Project Session

Jie Lu, Richard Combes, and Alexandre Proutiere
Automatic Control, KTH

October 22, 2013

Problem 1. Strongly concave dual function.

Consider the following linearly constrained optimization problem

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & A x+b=0,
\end{array}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is strongly convex with convexity parameter $\mu>0$ (not necessarily differentiable) and $A \in \mathbb{R}^{p \times n}$ has full row rank. Suppose that the subgradients of f satisfy the Lipschitz condition

$$
\left\|s\left(x_{1}\right)-s\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|, \forall s\left(x_{1}\right) \in \partial f\left(x_{1}\right), \forall s\left(x_{2}\right) \in \partial f\left(x_{2}\right), \text { for some } L>0 .
$$

(a) Prove that the corresponding dual function $g(\nu)$ is strongly concave with concavity parameter $-\mu \lambda_{\min }\left(A A^{T}\right) / L^{2}<0$, where $\lambda_{\min }(\cdot)$ denotes the smallest eigenvalue of a real symmetric matrix.
(b) Provide an algorithm which generates a sequence $\left\{x_{k}\right\}_{k=0}^{\infty}$ such that $\left\|x_{k}-x^{\star}\right\| \leq c \cdot q^{k}$, where $c \in(0, \infty)$ and $q \in(0,1)$ are some constants and x^{\star} is the unique primal optimal solution.
Hint: Let $x^{\star}(\nu)=\arg \min _{x \in \mathbb{R}^{n}} f(x)+\nu^{T}(A x+b)$ and express the (sub)gradient of $g(\nu)$ in terms of $x^{\star}(\nu)$.

Problem 2. Linear convergence of gradient projection method.

Consider the following constrained optimization problem

$$
\min _{x \in X} f(x)
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and has Lipschitz continuous gradient with Lipschitz constant $L>0$ and $X \subset \mathbb{R}^{n}$ is a closed convex set. Suppose the optimal set $X^{\star}=\arg \min _{x \in X} f(x)$ is nonempty. Let $\left\{x_{k}\right\}_{k=0}^{\infty}$ be a sequence generated by the gradient projection method

$$
x_{k+1}=P_{X}\left[x_{k}-\alpha \nabla f\left(x_{k}\right)\right], \forall k \geq 0, \text { with } x_{0} \in X
$$

where $0<\alpha<\frac{2}{L}$. Assume that for every closed bounded set $S \subset \mathbb{R}^{n}$, there exists $\sigma_{S}>0$ such that

$$
\begin{equation*}
\operatorname{dist}\left(x, X^{\star}\right) \leq \sigma_{S}\left\|P_{X}[x-\alpha \nabla f(x)]-x\right\|, \forall x \in S \cap X \tag{1}
\end{equation*}
$$

where $\operatorname{dist}\left(x, X^{\star}\right)=\inf _{x^{\star} \in X^{\star}}\left\|x-x^{\star}\right\|$. Prove that there exists $q \in(0,1)$ such that

$$
\operatorname{dist}\left(x_{k+1}, X^{\star}\right) \leq q \operatorname{dist}\left(x_{k}, X^{\star}\right), \quad \forall k \geq 0
$$

Hint 1: Use the fact $\left(x-P_{X}[x]\right)^{T}\left(z-P_{X}[x]\right) \leq 0, \forall x \in \mathbb{R}^{n}, \forall z \in X$ and the optimality condition $\nabla f\left(x^{\star}\right)\left(x-x^{\star}\right) \geq 0 \forall x \in X$ to prove that

$$
\left(x_{k}-x_{k+1}\right)^{T}\left(x^{\star}-x_{k+1}\right)+\alpha\left(\nabla f\left(x_{k}\right)-\nabla f\left(x^{\star}\right)\right)^{T}\left(x_{k+1}-x^{\star}\right) \leq 0, \forall x^{\star} \in X^{\star}
$$

Hint 2: $\left(x_{k}-x_{k+1}\right)^{T}\left(x^{\star}-x_{k+1}\right)=\left(-\left\|x_{k}-x^{\star}\right\|^{2}+\left\|x_{k}-x_{k+1}\right\|^{2}+\left\|x_{k+1}-x^{\star}\right\|^{2}\right) / 2$.
Hint 3: Prove that $\left(\nabla f\left(x_{k}\right)-\nabla f\left(x^{\star}\right)\right)^{T}\left(x_{k+1}-x^{\star}\right) \geq-\frac{L}{4}\left\|x_{k+1}-x_{k}\right\|^{2}$. Here you need the inequality $\|y\|^{2}+y^{T} z \geq-\frac{1}{4}\|z\|^{2}$.
Hint 4: Combining the above, show that x_{k} remains in a closed bounded subset of X and then apply (1) to get the linear convergence rate.

Problem 3. Multiplicative-update Algorithm.

Consider a set of agents indexed by $i=1, \ldots, n$. At each step $t=1,2, \ldots$, each of these agents may use one action selected from the set $\{1, \ldots, K\}$. Agents simultaneously select an action in each step, and observe their rewards. The latter depend on the actions selected by the various agents. We denote by $X_{i k}(t)$ the reward obtained by agent i when selecting action k at step $t . X_{i k}(t)$ is a random variable whose distribution depends on the actions selected by all other agents. Assume that each agent selects at step t an action from probability distribution $p_{i}(t)$, independently of the actions selected by other agents. After step t, agent i updates her action distribution depending on the received reward in previous step. We consider two algorithms for these updates.

Algorithm \times. Agent i maintains a weight $w_{i k}(t)$ for action k, and selects at step t action k with probability $p_{i k}(t)$ proportional to $w_{i k}(t)$. After step t, the weights are updated as follows:

Let $K_{i}(t)$ the action selected at step t. Then:

$$
w_{i k}(t+1)=w_{i k}(t) \exp \left(\frac{\gamma_{t} X_{i k}(t)}{K p_{i k}(t)}\right), \quad \text { if } K_{i}(t)=k,
$$

The other weights remain unchanged. The sequence γ_{t} is chosen so that $\sum_{t} \gamma_{t}=\infty$ and $\sum_{t} \gamma_{t}^{2}<\infty$.
Algorithm + . The algorithm is similar to Algorithm x, except that:

$$
w_{i k}(t+1)=w_{i k}(t)+\frac{\gamma_{t} X_{i k}(t)}{K p_{i k}(t)}, \quad \text { if } K_{i}(t)=k
$$

1. Prove that Algorithm \times mimics the replicator dynamics.
2. What about Algorithm + ?
