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The original problem: Maxwell-Boltzman statistics

I Original problem: calculation of Maxwell-Boltzman
statistics

I Model for non-interacting particles (i.e perfect gas).
I Thermodynamical system, state s, state space S finite.
I Potential energy of a state E(s), temperature T > 0, b

Boltzmann constant.
I At thermodynamical equilibrium, the system state follows

the Boltzmann distribution:

p(s) =
exp(−E(s)

bT )∑
s′∈S exp(−E(s′)

bT )

I Problem: |S| large,
∑

s′∈S exp(−E(s′)
bT ) impossible to

calculate directly.
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The first MCMC method: Metropolis-Hastings
I Solution (Metropolis, 1953): define a Markov chain {Xn}

which admits p as a stationary distribution
I Result obtained by averaging

1
t

t∑
n=1

f (Xn)→t→+∞
∑
s∈S

p(s)f (s) a.s.

I Define N(s) ⊂ S neigbours of s. Symmetry: s′ ∈ N(s) iff
s ∈ N(s′).

I Metropolis-Hastings algorithm:

X0 ∈ S
Yn ∼ Uniform(N(Xn))

Xn+1 = Yn with proba min(e−
E(Yn)−E(Xn)

bT ,1)

Xn+1 = Xn otherwise.
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The first MCMC method: Metropolis-Hastings

I Transition probability, s′ ∈ N(s):

P(s, s′) =
min(e−

E(s′)−E(s)
bT ,1)

|N(s)|
.

I Xn reversible Markov chain with stationary distribution p
(detailed balance holds):

p(s)P(s, s′) = p(s′)P(s′, s),

I If N is large: low probability of changing, if N is small,
takes time to go through the state space.
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MCMC: sampling a distribution known up to a constant
I General problem: distribution p(.) known up to a constant

on a high dimensional space, how to sample from p ?
I Ingredients: Q(., .) (symmetrical) proposal distribution,

R(., .) acceptance probability
I Basic algorithm:

X0 ∈ S
Yn ∼ Q(Xn, .)

Xn+1 = Yn with probability R(Xn,Yn)

Xn+1 = Xn with probability 1− R(Xn,Yn).

I Detailed balance equations impose:

R(s, s′) =

{
1 if p(s′) ≥ p(s)
p(s′)
p(s) otherwise.
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MCMC: the impact of mixing

I The sequence generally moves towards regions of high
probability

I Advantage over rejection sampling: the proposal
distribution is a function of the samples

I Disadvantage: samples are correlated
I Efficiency measured by the mixing time: successive

samples should be as de-correlated as possible.
I Choice of Q is critical:

I large jumps: most states have very low probability,
acceptance probability is low, so the chain stays static most
of the time

I small jumps: the chain takes a lot of time to go through the
state space.

I Choosing Q is not straightforward.
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Sampling per component: Gibbs Sampling

I Going back to the first example, consider K particles each
with 2 possible states.

I State space, S = [0,1]K , state s = (s1, . . . , sK ).
I k -th particle , state: s = (sk , s−k ) ,
I Joint distribution p is complex, however p(sk |s−k ) is very

simple (Bernoulli distribution):

p(sk = 0|s−k ) =
e−

E(0,s−k )
bT

e−
E(0,s−k )

bT + e−
E(1,s−k )

bT

.

I Idea of Gibbs sampling (Geman , 1984): at each step,
change the state of at most 1 particle.
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Sampling per component: Gibbs Sampling
I Gibbs sampler: a sampling method for p (known up to a

constant), when conditionals p(xk |x−k ) are easy to
calculate

I At each step, change a component selected at random.

X0 ∈ S
k(n) ∼ Uniform({1, . . . ,K})

Yn ∼ p( . |Xn,−k(n))

Xn+1,k(n) = Yn

Xn+1,k = Xn,k if k 6= k(n)

I No rejection in Gibbs sampling.
I Lends itself to distributed implementation.
I Blocked Gibbs sampler: same method with blocks of

variables

8 / 21



Simulated annealing

I S finite set, cost function V : S → R+

I Goal: minimize V , set of minima H = {arg maxs V (s)}.
I Boltzmann distribution:

p(s,T ) =
exp(−V (s)

T )∑
s′∈S exp(−V (s′)

T )

I At low temperatures, p(.,T ) is concentrated on H,
p(H,T )→ 1 , T → 0+.

I Intuition: sample from p using MCMC while decreasing T
I Cooling schedule: T → 0 slowly enough so that

Xn →n→∞ H a.s.
I Annealing principle, analogy with solid state physics: first

heat then slowly cool a metal to improve its crystalline
structure. Minimal potential = perfect crystal.
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Cooling schedules

I Main question: which cooling schedules ensure
convergence ?

I Here we study a simple case: the schedule is constant by
parts.

I Step m ∈ N of duration αm, tm =
∑

m′<m αm′ .
I Cooling schedule: T = Tm , t ∈ [tm, tm + αm]

I Intuition: if αm is large with respect to the mixing time at
temperature Tm, Xtm+1 should follow p(.,Tm)
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A convergence theorem

Define: δ = mins/∈H V (s) , V∞ = maxs∈S V (s).

Theorem
There exists a0 > 0 such that by choosing Tm = δ

log(m) ,
αm = ma , a ≥ a0, the simulated annealing converges:

Xtm →m→∞ H, a.s .
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A convergence theorem: proof

Lemma
There exists a positive sequence {βm} such that if for all m,
αm ≥ βm, and Tm = δ

log(m) , then:

Xtm →m→∞ H, a.s .
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Mixing time of reversible Markov chains
I Ergodic flow between subsets S1,S2:

K (S1,S2) =
∑

s1∈S1

∑
s2∈S2

p(s1)P(s1, s2),

I Conductance of the chain

Φ = min
S′⊂S,p(S′)≤1/2

K (S ′,S \ S ′)
p(S ′)

.

I Mixing time:

τ(ε) = min{n : sup
s
|P(Xn = s)− p(s)| ≤ ε}. (1)

Theorem
With the above definitions, and p∗ = mins p(s), we have:

τ(ε) ≤ 2
Φ2 (log(1/p∗) + log(1/ε)).
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Payoff-based learning

I Principle: N independent agents with finite action sets want
to minimize a function without any information exchange

I Agent i chooses ai ∈ Ai and observes payoff
Ui(a1, . . . ,aN) ∈ [0,1)

I Goal: maximize U(a) =
∑N

i=1 Ui(a), H = arg maxa U(a)

I “Payoff-based learning”: agents do not observe the payoffs
or actions of the other players.

I Assumption: agents cannot be separated in 2 disjoint
subsets that do not interact.

14 / 21



Payoff based learning: a sampling method

I Sampling approach proposed by (Peyton-Young, 2012):
design a Markov chain whose stationary distribution is
concentrated on H

I State of agent i : ai ∈ Ai benchmark action, ui ∈ [0,1)
benchmark payoff, “mood”mi ∈ {C,D} (“Content’ ,
“Discontent’)

I Experimentation rate ε > 0 , constant c > N.
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Payoff based learning: update mechanism
If i is content:

I Choose action ai :

P[ai = a] =

{
εc/(|Ai | − 1) a 6= ai

1− εc a = ai

I Observe resulting ui :
I If (ai ,ui ) = (ai ,ui ) , i stays content
I If (ai ,ui ) 6= (ai ,ui ): i becomes discontent with probability

1− ε1−ui .
I Benchmark actions are updated (ai ,ui)← (ai ,ui)

If i is discontent:
I Choose action ai :

P[ai = a] = 1/|Ai | , a ∈ Ai

I Observe resulting ui , and become content with probability
ε1−ui

I Benchmark actions are updated (ai ,ui)← (ai ,ui)
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Rationale of Peyton-Young’s method

I Experiment (a lot) until content: When an agent is
discontent, he plays an action at random, and becomes
content only if he has chosen an action yielding high
reward

I Do not change if content: An agent that is content
remembers the (action,reward) that caused him to become
content, so he keeps playing that same action with
overwhelming probability

I Become discontent when others change: (change
detection mechanism) whenever a content agent detects a
change in reward he becomes discontent, because it
indicates that another agent has deviated

I Experiment (a little) if content: Occasionally a content
agent experiments (mandatory to avoid local minima)
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A concentration result

Theorem
Consider the (irreducible) Markov chain (ui ,ai ,mi)i , denote by
p(., ε) its stationary distribution. Define

H = {(u,a,m) : ui = Ui(a),a ∈ H,mi = C , ∀i}.

Then H is the only stochastically stable set so that:

p(H, ε)→ 1, ε→ 0+.
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Resistance trees

I Main difficulty: the chain is not reversible .
I The proof is based on the theory of stochastic potential for

perturbed Markov chains (Peyton-Young 1993).
I Perturbed Markov Chain: P(s, s′, ε) ∼ εr(s,s′) , ε→ 0
I E1, . . . ,EM recurrence classes of P(., .,0)

I r(s, s′) resistance of link (s, s′)
I Path from s to s′, ξ = (s = s1, . . . , sb = s′) , resistance is

additive on paths:

r(ξ) = r(s1, s2) + · · ·+ r(sb−1,ba).
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Resistance trees

I Potential: ρi,j = minξ r(ξ) ; minimum is taken on all paths
from Ei → Ej .

I Define G weighted graph with vertices {1, . . . ,M} and
weights (ρi,j)1≤i,j≤M .

I Fix i , consider a directed tree T on G which contains
exactly one path from j to i (for all j 6= i).

I The stochastic potential of class i is the minimum of∑
(i,j)∈T ρi,j , where the minimum is taken over all possible

trees T .

Theorem
The only stochastically stable recurrence classes E1, . . . ,EM
are the ones with minimum stochastic potential.
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Some good reading

I Metropolis-Hastings: Metropolis, “Equations of State
Calculations by Fast Computing Machines”

I MCMC: Andrieu, “An Introduction to MCMC for Machine
Learning”

I Gibbs sampling: Geman, “Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images”

I Markov chain mixing time: Levin, “Markov Chains And
Mixing Times”

I Simulated Annealing: Hajek, “Cooling Schedules for
Optimal Annealing ”

I Payoff-based learning: Peyton-Young, “The evolution of
conventions”
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