Project Session

Jie Lu, Richard Combes, and Alexandre Proutiere
Automatic Control, KTH

October 22, 2013

Problem 1. Strongly concave dual function.

Consider the following linearly constrained optimization problem

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & A x+b=0,
\end{array}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is strongly convex with convexity parameter $\mu>0$ (not necessarily differentiable) and $A \in \mathbb{R}^{p \times n}$ has full row rank. Suppose that the subgradients of f satisfy the Lipschitz condition

$$
\left\|s\left(x_{1}\right)-s\left(x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|, \forall s\left(x_{1}\right) \in \partial f\left(x_{1}\right), \forall s\left(x_{2}\right) \in \partial f\left(x_{2}\right), \text { for some } L>0 .
$$

(a) Prove that the corresponding dual function $g(\nu)$ is strongly concave with concavity parameter $-\mu \lambda_{\min }\left(A A^{T}\right) / L^{2}<0$, where $\lambda_{\min }(\cdot)$ denotes the smallest eigenvalue of a real symmetric matrix.
(b) Provide an algorithm which generates a sequence $\left\{x_{k}\right\}_{k=0}^{\infty}$ such that $\left\|x_{k}-x^{\star}\right\| \leq c \cdot q^{k}$, where $c \in(0, \infty)$ and $q \in(0,1)$ are some constants and x^{\star} is the unique primal optimal solution.
Hint: Let $x^{\star}(\nu)=\arg \min _{x \in \mathbb{R}^{n}} f(x)+\nu^{T}(A x+b)$ and express the (sub)gradient of $g(\nu)$ in terms of $x^{\star}(\nu)$.

Problem 2. Linear convergence of gradient projection method.

Consider the following constrained optimization problem

$$
\min _{x \in X} f(x)
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is convex and has Lipschitz continuous gradient with Lipschitz constant $L>0$ and $X \subset \mathbb{R}^{n}$ is a closed convex set. Suppose the optimal set $X^{\star}=\arg \min _{x \in X} f(x)$ is nonempty. Let $\left\{x_{k}\right\}_{k=0}^{\infty}$ be a sequence generated by the gradient projection method

$$
x_{k+1}=P_{X}\left[x_{k}-\alpha \nabla f\left(x_{k}\right)\right], \forall k \geq 0, \text { with } x_{0} \in X
$$

where $0<\alpha<\frac{2}{L}$. Assume that for every closed bounded set $S \subset \mathbb{R}^{n}$, there exists $\sigma_{S}>0$ such that

$$
\begin{equation*}
\operatorname{dist}\left(x, X^{\star}\right) \leq \sigma_{S}\left\|P_{X}[x-\alpha \nabla f(x)]-x\right\|, \forall x \in S \cap X \tag{1}
\end{equation*}
$$

where $\operatorname{dist}\left(x, X^{\star}\right)=\inf _{x^{\star} \in X^{\star}}\left\|x-x^{\star}\right\|$. Prove that there exists $q \in(0,1)$ such that

$$
\operatorname{dist}\left(x_{k+1}, X^{\star}\right) \leq q \operatorname{dist}\left(x_{k}, X^{\star}\right), \quad \forall k \geq 0
$$

Hint 1: Use the fact $\left(x-P_{X}[x]\right)^{T}\left(z-P_{X}[x]\right) \leq 0, \forall x \in \mathbb{R}^{n}, \forall z \in X$ and the optimality condition $\nabla f\left(x^{\star}\right)\left(x-x^{\star}\right) \geq 0 \forall x \in X$ to prove that

$$
\left(x_{k}-x_{k+1}\right)^{T}\left(x^{\star}-x_{k+1}\right)+\alpha\left(\nabla f\left(x_{k}\right)-\nabla f\left(x^{\star}\right)\right)^{T}\left(x_{k+1}-x^{\star}\right) \leq 0, \forall x^{\star} \in X^{\star}
$$

Hint 2: $\left(x_{k}-x_{k+1}\right)^{T}\left(x^{\star}-x_{k+1}\right)=\left(-\left\|x_{k}-x^{\star}\right\|^{2}+\left\|x_{k}-x_{k+1}\right\|^{2}+\left\|x_{k+1}-x^{\star}\right\|^{2}\right) / 2$.
Hint 3: Prove that $\left(\nabla f\left(x_{k}\right)-\nabla f\left(x^{\star}\right)\right)^{T}\left(x_{k+1}-x^{\star}\right) \geq-\frac{L}{4}\left\|x_{k+1}-x_{k}\right\|^{2}$. Here you need the inequality $\|y\|^{2}+y^{T} z \geq-\frac{1}{4}\|z\|^{2}$.
Hint 4: Combining the above, show that x_{k} remains in a closed bounded subset of X and then apply (1) to get the linear convergence rate.

Solution of Problem 1.

(a) Let $x^{\star}(\nu) \in \arg \min _{x \in \mathbb{R}^{n}} f(x)+\nu^{T}(A x+b), \forall \nu \in \mathbb{R}^{p}$. Due to the strong convexity of $f, x^{\star}(\nu)$ uniquely exists. In addition, there exists a subgradient $s\left(x^{\star}(\nu)\right) \subset \partial f\left(x^{\star}(\nu)\right)$ such that

$$
\begin{equation*}
s\left(x^{\star}(\nu)\right)+A^{T} \nu=0 . \tag{2}
\end{equation*}
$$

Moreover, g is differentiable and

$$
\begin{equation*}
\nabla g(\nu)=A x^{\star}(\nu)+b \tag{3}
\end{equation*}
$$

It follows that for any $\nu_{1}, \nu_{2} \in \mathbb{R}^{p}$,

$$
\begin{aligned}
\left(\nabla g\left(\nu_{1}\right)-\nabla g\left(\nu_{2}\right)\right)^{T}\left(\nu_{1}-\nu_{2}\right) & =\left(A x^{\star}\left(\nu_{1}\right)-A x^{\star}\left(\nu_{2}\right)\right)^{T}\left(\nu_{1}-\nu_{2}\right) \\
& =\left(x^{\star}\left(\nu_{1}\right)-x^{\star}\left(\nu_{2}\right)\right)^{T}\left(A^{T} \nu_{1}-A^{T} \nu_{2}\right) \\
& =-\left(x^{\star}\left(\nu_{1}\right)-x^{\star}\left(\nu_{2}\right)\right)^{T}\left(s\left(x^{\star}\left(\nu_{1}\right)\right)-s\left(x^{\star}\left(\nu_{2}\right)\right)\right) \\
& \leq-\mu\left\|x^{\star}\left(\nu_{1}\right)-x^{\star}\left(\nu_{2}\right)\right\|^{2} \\
& \leq-\mu \cdot\left(\frac{1}{L}\left\|s\left(x^{\star}\left(\nu_{1}\right)\right)-s\left(x^{\star}\left(\nu_{2}\right)\right)\right\|\right)^{2} \\
& =-\frac{\mu}{L^{2}}\left\|A^{T}\left(\nu_{1}-\nu_{2}\right)\right\|^{2} \\
& \leq-\frac{\mu \lambda_{\min }\left(A A^{T}\right)}{L^{2}}\left\|\nu_{1}-\nu_{2}\right\|^{2}
\end{aligned}
$$

where the first equality is due to (3), the third equality and the last equality come from (2), the first inequality is a result of the strong convexity of f, and the second inequality is because of the Lipschitz condition that the subgradients of f satisfy. Since A has full row rank, $\lambda_{\min }\left(A A^{T}\right)>0$ and therefore g is strongly concave with concavity parameter $-\frac{\mu \lambda_{\min }\left(A A^{T}\right)}{L^{2}}<0$.
(b) The dual problem is

$$
\max _{\nu \in \mathbb{R}^{p}} g(\nu) .
$$

Recall that ∇g is Lipschitz continuous with Lipschitz constant $L_{d}=\frac{\lambda_{\max }\left(A A^{T}\right)}{\mu}>0$ [Lecture 4]. Also from (a), $-g$ is strongly convex with convexity parameter $\mu_{d}=\frac{\mu \lambda_{\min }\left(A A^{T}\right)}{L^{2}}>0$. Therefore, if we apply the gradient method

$$
\nu_{k+1}=\nu_{k}+\alpha \nabla g\left(\nu_{k}\right)=\nu_{k}+\alpha\left(A x^{\star}\left(\nu_{k}\right)+b\right), \quad \forall k \geq 0
$$

with $\alpha \in\left(0,2 /\left(\mu_{d}+L_{d}\right)\right]$, then

$$
\left\|\nu_{k}-\nu^{\star}\right\| \leq\left\|\nu_{0}-\nu^{\star}\right\|\left(1-\frac{2 \alpha \mu_{d} L_{d}}{\mu_{d}+L_{d}}\right)^{k / 2}, \quad[\text { from Lecture 2] }
$$

where ν^{\star} is the unique dual optimal solution. This, along with

$$
\left\|x^{\star}\left(\nu_{k}\right)-x^{\star}\right\| \leq \frac{\sqrt{\lambda_{\max }\left(A A^{T}\right)}}{\mu}\left\|\nu_{k}-\nu^{\star}\right\|, \quad[\text { from Lecture 4] }
$$

implies that by letting $x_{k}=x^{\star}\left(\nu_{k}\right)$, we can obtain

$$
\left\|x_{k}-x^{\star}\right\| \leq \frac{\sqrt{\lambda_{\max }\left(A A^{T}\right)}}{\mu}\left\|\nu_{0}-\nu^{\star}\right\|\left(1-\frac{2 \alpha \mu_{d} L_{d}}{\mu_{d}+L_{d}}\right)^{k / 2} .
$$

An alternative is to apply Nesterov's optimal method (Lecture 3) to solve the dual problem. A simple version of the method is as follows:

$$
\begin{aligned}
& \mu_{0}=\nu_{0}, \\
& \nu_{k+1}=\mu_{k}+\frac{1}{L_{d}}\left(A x^{\star}\left(\mu_{k}\right)+b\right), \quad \forall k \geq 0, \\
& \mu_{k+1}=\nu_{k+1}+\frac{\sqrt{L_{d}}-\sqrt{\mu_{d}}}{\sqrt{L_{d}}+\sqrt{\mu_{d}}}\left(\nu_{k+1}-\nu_{k}\right), \quad \forall k \geq 0 .
\end{aligned}
$$

This method gives the convergence rate

$$
g^{\star}-g\left(\nu_{k}\right) \leq \frac{L_{d}+\mu_{d}}{2}\left\|\nu_{0}-\nu^{\star}\right\|^{2}\left(1-\sqrt{\frac{\mu_{d}}{L_{d}}}\right)^{k},
$$

where g^{\star} is the optimal value of the dual problem. Again, we let $x_{k}=x^{\star}\left(\nu_{k}\right)$ and note that

$$
\left\|x_{k}-x^{\star}\right\| \leq \sqrt{\frac{g^{\star}-g\left(\nu_{k}\right)}{\mu}} . \quad[\text { from Lecture } 4]
$$

Combining the above, we obtain

$$
\left\|x_{k}-x^{\star}\right\| \leq \sqrt{\frac{L_{d}+\mu_{d}}{2 \mu}}\left\|\nu_{0}-\nu^{\star}\right\|\left(1-\sqrt{\frac{\mu_{d}}{L_{d}}}\right)^{k / 2} .
$$

Solution of Problem 2.

Let $k \geq 0$ and $x^{\star} \in X^{\star}$. Using the fact $\left(x-P_{X}[x]\right)^{T}\left(z-P_{X}[x]\right) \leq 0, \forall x \in \mathbb{R}^{n}, \forall z \in X$ (let $x=x_{k}-\alpha \nabla f\left(x_{k}\right)$ and $\left.z=x^{\star}\right)$ and the optimality condition $\nabla f\left(x^{\star}\right)\left(x-x^{\star}\right) \geq 0, \forall x \in X$, we have

$$
\left(x_{k}-\alpha \nabla f\left(x_{k}\right)-x_{k+1}\right)^{T}\left(x^{\star}-x_{k+1}\right) \leq 0 \leq \alpha \nabla f\left(x^{\star}\right)\left(x_{k+1}-x^{\star}\right) .
$$

Re-arranging the items, we get

$$
\begin{equation*}
\left(x_{k}-x_{k+1}\right)^{T}\left(x^{\star}-x_{k+1}\right)+\alpha\left(\nabla f\left(x_{k}\right)-\nabla f\left(x^{\star}\right)\right)^{T}\left(x_{k+1}-x^{\star}\right) \leq 0 . \tag{4}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\left(x_{k}-x_{k+1}\right)^{T}\left(x^{\star}-x_{k+1}\right)=\left(-\left\|x_{k}-x^{\star}\right\|^{2}+\left\|x_{k}-x_{k+1}\right\|^{2}+\left\|x_{k+1}-x^{\star}\right\|^{2}\right) / 2 . \tag{5}
\end{equation*}
$$

Also note that

$$
\begin{align*}
& \left(\nabla f\left(x_{k}\right)-\nabla f\left(x^{\star}\right)\right)^{T}\left(x_{k+1}-x^{\star}\right) \\
= & \left(\nabla f\left(x_{k}\right)-\nabla f\left(x^{\star}\right)\right)^{T}\left(x_{k}-x^{\star}\right)+\left(\nabla f\left(x_{k}\right)-\nabla f\left(x^{\star}\right)\right)^{T}\left(x_{k+1}-x_{k}\right) \\
\geq & \frac{1}{L}\left\|\nabla f\left(x_{k}\right)-\nabla f\left(x^{\star}\right)\right\|^{2}+\left(\nabla f\left(x_{k}\right)-\nabla f\left(x^{\star}\right)\right)^{T}\left(x_{k+1}-x_{k}\right) \\
\geq & -\frac{L}{4}\left\|x_{k+1}-x_{k}\right\|^{2} . \tag{6}
\end{align*}
$$

Here the first inequality is due to the Lipschitz continuity of ∇f and the second inequality comes from $\|y\|^{2}+y^{T} z \geq-\frac{1}{4}\|z\|^{2}$. Combining (4), (5), and (6),

$$
\begin{equation*}
\left\|x_{k+1}-x^{\star}\right\|^{2} \leq\left\|x_{k}-x^{\star}\right\|^{2}-\left(1-\frac{L \alpha}{2}\right)\left\|x_{k+1}-x_{k}\right\|^{2} \tag{7}
\end{equation*}
$$

If we let x^{\star} be constant for all $k \geq 0$, then (7) implies that $x_{k} \in S \forall k \geq 0$ for some compact $S \subset X$. Thus, from (1), there exists $\sigma_{S}>0$ such that

$$
\begin{equation*}
\left\|x_{k+1}-x_{k}\right\| \geq \frac{1}{\sigma_{S}} \operatorname{dist}\left(x_{k}, X^{\star}\right) \tag{8}
\end{equation*}
$$

Another implication of (7) is that if for each given k, we let x^{\star} be such that $\left\|x_{k}-x^{\star}\right\|=\operatorname{dist}\left(x_{k}, X^{\star}\right)$, then

$$
\begin{equation*}
\operatorname{dist}^{2}\left(x_{k+1}, X^{\star}\right) \leq \operatorname{dist}^{2}\left(x_{k}, X^{\star}\right)-\left(1-\frac{L \alpha}{2}\right)\left\|x_{k+1}-x_{k}\right\|^{2} . \tag{9}
\end{equation*}
$$

It follows from (9) and (8) that

$$
\operatorname{dist}^{2}\left(x_{k+1}, X^{\star}\right) \leq\left[1-\sigma_{S}^{-2}\left(1-\frac{L \alpha}{2}\right)\right] \operatorname{dist}^{2}\left(x_{k}, X^{\star}\right)
$$

