Probability and Random Processes Lecture 9

- Extensions to measures
- Product measure

Mikael Skoglund, Probability and random processes

Cartesian Product

• For a finite number of sets A_1, \ldots, A_n

$$\times_{k=1}^{n} A_{k} = \{(a_{1}, \dots, a_{n}) : a_{k} \in A_{k}, k = 1, \dots, n\}$$

- notation A^n if $A_1 = \cdots = A_n$
- For an arbitrarily indexed collection of sets $\{A_t\}_{t \in T}$

 $\times_{t \in T} A_t = \{ \text{functions } f \text{ from } T \text{ to } \cup_{t \in T} A_t : f(t) \in A_t, t \in T \}$

- $A_t = A$ for all $t \in T$, then $A^T = \{ \text{ all functions from } T \text{ to } A \}$
- For a finite T the two definitions are equivalent (why?)

2/16

- For a set Ω , a collection C of subsets is a semialgebra if
 - $A, B \in \mathcal{C} \Rightarrow A \cap B \in \mathcal{C}$
 - if $C \in C$ then there is a pairwise disjoint and finite sequence of sets in C whose union is C^c
- If $\mathcal{C}_1, \ldots, \mathcal{C}_n$ are semialgebras on $\Omega_1, \ldots, \Omega_n$ then

$$\{\times_{k=1}^{n} C_k : C_k \in \mathcal{C}_k, \ 1 \le k \le n\}$$

is a semialgebra on $\times_{k=1}^{n} \Omega_k$

Mikael Skoglund, Probability and random processes

Extension

This is how we constructed the Lebesgue measure on \mathbb{R} :

• For any $A \subset \mathbb{R}$

$$\lambda^*(A) = \inf\left\{\sum_n \ell(I_n) : \{I_n\} \text{ open intervals, } \bigcup_n I_n \supset A\right\}$$

(where $\ell =$ "length of interval")

• A set $E \subset \mathbb{R}$ is Lebesgue measurable if for any $W \subset \mathbb{R}$

$$\lambda^*(W) = \lambda^*(W \cap E) + \lambda^*(W \cap E^c)$$

- The Lebesgue measurable sets $\mathcal L$ form a σ -algebra containing all intervals
- $\lambda = \lambda^*$ restricted to \mathcal{L} is a measure on \mathcal{L} , and $\lambda(I) = \ell(I)$ for intervals

- We started with a set function ℓ for intervals $I \subset \mathbb{R}$
 - the intervals form a semialgebra
- Then we extended ℓ to work for any set $A \subset \mathbb{R}$
 - here we used outer measure for the extension
- We found a σ -algebra of measurable sets,
 - based on a criterion relating to the union of disjoint sets
- Finally we restricted the extension to the σ-algebra L, to arrive at a measure space (R, L, λ)

Mikael Skoglund, Probability and random processes

- Given Ω and and a semialgebra C of subsets, assume we can find a set function m on sets from C, such that
 - 1) if $\emptyset \in \mathcal{C}$ (i.e. $\mathcal{C} \neq \{\Omega\}$) then $m(\emptyset) = 0$
 - 2 if $\{C_k\}_{k=1}^n$ is a finite sequence of pairwise disjoint sets from C such that $\cup_k C_k \subset C$, then

$$m\left(\bigcup_{k=1}^{n} C_k\right) = \sum_{k=1}^{n} m(C_k)$$

3 if C, C_1, C_2, \ldots are in C and $C \subset \bigcup_n C_n$, then

$$m(C) \le \sum_{n} m(C_n)$$

Call such a function m a pre-measure

 For a set Ω, a semialgebra C and a pre-measure m, define the set function μ* by

$$\mu^*(A) = \inf\left\{\sum_n m(C_n) : \{C_n\}_n \subset \mathcal{C}, \bigcup_n C_n \supset A\right\}$$

Then μ^* is called the outer measure induced by m and C• A set $E \subset \Omega$ is μ^* -measurable if

$$\mu^{*}(W) = \mu^{*}(W \cap E) + \mu^{*}(W \cap E^{c})$$

for all $W \in \Omega$. Let \mathcal{A} denote the class of μ^* -measurable sets

- $\mathcal{A} \supset \mathcal{C}$ and \mathcal{A} is a σ -algebra
- $\mu = \mu^*_{|\mathcal{A}|}$ is a measure on \mathcal{A}

Mikael Skoglund, Probability and random processes

The Extension Theorem

- Given a set Ω, a semialgebra C of subsets and a pre-measure m on C. Let μ* be the outer measure induced by m and C and A the corresponding collection of μ*-measurable sets, then
 - $\mathcal{A} \supset \mathcal{C}$ and \mathcal{A} is a σ -algebra
 - $\mu = \mu^*_{|\mathcal{A}|}$ is a measure on \mathcal{A}
 - $\mu_{|\mathcal{C}} = m$

Also, the resulting measure space $(\Omega, \mathcal{A}, \mu)$ is complete

2 Let $\mathcal{E} = \sigma(\mathcal{C}) \subset \mathcal{A}$. If there exists a sequence of sets $\{C_n\}$ in \mathcal{C} such that

- $\cup_n C_n = \Omega$, and
- $m(C_n) < \infty$

then the extension $\mu^*_{|\mathcal{E}}$ is unique,

• that is, if ν is another measure on $\mathcal E$ such that $\nu(C) = \mu^*_{|\mathcal E}(C)$ for all $C \in \mathcal C$ then $\nu = \mu^*_{|\mathcal E}$ also on $\mathcal E$

- Note that $\mathcal{E} \subset \mathcal{A}$ in general, and $\mu^*_{|\mathcal{E}}$ may not be complete
- In fact, $(\Omega, \mathcal{A}, \mu_{|\mathcal{A}}^*)$ is the completion of $(\Omega, \mathcal{E}, \mu_{|\mathcal{E}}^*)$,
 - on $\mathbb{R},\,\mu_{|\mathcal{A}}^*$ corresponds to Lebesgue measure and $\mu_{|\mathcal{E}}^*$ to Borel measure
- Also compare the condition in 2. to the definition of *σ*-finite measure:
 - Given (Ω, \mathcal{A}) a measure μ is σ -finite if there is a sequence $\{A_i\}$, $A_i \in \mathcal{A}$, such that $\cup_i A_i = \Omega$ and $\mu(A_i) < \infty$
- Given a space $(\Omega, \mathcal{A}, \mu)$ and its completion $(\Omega, \overline{\mathcal{A}}, \overline{\mu})$, we have

$$\bar{\mu}(B) = \inf\{\mu(A) : B \subset A \in \mathcal{A}\}$$

for $B \in \overline{\mathcal{A}}$, and $\overline{\mu}$ is unique if μ is σ -finite

- If the condition in 2. is fulfilled for m, then $\mu^*_{|\mathcal{E}}$ is the unique σ -finite measure on \mathcal{E} that extends m
- If the condition in 2. is fulfilled for m, then μ^{*}_{|A} is the unique complete and σ-finite measure on A that extends m

Mikael Skoglund, Probability and random processes

Extension in Standard Spaces

- Consider a (metrizable) topological space Ω and assume that C is a algebra of subsets (i.e., also a semialgebra)
 - Algebra: closed under set complement and finite unions
- An algebra \mathcal{C} has the countable extension property [Gray], if for every function m on \mathcal{C} such that $m(\Omega) = 1$ and
 - for any finite sequence $\{C_k\}_{k=1}^n$ of pairwise disjoint sets from \mathcal{C} we get

$$m\left(\bigcup_{k=1}^{n} C_{k}\right) = \sum_{k=1}^{n} m(C_{k})$$

then also the following holds:

- If there is a sequence $\{G_n\}$, $G_n \in C$, such that $G_{n+1} \subset G_n$ and $\lim \bigcap_n G_n = \emptyset$, then $\lim_n m(G_n) = 0$
- If C is (already) a σ-algebra, then these two facts (finite additivity and continuity) imply countable additivity

- Any algebra on Ω is said to be standard (according to Gray) if it has the countable extension property
- A measurable space (Ω, \mathcal{A}) is standard if $\mathcal{A} = \sigma(\mathcal{C})$ for a standard \mathcal{C} on Ω
- If $\mathcal{E} = (\Omega, \mathcal{T})$ is Polish, then $(\Omega, \sigma(\mathcal{E}))$ is standard
- Note that if $\mathcal{E} = (\Omega, \mathcal{T})$ is Polish, then $(\Omega, \sigma(\mathcal{E}))$ is also "standard Borel" \Rightarrow for Polish spaces the two definitions of "standard" are essentially equivalent
 - again, we take the $(\Omega,\sigma(\mathcal{E}))$ from Polish space as our default standard space

Extension and Completion in Standard Spaces

- For (Ω, T) Polish and (Ω, A) the corresponding standard (Borel) space, there is always an algebra C on Ω with the countable extension property, and such that A = σ(C)
- Thus, for any normalized and finitely additive m on ${\mathcal C}$
 - m can always be extended to a measure on (Ω, A)
 the extension is unique
- Let $(\Omega, \mathcal{A}, \rho)$ be the corresponding extension $(\rho(\Omega) = 1)$
- Also let (Ω, Ā, ρ̄) be the completion. Then (Ω, Ā, ρ̄) is isomorphic mod 0 to ([0, 1], L([0, 1]), λ)

Product Measure Spaces

- For an arbitrary (possibly infinite/uncountable) set T, let $(\Omega_t, \mathcal{A}_t)$ be measurable spaces indexed by $t \in T$
- A measurable rectangle = any set $O \subset \times_{t \in T} \Omega_t$ of the form

$$O = \{ f \in \times_{t \in T} \Omega_t : f(t) \in A_t \text{ for all } t \in S \}$$

where S is a finite subset $S \subset T$ and $A_t \in \mathcal{A}_t$ for all $t \in S$

- Given T and $(\Omega_t, \mathcal{A}_t)$, $t \in T$, the smallest σ -algebra containing all measurable rectangles is called the resulting product σ -algebra
 - Example: T = N, Ω_t = ℝ, A_t = B give the infinite-dimensional Borel space (ℝ[∞], B[∞])

Mikael Skoglund, Probability and random processes

13/16

- For a finite set *I*, of size *n*, assume that (Ω_i, A_i, μ_i) are measure spaces indexed by *i* ∈ *I*
- Let $\mathcal{U} = \{$ all measurable rectangles $\}$ corresponding to $(\Omega_i, \mathcal{A}_i), i \in I$
- Let $\Omega = \times_i \Omega_i$ and $\mathcal{A} = \sigma(\mathcal{U})$
- Define the product pre-measure *m* by

$$m(A) = \prod_{i} \mu_i(A_i)$$

for any $A_i \in \mathcal{A}_i$, $i \in I$, and $A = \times_i A_i \in \mathcal{U}$

- The measurable rectangles \mathcal{U} form a semialgebra
- The product pre-measure m is a pre-measure on $\mathcal U$
- 1 Given $(\Omega_i, \mathcal{A}_i, \mu_i)$, i = 1, ..., n, let m be the corresponding product pre-measure. Then m can be extended from \mathcal{U} to a σ -algebra containing $\mathcal{A} = \sigma(\mathcal{U})$. The resulting measure m^* is complete.
- If each of the (Ω_i, A_i, µ_i)'s is σ-finite then the restriction m^{*}_{|A} is unique.
 - Proof: $(\Omega_i, \mathcal{A}_i, \mu_i) \sigma$ -finite \Rightarrow condition 2. on slide 8. fulfilled
- If the (Ω_i, A_i, μ_i)'s are σ-finite, then the unique measure μ = m^{*}_{|A} on (Ω, A) is called product measure and (Ω, A, μ) is the product measure space corresponding to (Ω_i, A_i, μ_i), i = 1,...,n

Mikael Skoglund, Probability and random processes

n-dimensional Lebesgue Measure

- Let (Ω_i, A_i, μ_i) = (ℝ, L, λ) (Lebesgue measure on ℝ) for i = 1,...,n. Note that (ℝ, L, λ) is σ-finite. Let μ denote the corresponding product measure on ℝⁿ
 - Per definition, the 'n-dimensional Lebesgue measure' μ constructed like this, based on 2. (on slide 8), is unique but not complete
 - Using instead the construction in 1. as the definition, we get a unique and complete version corresponding to the completion of μ
- The completion
 µ of the *n*-product of Lebesgue measure is called *n*-dimensional Lebesgue measure