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Convex Set

B Aset X CR"is convez iff Ve, y € X, Va € [0,1], az + (1 — a)y € X.

m Examples
= Hyperplane {z e R" : a”x+b=0}, a # 0
= Polyhedral {x € R™": Ax +b <0}, A € R™*"
* Ellipsoid {z € R": (z — )" P~! (¢ — o) <1}, P €S}

m  Convex hull: the set of all convex combinations of the points in X

= Convex Combination:

2211 ;i a; € [0,1], er;l o =1, 2, € X



Convex Function

A function f : R™ — R is convex iff
flaz+ (1= a)y) <af(z) + (1 —-a)f(y), Yo,y €R", Va € (0,1). rof
= f is strictly conver if the equality \(@

holds only when x = y.

" Jensen’s Inequality f(Z?;l ;i) < Zf\;l a; f(z;), a; € [0,1], Zf\il a; = 1.

Suppose f is differentiable. Then, f is convex iff

fly) > f(x) + V) (y —z), Yo,y € R, (1.1)
f
x/éﬂy)
I f(@)+Vf(x)'(y—=z) Affine lower bound
: |
x y

Eq(1.1) is equivalent to (Vf(y) — Vf(x))!(y —z) > 0.
If f is twice differentiable, it is equivalent to V2 f(z) >0 .

f is concave if — f is convex. 4



Strong Convexity

m A differentiable function f is strongly convex iff 9 > 0 such that
one of the following holds:

() f(y) = @)+ V(@) (y —2) + §lly — 2|, Y,y € R™.

L (@) + V@) Ty —2) + Ly — o])?
T ;J Quadratic lower bound
(i) (Vf(y) = Vf(z)" (y —x) > plly — z||?, Yo,y € R™.
(i) V2f () > pul, Vr € R™, if f is twice differentiable.

- strictly convex convex




Convex Function with Lipschitz Continuous Gradient

B Let Vf be Lipschitz continuous, i.e., there exists L > 0 such that
IVf(z) =Vl < Lllz -y, Vo,y € R™.

m f is convex and has Lipschitz continuous gradient iff one of the following holds:
0< f(y) = flz) = V(@) (y —z) < 5lly — z|?, Va,y € R™.

@)+ V(@) (y - z) + Flly — 2
d '/ Quadratic upper bound
f ()

fly) = f(z) = V(@) (y — ) > 5£ IV f(y) — VF(@)|]?, Yo,y € R™
(Vi) = V@) (y —=2) = £[IVf(y) = V(@)|]?, Yo,y € R™.
m Iff isstrongly convex and has Lipschitz continuous gradient, then

(V)-V @) (y=2) 2 A le—yP+ 4z IV f(y)-Vi@)|? Yo,y e R



Gradient Descent Method

Unconstrained convex optimization
minwER” f(.fl?)

= f is convex and continuously differentiable

Optimality condition: z* € arg ming. f(z) © Vf(z*) =0

= Unique if f is strictly convex

Basic gradient method

Tht1 = Tk — Oszf(J}k), ap > 0

A descent method (for sufficiently small stepsize oy )
fzg 4+ ard) = fzx) + arVf(zp) d + o(og)

= flox) + (V@) Td + ola) /o
If a; > 0 is small enough so that o(ay)/ay is negligible,
f(xrt1) = flan) = —awl|Vf(2x)]? <0



Convergence Analysis

m  Choose sufficiently small stepsize «y so that f(zpy1) < f(xg) Yk >0

O et i 1o 7 ) VAR
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= Need further assumptions to guarantee convergence

m Suppose f is Lipschitz continuous with Ly > 0 = ||V f(x)|| < Ly, Vxr € R

To — T* 2—|—L2 k_—la2
flazg) — f < _“ | =0 7 e >1
QZt Olet

= For constant stepsize ax = «,

. al?
limg oo fag) < fF+ =55

= For diminishing stepsize >~ ax =00, > 1oy i < 00,
limp o0 f (k) = f*

= Accuracy € can be obtained in (||zg — a:*||Lf)2/e2 iterations

o= 4 . _px o lmo—a"|| Ly
With a; = LE ,t=0,1,. 1, f(xp) — f* < NG




Convergence Rate

Suppose f has Lipschitz continuous gradient with L > 0 and use constant
stepsize o € (0, 2). Then,

e 2(f (z0) = f*)llwo — 2*||
o) = < S = 2+ (Flao) — fa(2 = La)k

= R.H.S. achieves minimum when « = %

. _ 2L||zo — z*|?
_ <
flag) — f7 < P

Further suppose f is strongly convex with x> 0 and use constant
stepsize o € (0, ;37]. Then,

2a L
_ * 2< k . * (12 h :1_ .
|zx — ™| < ¢"|lwo — 2™||*, where q ;
1\ 2 2
= g achieves minimum (L/’“‘ 1) when o — — =
L/u+1 @+ L

= L/p is condition number



Gradient Projection Method

m Constrained convex optimization
minge x f(z)

= f is convex and continuously differentiable
= X is anonempty, closed, and convex set

m  Optimality condition
z* € arg min, .y f(z) & Vf(z*) ' (z—2*) >0,V e X
= Unique if f is strictly convex

m  Gradient projection method
Tyl = Px[l’k — CBka(LEk)] with xg € X

= Projection operator
Px[z] = arg min, ¢ v |ly — z||  (unique)
= Similar convergence analysis as unconstrained case, using properties of projection

=  Suppose V[ is Lipschitz with L > 0. If « € (0,2/L), f(xzr) — f* < O(1/k).
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Important Facts of Projection

m For any x € R", (x — Px[z])T(z — Px[z]) <0, Vz € X.

= For any 7,y € R", ||Px[e] — Px[ylll < [lz — ]I

m Forany z€ X, z€argmin, .y f(z) & Px|z —aVf(z)] =z, Va > 0.
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Subgradient and Subdifferential

Consider a convex and possibly non-differentiable function f : R™ — R

A vector s € R" is a subgradient of f at x if
F) > (@) +57(y — 2), Vy € RO /

Subdifferential at x (denoted as 0f(x)): the set of all subgradients at x
= If f is differentiable at x, then 8f(a:) = {Vf(a:)}

Jf(x) is nonempty, convex, and compact for all z € R™.

For any compact set X C R™, U,cxdf(x) is bounded.

f(z;d) = max,cpp(p) s d
= f'(x;d): directional derivative of f at x along direction d

f’(ﬂ? : d) _ limh_>0 f($+h‘5:b)_f($)
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Subgradient Method

m Consider the (constrained) nonsmooth convex optimization problem

mingex f(z)

m  Optimality condition
z* € arg min, .y f(2) & s € df(x*) such that s’ (z —2*) >0, Vo € X

= For unconstrained case (X = R"), the condition becomes 0 € df(z*).

m Subgradient method

Trr1 = Px|rr — apsg| with g € X and si € 0f(zy)
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Convergence Analysis

[ | k|2 k 2 2
T e e o1 Y LG

k
te{0,1,....k} 250 v

= Very similar to the convergence analysis of the gradient descent method

W If every ||sk| is bounded by L > 0, then accuracy e can be obtained in
(||zo — x*||L)?/€* iterations.
m Averages behave better

xK_KZk oxk

Note that f(zg) < = Zf:_ol f(xg).

Choose stepsize ap = % Vk=0,1,..., K — 1, where v > 0.

|xo — a*||* + ~+2L7

fZr)—f" < i
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sSummary

Convex set

Convex function
= Strictly convex, strongly convex, Lipschitz continuous gradient

Gradient descent method
= Smooth unconstrained convex optimization
= Convergence performance
= Lipschitz continuous function: O(1/¢?)
= Lipschitz continuous gradient: sublinear convergence O(1/k)
= Strongly convex function with Lipschitz continuous gradient: linear convergence ¢*, ¢ € [0, 1)
Gradient projection method
= Smooth constrained convex optimization
= Facts of projection
= Similar convergence results as gradient descent method

Subgradient method
= Subgradient and subdifferential

= Nonsmooth convex optimization
= Convergence complexity O(1/e?)
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