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Problem 1. Strongly concave dual function.

Consider the following linearly constrained optimization problem

minimize
x∈Rn

f(x)

subject to Ax+ b = 0,

where f : Rn → R is strongly convex with convexity parameter µ > 0 (not necessarily differentiable)

and A ∈ Rp×n has full row rank. Suppose that the subgradients of f satisfy the Lipschitz condition

‖s(x1)− s(x2)‖ ≤ L‖x1 − x2‖, ∀s(x1) ∈ ∂f(x1), ∀s(x2) ∈ ∂f(x2), for some L > 0.

(a) Prove that the corresponding dual function g(ν) is strongly concave with concavity parameter

−µλmin(AAT )/L2 < 0, where λmin(·) denotes the smallest eigenvalue of a real symmetric matrix.

(b) Provide an algorithm which generates a sequence {xk}∞k=0 such that ‖xk − x?‖ ≤ c · qk, where

c ∈ (0,∞) and q ∈ (0, 1) are some constants and x? is the unique primal optimal solution.

Hint: Let x?(ν) = arg minx∈Rn f(x) + νT (Ax+ b) and express the (sub)gradient of g(ν) in terms

of x?(ν).
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Problem 2. Linear convergence of gradient projection method.

Consider the following constrained optimization problem

min
x∈X

f(x),

where f : Rn → R is convex and has Lipschitz continuous gradient with Lipschitz constant L > 0

and X ⊂ Rn is a closed convex set. Suppose the optimal set X? = arg minx∈X f(x) is nonempty.

Let {xk}∞k=0 be a sequence generated by the gradient projection method

xk+1 = PX [xk − α∇f(xk)], ∀k ≥ 0, with x0 ∈ X,

where 0 < α < 2
L . Assume that for every closed bounded set S ⊂ Rn, there exists σS > 0 such that

dist(x,X?) ≤ σS‖PX [x− α∇f(x)]− x‖, ∀x ∈ S ∩X, (1)

where dist(x,X?) = infx?∈X? ‖x− x?‖. Prove that there exists q ∈ (0, 1) such that

dist(xk+1, X
?) ≤ q dist(xk, X

?), ∀k ≥ 0.

Hint 1: Use the fact (x− PX [x])T (z − PX [x]) ≤ 0, ∀x ∈ Rn, ∀z ∈ X and the optimality condition

∇f(x?)(x− x?) ≥ 0 ∀x ∈ X to prove that

(xk − xk+1)
T (x? − xk+1) + α(∇f(xk)−∇f(x?))T (xk+1 − x?) ≤ 0, ∀x? ∈ X?.

Hint 2: (xk − xk+1)
T (x? − xk+1) = (−‖xk − x?‖2 + ‖xk − xk+1‖2 + ‖xk+1 − x?‖2)/2.

Hint 3: Prove that (∇f(xk) − ∇f(x?))T (xk+1 − x?) ≥ −L
4 ‖xk+1 − xk‖2. Here you need the

inequality ‖y‖2 + yT z ≥ −1
4‖z‖

2.

Hint 4: Combining the above, show that xk remains in a closed bounded subset of X and then

apply (1) to get the linear convergence rate.
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Problem 3. Multiplicative-update Algorithm.

Consider a set of agents indexed by i = 1, . . . , n. At each step t = 1, 2, . . ., each of these agents

may use one action selected from the set {1, . . . ,K}. Agents simultaneously select an action in each

step, and observe their rewards. The latter depend on the actions selected by the various agents.

We denote by Xik(t) the reward obtained by agent i when selecting action k at step t. Xik(t) is

a random variable whose distribution depends on the actions selected by all other agents. Assume

that each agent selects at step t an action from probability distribution pi(t), independently of the

actions selected by other agents. After step t, agent i updates her action distribution depending

on the received reward in previous step. We consider two algorithms for these updates.

Algorithm ×. Agent i maintains a weight wik(t) for action k, and selects at step t action k

with probability pik(t) proportional to wik(t). After step t, the weights are updated as follows:

Let Ki(t) the action selected at step t. Then:

wik(t+ 1) = wik(t) exp(
γtXik(t)

Kpik(t)
), if Ki(t) = k,

The other weights remain unchanged. The sequence γt is chosen so that
∑

t γt =∞ and
∑

t γ
2
t <∞.

Algorithm +. The algorithm is similar to Algorithm x, except that:

wik(t+ 1) = wik(t) +
γtXik(t)

Kpik(t)
, if Ki(t) = k,

1. Prove that Algorithm × mimics the replicator dynamics.

2. What about Algorithm +?
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