Project Session

Jie Lu, Richard Combes, and Alexandre Proutiere Automatic Control, KTH

October 22, 2013

Problem 1. Strongly concave dual function.

Consider the following linearly constrained optimization problem

 $\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{subject to} & Ax + b = 0, \end{array}$

where $f : \mathbb{R}^n \to \mathbb{R}$ is strongly convex with convexity parameter $\mu > 0$ (not necessarily differentiable) and $A \in \mathbb{R}^{p \times n}$ has full row rank. Suppose that the subgradients of f satisfy the Lipschitz condition

$$||s(x_1) - s(x_2)|| \le L ||x_1 - x_2||, \ \forall s(x_1) \in \partial f(x_1), \ \forall s(x_2) \in \partial f(x_2), \text{ for some } L > 0.$$

(a) Prove that the corresponding dual function $g(\nu)$ is strongly concave with concavity parameter $-\mu\lambda_{\min}(AA^T)/L^2 < 0$, where $\lambda_{\min}(\cdot)$ denotes the smallest eigenvalue of a real symmetric matrix. (b) Provide an algorithm which generates a sequence $\{x_k\}_{k=0}^{\infty}$ such that $||x_k - x^*|| \le c \cdot q^k$, where $c \in (0, \infty)$ and $q \in (0, 1)$ are some constants and x^* is the unique primal optimal solution. **Hint:** Let $x^*(\nu) = \arg\min_{x \in \mathbb{R}^n} f(x) + \nu^T (Ax + b)$ and express the (sub)gradient of $g(\nu)$ in terms of $x^*(\nu)$.

Problem 2. Linear convergence of gradient projection method.

Consider the following constrained optimization problem

$$\min_{x \in X} f(x)$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is convex and has Lipschitz continuous gradient with Lipschitz constant L > 0and $X \subset \mathbb{R}^n$ is a closed convex set. Suppose the optimal set $X^* = \arg \min_{x \in X} f(x)$ is nonempty. Let $\{x_k\}_{k=0}^{\infty}$ be a sequence generated by the gradient projection method

$$x_{k+1} = P_X[x_k - \alpha \nabla f(x_k)], \ \forall k \ge 0, \ \text{with} \ x_0 \in X,$$

where $0 < \alpha < \frac{2}{L}$. Assume that for every closed bounded set $S \subset \mathbb{R}^n$, there exists $\sigma_S > 0$ such that

$$\operatorname{dist}(x, X^{\star}) \le \sigma_S \| P_X[x - \alpha \nabla f(x)] - x \|, \ \forall x \in S \cap X,$$
(1)

where $dist(x, X^*) = inf_{x^* \in X^*} ||x - x^*||$. Prove that there exists $q \in (0, 1)$ such that

$$\operatorname{dist}(x_{k+1}, X^{\star}) \le q \operatorname{dist}(x_k, X^{\star}), \quad \forall k \ge 0$$

Hint 1: Use the fact $(x - P_X[x])^T (z - P_X[x]) \le 0$, $\forall x \in \mathbb{R}^n$, $\forall z \in X$ and the optimality condition $\nabla f(x^*)(x - x^*) \ge 0 \ \forall x \in X$ to prove that

$$(x_k - x_{k+1})^T (x^* - x_{k+1}) + \alpha (\nabla f(x_k) - \nabla f(x^*))^T (x_{k+1} - x^*) \le 0, \ \forall x^* \in X^*.$$

Hint 2: $(x_k - x_{k+1})^T (x^* - x_{k+1}) = (-\|x_k - x^*\|^2 + \|x_k - x_{k+1}\|^2 + \|x_{k+1} - x^*\|^2)/2.$ Hint 3: Prove that $(\nabla f(x_k) - \nabla f(x^*))^T (x_{k+1} - x^*) \ge -\frac{L}{4} \|x_{k+1} - x_k\|^2.$ Here you need the inequality $\|y\|^2 + y^T z \ge -\frac{1}{4} \|z\|^2.$

Hint 4: Combining the above, show that x_k remains in a closed bounded subset of X and then apply (1) to get the linear convergence rate.

Problem 3. Multiplicative-update Algorithm.

Consider a set of agents indexed by i = 1, ..., n. At each step t = 1, 2, ..., each of these agents may use one action selected from the set $\{1, ..., K\}$. Agents simultaneously select an action in each step, and observe their rewards. The latter depend on the actions selected by the various agents. We denote by $X_{ik}(t)$ the reward obtained by agent *i* when selecting action *k* at step *t*. $X_{ik}(t)$ is a random variable whose distribution depends on the actions selected by all other agents. Assume that each agent selects at step *t* an action from probability distribution $p_i(t)$, independently of the actions selected by other agents. After step *t*, agent *i* updates her action distribution depending on the received reward in previous step. We consider two algorithms for these updates.

Algorithm ×. Agent *i* maintains a weight $w_{ik}(t)$ for action *k*, and selects at step *t* action *k* with probability $p_{ik}(t)$ proportional to $w_{ik}(t)$. After step *t*, the weights are updated as follows:

Let $K_i(t)$ the action selected at step t. Then:

$$w_{ik}(t+1) = w_{ik}(t) \exp(\frac{\gamma_t X_{ik}(t)}{K p_{ik}(t)}), \quad \text{if } K_i(t) = k_i$$

The other weights remain unchanged. The sequence γ_t is chosen so that $\sum_t \gamma_t = \infty$ and $\sum_t \gamma_t^2 < \infty$. Algorithm +. The algorithm is similar to Algorithm x, except that:

$$w_{ik}(t+1) = w_{ik}(t) + \frac{\gamma_t X_{ik}(t)}{K p_{ik}(t)}, \quad \text{if } K_i(t) = k,$$

- 1. Prove that Algorithm \times mimics the replicator dynamics.
- 2. What about Algorithm +?