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Outline 

 Convex analysis 

 Gradient descent method  

 Gradient projection method 

 Subgradient method  
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Convex Set 

   

 Examples 

 Hyperplane 

 Polyhedral 

 Ellipsoid  

 Convex hull: the set of all convex combinations of the points in X 

 Convex Combination:  
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Convex Function 

   

    

   

   

   

   4 



Strong Convexity 

   
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Convex Function with Lipschitz Continuous Gradient 

   

 f  is convex and has Lipschitz continuous gradient iff one of the following holds: 

 If f  is strongly convex and has Lipschitz continuous gradient, then 
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Gradient Descent Method 

 Unconstrained convex optimization 

 f  is convex and continuously differentiable 

 Optimality condition:  

 Unique if  f  is strictly convex 

 Basic gradient method 

 A descent method (for sufficiently small stepsize       ) 
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Convergence Analysis 

 Choose sufficiently small stepsize       so that  

   

 Need further assumptions to guarantee convergence 

   

 For constant stepsize 

 For diminishing stepsize 

      
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Convergence Rate 

 Suppose f  has Lipschitz continuous gradient with L > 0 and use constant 

stepsize                      Then,  

 R.H.S. achieves minimum when  

 Further suppose f  is strongly convex with           and use constant 

stepsize                      .   Then,        

  q achieves minimum                         when 

   
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Gradient Projection Method 

 Constrained convex optimization 

 f  is convex and continuously differentiable 

 X is a nonempty, closed, and convex set 

  Optimality condition 

 Unique if  f  is strictly convex 

  Gradient projection method 

 Projection operator 

 Similar convergence analysis as unconstrained case, using properties of projection 

   
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Important Facts of Projection 

 

   

   

   
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Subgradient and Subdifferential 

 Consider a convex and possibly non-differentiable function   

   

   

   

   

   

   

    
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Subgradient Method 

 Consider the (constrained) nonsmooth convex optimization problem 

 Optimality condition 

   

 Subgradient method 
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Convergence Analysis 

   

  Very similar to the convergence analysis of the gradient descent method 

   

 Averages behave better 

14 



Summary 

 Convex set  

 Convex function 

 Strictly convex, strongly convex, Lipschitz continuous gradient 

 Gradient descent method 

 Smooth unconstrained convex optimization 

 Convergence performance 

 Lipschitz continuous function:  

 Lipschitz continuous gradient: sublinear convergence                

 Strongly convex function with Lipschitz continuous gradient: linear convergence  

 Gradient projection method 

 Smooth constrained convex optimization 

 Facts of projection 

 Similar convergence results as gradient descent method 

 Subgradient method 

 Subgradient and subdifferential 

 Nonsmooth convex optimization 

 Convergence complexity 
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