresponding standard (Borel) space, there is always an algebra \mathcal{C} on Ω with the countable extension property, and such that $\mathcal{A}=\sigma(\mathcal{C})$
- Thus, for any normalized and finitely additive m on \mathcal{C}
(1) m can always be extended to a measure on (Ω, \mathcal{A})
(2) the extension is unique
- Let $(\Omega, \mathcal{A}, \rho)$ be the corresponding extension $(\rho(\Omega)=1)$
- Also let $(\Omega, \overline{\mathcal{A}}, \bar{\rho})$ be the completion. Then $(\Omega, \overline{\mathcal{A}}, \bar{\rho})$ is isomorphic mod 0 to $([0,1], \mathcal{L}([0,1]), \lambda)$

Product Measure Spaces

- For an arbitrary (possibly infinite/uncountable) set T, let $\left(\Omega_{t}, \mathcal{A}_{t}\right)$ be measurable spaces indexed by $t \in T$
- A measurable rectangle $=$ any set $O \subset \times_{t \in T} \Omega_{t}$ of the form

$$
O=\left\{f \in \times_{t \in T} \Omega_{t}: f(t) \in A_{t} \text { for all } t \in S\right\}
$$

where S is a finite subset $S \subset T$ and $A_{t} \in \mathcal{A}_{t}$ for all $t \in S$

- Given T and $\left(\Omega_{t}, \mathcal{A}_{t}\right), t \in T$, the smallest σ-algebra containing all measurable rectangles is called the resulting product σ-algebra
- Example: $T=\mathbb{N}, \Omega_{t}=\mathbb{R}, \mathcal{A}_{t}=\mathcal{B}$ give the infinite-dimensional Borel space $\left(\mathbb{R}^{\infty}, \mathcal{B}^{\infty}\right)$
- For a finite set I, of size n, assume that $\left(\Omega_{i}, \mathcal{A}_{i}, \mu_{i}\right)$ are measure spaces indexed by $i \in I$
- Let $\mathcal{U}=\{$ all measurable rectangles $\}$ corresponding to $\left(\Omega_{i}, \mathcal{A}_{i}\right), i \in I$
- Let $\Omega=\times_{i} \Omega_{i}$ and $\mathcal{A}=\sigma(\mathcal{U})$
- Define the product pre-measure m by

$$
m(A)=\prod_{i} \mu_{i}\left(A_{i}\right)
$$

for any $A_{i} \in \mathcal{A}_{i}, i \in I$, and $A=\times_{i} A_{i} \in \mathcal{U}$

- The measurable rectangles \mathcal{U} form a semialgebra
- The product pre-measure m is a pre-measure on \mathcal{U}
(1) Given $\left(\Omega_{i}, \mathcal{A}_{i}, \mu_{i}\right), i=1, \ldots, n$, let m be the corresponding product pre-measure. Then m can be extended from \mathcal{U} to a σ-algebra containing $\mathcal{A}=\sigma(\mathcal{U})$. The resulting measure m^{*} is complete.
(2) If each of the $\left(\Omega_{i}, \mathcal{A}_{i}, \mu_{i}\right)$'s is σ-finite then the restriction $m_{\mid \mathcal{A}}^{*}$ is unique.
- Proof: $\left(\Omega_{i}, \mathcal{A}_{i}, \mu_{i}\right) \sigma$-finite \Rightarrow condition 2 . on slide 8 . fulfilled
- If the $\left(\Omega_{i}, \mathcal{A}_{i}, \mu_{i}\right)$'s are σ-finite, then the unique measure $\mu=m_{\mid \mathcal{A}}^{*}$ on (Ω, \mathcal{A}) is called product measure and $(\Omega, \mathcal{A}, \mu)$ is the product measure space corresponding to $\left(\Omega_{i}, \mathcal{A}_{i}, \mu_{i}\right)$, $i=1, \ldots, n$

n-dimensional Lebesgue Measure

- Let $\left(\Omega_{i}, \mathcal{A}_{i}, \mu_{i}\right)=(\mathbb{R}, \mathcal{L}, \lambda)$ (Lebesgue measure on $\left.\mathbb{R}\right)$ for $i=1, \ldots, n$. Note that $(\mathbb{R}, \mathcal{L}, \lambda)$ is σ-finite. Let μ denote the corresponding product measure on \mathbb{R}^{n}
- Per definition, the ' n-dimensional Lebesgue measure' μ constructed like this, based on 2. (on slide 8), is unique but not complete
- Using instead the construction in 1 . as the definition, we get a unique and complete version corresponding to the completion of μ
- The completion $\bar{\mu}$ of the n-product of Lebesgue measure is called n-dimensional Lebesgue measure

