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A first example

First example of stochastic approximation (Robbins , 1951): a
line search with noise.

I Parameter x ∈ R
I System output g(x) ∈ R, g smooth and increasing.
I Target value: g∗ = g(x∗).
I When x is used, we can observe g(x) + M , with E[M] = 0

(noise)
I Goal: determine x∗ sequentially

Proposed method , εn ∼ 1/n:

xn+1 = xn + εn(g∗ − (g(xn) + Mn))
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A first example, some intuitions

xm = xn +
m−1∑
k=n

εk (g∗ − g(xk ))︸ ︷︷ ︸
discretization term

+
m−1∑
k=n

εkMk︸ ︷︷ ︸
noise term

Error due to noise:
I Assume {Mn} i.i.d Gaussian with unit variance.
I Noise term: Sn,m =

∑m−1
k=n Mk/k ,

I var(Sn,m) ≤
∑

k≥n 1/k2 →n→+∞ 0
I Should be negligible using a law of large numbers type of

result.
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A first example, some intuitions

xm = xn +
m−1∑
k=n

εk (g∗ − g(xk ))︸ ︷︷ ︸
discretization term

+
m−1∑
k=n

εkMk︸ ︷︷ ︸
noise term

Discretization error (assume no noise)
I Fundamental theorem of calculus:

(1/n)|g∗ − g(xn)| ≤ (g′/n)|x∗ − xn|.
I So for n ≥ g′, we have either xn ≤ xn+1 ≤ x∗ or

xn ≥ xn+1 ≥ x∗.
I n 7→ |g(xn)− g∗| is decreasing for large n
I The discretization term is a Euler scheme for the o.d.e:

ẋ = g∗ − g(x).
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The associated o.d.e

General update equation:

xn+1 = xn + εn(h(xn) + Mn),

with h : Rd → Rd and xn ∈ Rd , Mn ∈ Rd , E[Mn] = 0.
Associated o.d.e.:

ẋ = h(x).

I Main idea: The asymptotic behavior of {xn} can be derived
from that of the o.d.e.

I With suitable assumptions, if the o.d.e. has a continously
differentiable Liapunov function V , then V (xn)→n→+∞ 0
a.s.
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Why are stochastic approximation schemes so
common ?

I Low memory requirements: Markovian updates, xn+1 is a
function of xn and the observation at time n.
Implementation requires a small amount of memory.

I Influence of noise: replace a complicated, stochastic
sequence by a deterministic o.d.e which does not depend
on the noise statistics.

I Iterative updates: good models for agents updating their
behavior through repeated interaction.
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Example: stochastic gradient descent

I Goal: optimize a cost function with noise (Kiefer and
Wolfowitz, 1952)

I Cost function f : R→ R strongly convex, twice
differentiable with a unique minimum x∗.

I Observation: f (xn) + Mn

I Idea: approximate ∇f by finite differences, and use
gradient descent:

xn+1 = xn − εn
f (xn + δn)− f (xn − δn)

2δn
,

I Provable convergence for (say): εn = n−1, δn = n−1/3.
I Useful for: on-line regression, training of neural networks,

on-line optimization of MDPs etc.
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Example: distributed updates

I Components of xn are not updated simultaneously, agent k
controls xn,k .

I At time n , component k(n) is updated, k(n) uniformly
distributed in {1, . . . ,d}.

I Update equation:

xn+1,k =

{
xn,k + εn(hk (xn) + Mn,k ) , k = k(n)
xn,k , k 6= k(n)

.

I The behavior of {xn} can be described by the ordinary
differential equation (o.d.e.) ẋ = h(x).

I Distributed and centralized updates have the same
behavior.
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Main theorem: assumptions

Fn , σ-algebra generated by (x0,M0, . . . , xn,Mn) (information
available at time n).

(A1) (Lipshitz continuity of h) There exists L ≥ 0 such that for all
x , y ∈ Rd ||h(x)− h(y)|| ≤ L||x − y ||.

(A2) (Diminishing step sizes)
∑

n≥0 εn =∞ and
∑

n≥0 ε
2
n <∞.

(A3) (Martingale difference noise) There exists K ≥ 0 such that
for all n we have that E[Mn+1|Fn] = 0 and
E[||Mn+1||2|Fn] ≤ K (1 + ||xn||).

(A4) (Boundedness of the iterates) supn≥0 ||xn|| <∞ a.s.
(A5) (Liapunov function) There exists a positive, radially

unbounded, continuously differentiable function
V : Rd → R such that for all x ∈ Rd , 〈∇V (x),h(x)〉 ≤ 0
with strict inequality if V (x) 6= 0.
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Main theorem: statement

Theorem
Assume that (A1) - (A5) hold, then we have that:

V (xn)→n→∞ 0, a.s.
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Main theorem: lemma

Define t(n) =
∑n−1

k=0 εk , and x linear by parts with x(t(n)) = xn.
Define xn a solution of the o.d.e with xn(t(n)) = xn.

Lemma
For all T > 0, we have that:

sup
t∈[t(n),t(n)+T ]

||x(t)− xn(t)|| →n→∞ 0 a.s.
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Appendix: Gronwall’s lemma

Lemma (Gronwall’s inequality)
Consider T ≥ 0, L ≥ 0 and a function t 7→ x(t) such that
ẋ(t) ≤ L||x(t)||, t ∈ [0,T ]. Then we have that
supt∈[0,T ] ||x(t)|| ≤ ||x(0)||eLT .

Lemma (Gronwall’s inequality, discrete case)
Consider K ≥ 0 and positive sequences {xn} , {εn} such that
for all 0 ≤ n ≤ N:

xn+1 ≤ K +
n∑

u=0

εnxn.

Then we have the upper bound: sup0≤n≤N xn ≤ Ke
∑N

n=0 εn .
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Appendix: Martingale convergence theorem

Theorem (Martingale convergence theorem)
Consider {Mn}n∈N a martingale in Rd with:∑

n≥0

E[||Mn+1 −Mn||2|Fn] <∞,

then there exists a random variable M∞ ∈ Rd such that
||M∞|| <∞ a.s. and Mn →n→∞ M∞ a.s.
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