Project Session

Jie Lu, Richard Combes, and Alexandre Proutiere Automatic Control, KTH

October 22, 2013

Problem 1. Strongly concave dual function.

Consider the following linearly constrained optimization problem

 $\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{subject to} & Ax + b = 0, \end{array}$

where $f : \mathbb{R}^n \to \mathbb{R}$ is strongly convex with convexity parameter $\mu > 0$ (not necessarily differentiable) and $A \in \mathbb{R}^{p \times n}$ has full row rank. Suppose that the subgradients of f satisfy the Lipschitz condition

$$||s(x_1) - s(x_2)|| \le L ||x_1 - x_2||, \ \forall s(x_1) \in \partial f(x_1), \ \forall s(x_2) \in \partial f(x_2), \text{ for some } L > 0.$$

(a) Prove that the corresponding dual function $g(\nu)$ is strongly concave with concavity parameter $-\mu\lambda_{\min}(AA^T)/L^2 < 0$, where $\lambda_{\min}(\cdot)$ denotes the smallest eigenvalue of a real symmetric matrix. (b) Provide an algorithm which generates a sequence $\{x_k\}_{k=0}^{\infty}$ such that $||x_k - x^*|| \le c \cdot q^k$, where $c \in (0, \infty)$ and $q \in (0, 1)$ are some constants and x^* is the unique primal optimal solution. **Hint:** Let $x^*(\nu) = \arg\min_{x \in \mathbb{R}^n} f(x) + \nu^T (Ax + b)$ and express the (sub)gradient of $g(\nu)$ in terms of $x^*(\nu)$.

Problem 2. Linear convergence of gradient projection method.

Consider the following constrained optimization problem

$$\min_{x \in X} f(x)$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is convex and has Lipschitz continuous gradient with Lipschitz constant L > 0and $X \subset \mathbb{R}^n$ is a closed convex set. Suppose the optimal set $X^* = \arg \min_{x \in X} f(x)$ is nonempty. Let $\{x_k\}_{k=0}^{\infty}$ be a sequence generated by the gradient projection method

$$x_{k+1} = P_X[x_k - \alpha \nabla f(x_k)], \ \forall k \ge 0, \ \text{with} \ x_0 \in X,$$

where $0 < \alpha < \frac{2}{L}$. Assume that for every closed bounded set $S \subset \mathbb{R}^n$, there exists $\sigma_S > 0$ such that

$$\operatorname{dist}(x, X^{\star}) \leq \sigma_S \| P_X[x - \alpha \nabla f(x)] - x \|, \ \forall x \in S \cap X,$$
(1)

where $dist(x, X^*) = inf_{x^* \in X^*} ||x - x^*||$. Prove that there exists $q \in (0, 1)$ such that

$$\operatorname{dist}(x_{k+1}, X^{\star}) \le q \operatorname{dist}(x_k, X^{\star}), \quad \forall k \ge 0$$

Hint 1: Use the fact $(x - P_X[x])^T (z - P_X[x]) \le 0$, $\forall x \in \mathbb{R}^n$, $\forall z \in X$ and the optimality condition $\nabla f(x^*)(x - x^*) \ge 0 \ \forall x \in X$ to prove that

$$(x_k - x_{k+1})^T (x^* - x_{k+1}) + \alpha (\nabla f(x_k) - \nabla f(x^*))^T (x_{k+1} - x^*) \le 0, \ \forall x^* \in X^*.$$

Hint 2: $(x_k - x_{k+1})^T (x^* - x_{k+1}) = (-\|x_k - x^*\|^2 + \|x_k - x_{k+1}\|^2 + \|x_{k+1} - x^*\|^2)/2.$ Hint 3: Prove that $(\nabla f(x_k) - \nabla f(x^*))^T (x_{k+1} - x^*) \ge -\frac{L}{4} \|x_{k+1} - x_k\|^2.$ Here you need the inequality $\|y\|^2 + y^T z \ge -\frac{1}{4} \|z\|^2.$

Hint 4: Combining the above, show that x_k remains in a closed bounded subset of X and then apply (1) to get the linear convergence rate.

Solution of Problem 1.

(a) Let $x^{\star}(\nu) \in \arg \min_{x \in \mathbb{R}^n} f(x) + \nu^T (Ax + b), \forall \nu \in \mathbb{R}^p$. Due to the strong convexity of f, $x^{\star}(\nu)$ uniquely exists. In addition, there exists a subgradient $s(x^{\star}(\nu)) \subset \partial f(x^{\star}(\nu))$ such that

$$s(x^{\star}(\nu)) + A^T \nu = 0.$$
 (2)

Moreover, g is differentiable and

$$\nabla g(\nu) = Ax^{\star}(\nu) + b. \tag{3}$$

It follows that for any $\nu_1, \nu_2 \in \mathbb{R}^p$,

$$\begin{aligned} (\nabla g(\nu_1) - \nabla g(\nu_2))^T(\nu_1 - \nu_2) &= (Ax^*(\nu_1) - Ax^*(\nu_2))^T(\nu_1 - \nu_2) \\ &= (x^*(\nu_1) - x^*(\nu_2))^T(A^T\nu_1 - A^T\nu_2) \\ &= -(x^*(\nu_1) - x^*(\nu_2))^T(s(x^*(\nu_1)) - s(x^*(\nu_2))) \\ &\leq -\mu \|x^*(\nu_1) - x^*(\nu_2)\|^2 \\ &\leq -\mu \cdot \left(\frac{1}{L}\|s(x^*(\nu_1)) - s(x^*(\nu_2))\|\right)^2 \\ &= -\frac{\mu}{L^2}\|A^T(\nu_1 - \nu_2)\|^2 \\ &\leq -\frac{\mu\lambda_{\min}(AA^T)}{L^2}\|\nu_1 - \nu_2\|^2, \end{aligned}$$

where the first equality is due to (3), the third equality and the last equality come from (2), the first inequality is a result of the strong convexity of f, and the second inequality is because of the Lipschitz condition that the subgradients of f satisfy. Since A has full row rank, $\lambda_{\min}(AA^T) > 0$ and therefore g is strongly concave with concavity parameter $-\frac{\mu\lambda_{\min}(AA^T)}{L^2} < 0$.

(b) The dual problem is

$$\max_{\nu \in \mathbb{R}^p} g(\nu).$$

Recall that ∇g is Lipschitz continuous with Lipschitz constant $L_d = \frac{\lambda_{\max}(AA^T)}{\mu} > 0$ [Lecture 4]. Also from (a), -g is strongly convex with convexity parameter $\mu_d = \frac{\mu \lambda_{\min}(AA^T)}{L^2} > 0$. Therefore, if we apply the gradient method

$$\nu_{k+1} = \nu_k + \alpha \nabla g(\nu_k) = \nu_k + \alpha (Ax^{\star}(\nu_k) + b), \quad \forall k \ge 0$$

with $\alpha \in (0, 2/(\mu_d + L_d)]$, then

$$\|\nu_k - \nu^{\star}\| \le \|\nu_0 - \nu^{\star}\| \left(1 - \frac{2\alpha\mu_d L_d}{\mu_d + L_d}\right)^{k/2}, \quad \text{[from Lecture 2]}$$

where ν^{\star} is the unique dual optimal solution. This, along with

$$\|x^{\star}(\nu_k) - x^{\star}\| \leq \frac{\sqrt{\lambda_{\max}(AA^T)}}{\mu} \|\nu_k - \nu^{\star}\|, \qquad \text{[from Lecture 4]}$$

implies that by letting $x_k = x^*(\nu_k)$, we can obtain

$$||x_k - x^*|| \le \frac{\sqrt{\lambda_{\max}(AA^T)}}{\mu} ||\nu_0 - \nu^*|| \left(1 - \frac{2\alpha\mu_d L_d}{\mu_d + L_d}\right)^{k/2}.$$

An alternative is to apply Nesterov's optimal method (Lecture 3) to solve the dual problem. A simple version of the method is as follows:

$$\begin{split} \mu_0 &= \nu_0, \\ \nu_{k+1} &= \mu_k + \frac{1}{L_d} (Ax^*(\mu_k) + b), \quad \forall k \ge 0, \\ \mu_{k+1} &= \nu_{k+1} + \frac{\sqrt{L_d} - \sqrt{\mu_d}}{\sqrt{L_d} + \sqrt{\mu_d}} (\nu_{k+1} - \nu_k), \quad \forall k \ge 0. \end{split}$$

This method gives the convergence rate

$$g^{\star} - g(\nu_k) \le \frac{L_d + \mu_d}{2} \|\nu_0 - \nu^{\star}\|^2 \left(1 - \sqrt{\frac{\mu_d}{L_d}}\right)^k,$$

where g^{\star} is the optimal value of the dual problem. Again, we let $x_k = x^{\star}(\nu_k)$ and note that

$$||x_k - x^*|| \le \sqrt{\frac{g^* - g(\nu_k)}{\mu}}.$$
 [from Lecture 4]

Combining the above, we obtain

$$||x_k - x^*|| \le \sqrt{\frac{L_d + \mu_d}{2\mu}} ||\nu_0 - \nu^*|| \left(1 - \sqrt{\frac{\mu_d}{L_d}}\right)^{k/2}.$$

Solution of Problem 2.

Let $k \ge 0$ and $x^* \in X^*$. Using the fact $(x - P_X[x])^T (z - P_X[x]) \le 0$, $\forall x \in \mathbb{R}^n$, $\forall z \in X$ (let $x = x_k - \alpha \nabla f(x_k)$ and $z = x^*$) and the optimality condition $\nabla f(x^*)(x - x^*) \ge 0$, $\forall x \in X$, we have

$$(x_k - \alpha \nabla f(x_k) - x_{k+1})^T (x^* - x_{k+1}) \le 0 \le \alpha \nabla f(x^*) (x_{k+1} - x^*).$$

Re-arranging the items, we get

$$(x_k - x_{k+1})^T (x^* - x_{k+1}) + \alpha (\nabla f(x_k) - \nabla f(x^*))^T (x_{k+1} - x^*) \le 0.$$
(4)

Note that

$$(x_k - x_{k+1})^T (x^* - x_{k+1}) = (-\|x_k - x^*\|^2 + \|x_k - x_{k+1}\|^2 + \|x_{k+1} - x^*\|^2)/2.$$
(5)

Also note that

$$(\nabla f(x_k) - \nabla f(x^*))^T (x_{k+1} - x^*)$$

= $(\nabla f(x_k) - \nabla f(x^*))^T (x_k - x^*) + (\nabla f(x_k) - \nabla f(x^*))^T (x_{k+1} - x_k)$
 $\geq \frac{1}{L} \|\nabla f(x_k) - \nabla f(x^*)\|^2 + (\nabla f(x_k) - \nabla f(x^*))^T (x_{k+1} - x_k)$
 $\geq -\frac{L}{4} \|x_{k+1} - x_k\|^2.$ (6)

Here the first inequality is due to the Lipschitz continuity of ∇f and the second inequality comes from $||y||^2 + y^T z \ge -\frac{1}{4} ||z||^2$. Combining (4), (5), and (6),

$$\|x_{k+1} - x^{\star}\|^{2} \le \|x_{k} - x^{\star}\|^{2} - \left(1 - \frac{L\alpha}{2}\right)\|x_{k+1} - x_{k}\|^{2}.$$
(7)

If we let x^* be constant for all $k \ge 0$, then (7) implies that $x_k \in S \ \forall k \ge 0$ for some compact $S \subset X$. Thus, from (1), there exists $\sigma_S > 0$ such that

$$\|x_{k+1} - x_k\| \ge \frac{1}{\sigma_S} \operatorname{dist}(x_k, X^\star).$$
(8)

Another implication of (7) is that if for each given k, we let x^* be such that $||x_k - x^*|| = \text{dist}(x_k, X^*)$, then

$$\operatorname{dist}^{2}(x_{k+1}, X^{\star}) \leq \operatorname{dist}^{2}(x_{k}, X^{\star}) - \left(1 - \frac{L\alpha}{2}\right) \|x_{k+1} - x_{k}\|^{2}.$$
(9)

It follows from (9) and (8) that

$$\operatorname{dist}^{2}(x_{k+1}, X^{\star}) \leq \left[1 - \sigma_{S}^{-2}\left(1 - \frac{L\alpha}{2}\right)\right] \operatorname{dist}^{2}(x_{k}, X^{\star})$$