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Problem 1. Strongly concave dual function.

Consider the following linearly constrained optimization problem

minimize
x∈Rn

f(x)

subject to Ax+ b = 0,

where f : Rn → R is strongly convex with convexity parameter µ > 0 (not necessarily differentiable)

and A ∈ Rp×n has full row rank. Suppose that the subgradients of f satisfy the Lipschitz condition

‖s(x1)− s(x2)‖ ≤ L‖x1 − x2‖, ∀s(x1) ∈ ∂f(x1), ∀s(x2) ∈ ∂f(x2), for some L > 0.

(a) Prove that the corresponding dual function g(ν) is strongly concave with concavity parameter

−µλmin(AAT )/L2 < 0, where λmin(·) denotes the smallest eigenvalue of a real symmetric matrix.

(b) Provide an algorithm which generates a sequence {xk}∞k=0 such that ‖xk − x?‖ ≤ c · qk, where

c ∈ (0,∞) and q ∈ (0, 1) are some constants and x? is the unique primal optimal solution.

Hint: Let x?(ν) = arg minx∈Rn f(x) + νT (Ax+ b) and express the (sub)gradient of g(ν) in terms

of x?(ν).
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Problem 2. Linear convergence of gradient projection method.

Consider the following constrained optimization problem

min
x∈X

f(x),

where f : Rn → R is convex and has Lipschitz continuous gradient with Lipschitz constant L > 0

and X ⊂ Rn is a closed convex set. Suppose the optimal set X? = arg minx∈X f(x) is nonempty.

Let {xk}∞k=0 be a sequence generated by the gradient projection method

xk+1 = PX [xk − α∇f(xk)], ∀k ≥ 0, with x0 ∈ X,

where 0 < α < 2
L . Assume that for every closed bounded set S ⊂ Rn, there exists σS > 0 such that

dist(x,X?) ≤ σS‖PX [x− α∇f(x)]− x‖, ∀x ∈ S ∩X, (1)

where dist(x,X?) = infx?∈X? ‖x− x?‖. Prove that there exists q ∈ (0, 1) such that

dist(xk+1, X
?) ≤ q dist(xk, X

?), ∀k ≥ 0.

Hint 1: Use the fact (x− PX [x])T (z − PX [x]) ≤ 0, ∀x ∈ Rn, ∀z ∈ X and the optimality condition

∇f(x?)(x− x?) ≥ 0 ∀x ∈ X to prove that

(xk − xk+1)
T (x? − xk+1) + α(∇f(xk)−∇f(x?))T (xk+1 − x?) ≤ 0, ∀x? ∈ X?.

Hint 2: (xk − xk+1)
T (x? − xk+1) = (−‖xk − x?‖2 + ‖xk − xk+1‖2 + ‖xk+1 − x?‖2)/2.

Hint 3: Prove that (∇f(xk) − ∇f(x?))T (xk+1 − x?) ≥ −L
4 ‖xk+1 − xk‖2. Here you need the

inequality ‖y‖2 + yT z ≥ −1
4‖z‖

2.

Hint 4: Combining the above, show that xk remains in a closed bounded subset of X and then

apply (1) to get the linear convergence rate.
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Solution of Problem 1.

(a) Let x?(ν) ∈ arg minx∈Rn f(x) + νT (Ax+ b), ∀ν ∈ Rp. Due to the strong convexity of f , x?(ν)

uniquely exists. In addition, there exists a subgradient s(x?(ν)) ⊂ ∂f(x?(ν)) such that

s(x?(ν)) +AT ν = 0. (2)

Moreover, g is differentiable and

∇g(ν) = Ax?(ν) + b. (3)

It follows that for any ν1, ν2 ∈ Rp,

(∇g(ν1)−∇g(ν2))
T (ν1 − ν2) = (Ax?(ν1)−Ax?(ν2))T (ν1 − ν2)

= (x?(ν1)− x?(ν2))T (AT ν1 −AT ν2)

= −(x?(ν1)− x?(ν2))T (s(x?(ν1))− s(x?(ν2)))

≤ −µ‖x?(ν1)− x?(ν2)‖2

≤ −µ ·
(

1

L
‖s(x?(ν1))− s(x?(ν2))‖

)2

= − µ

L2
‖AT (ν1 − ν2)‖2

≤ −µλmin(AAT )

L2
‖ν1 − ν2‖2,

where the first equality is due to (3), the third equality and the last equality come from (2), the

first inequality is a result of the strong convexity of f , and the second inequality is because of the

Lipschitz condition that the subgradients of f satisfy. Since A has full row rank, λmin(AAT ) > 0

and therefore g is strongly concave with concavity parameter −µλmin(AA
T )

L2 < 0.

(b) The dual problem is

max
ν∈Rp

g(ν).

Recall that ∇g is Lipschitz continuous with Lipschitz constant Ld = λmax(AAT )
µ > 0 [Lecture 4].

Also from (a), −g is strongly convex with convexity parameter µd = µλmin(AA
T )

L2 > 0. Therefore, if

we apply the gradient method

νk+1 = νk + α∇g(νk) = νk + α(Ax?(νk) + b), ∀k ≥ 0

with α ∈ (0, 2/(µd + Ld)], then

‖νk − ν?‖ ≤ ‖ν0 − ν?‖
(

1− 2αµdLd
µd + Ld

)k/2
, [from Lecture 2]
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where ν? is the unique dual optimal solution. This, along with

‖x?(νk)− x?‖ ≤
√
λmax(AAT )

µ
‖νk − ν?‖, [from Lecture 4]

implies that by letting xk = x?(νk), we can obtain

‖xk − x?‖ ≤
√
λmax(AAT )

µ
‖ν0 − ν?‖

(
1− 2αµdLd

µd + Ld

)k/2
.

An alternative is to apply Nesterov’s optimal method (Lecture 3) to solve the dual problem. A

simple version of the method is as follows:

µ0 = ν0,

νk+1 = µk +
1

Ld
(Ax?(µk) + b), ∀k ≥ 0,

µk+1 = νk+1 +

√
Ld −

√
µd√

Ld +
√
µd

(νk+1 − νk), ∀k ≥ 0.

This method gives the convergence rate

g? − g(νk) ≤
Ld + µd

2
‖ν0 − ν?‖2

(
1−

√
µd
Ld

)k
,

where g? is the optimal value of the dual problem. Again, we let xk = x?(νk) and note that

‖xk − x?‖ ≤

√
g? − g(νk)

µ
. [from Lecture 4]

Combining the above, we obtain

‖xk − x?‖ ≤

√
Ld + µd

2µ
‖ν0 − ν?‖

(
1−

√
µd
Ld

)k/2
.

4



Solution of Problem 2.

Let k ≥ 0 and x? ∈ X?. Using the fact (x − PX [x])T (z − PX [x]) ≤ 0, ∀x ∈ Rn, ∀z ∈ X (let

x = xk −α∇f(xk) and z = x?) and the optimality condition ∇f(x?)(x− x?) ≥ 0, ∀x ∈ X, we have

(xk − α∇f(xk)− xk+1)
T (x? − xk+1) ≤ 0 ≤ α∇f(x?)(xk+1 − x?).

Re-arranging the items, we get

(xk − xk+1)
T (x? − xk+1) + α(∇f(xk)−∇f(x?))T (xk+1 − x?) ≤ 0. (4)

Note that

(xk − xk+1)
T (x? − xk+1) = (−‖xk − x?‖2 + ‖xk − xk+1‖2 + ‖xk+1 − x?‖2)/2. (5)

Also note that

(∇f(xk)−∇f(x?))T (xk+1 − x?)

=(∇f(xk)−∇f(x?))T (xk − x?) + (∇f(xk)−∇f(x?))T (xk+1 − xk)

≥ 1

L
‖∇f(xk)−∇f(x?)‖2 + (∇f(xk)−∇f(x?))T (xk+1 − xk)

≥− L

4
‖xk+1 − xk‖2. (6)

Here the first inequality is due to the Lipschitz continuity of ∇f and the second inequality comes

from ‖y‖2 + yT z ≥ −1
4‖z‖

2. Combining (4), (5), and (6),

‖xk+1 − x?‖2 ≤ ‖xk − x?‖2 −
(

1− Lα

2

)
‖xk+1 − xk‖2. (7)

If we let x? be constant for all k ≥ 0, then (7) implies that xk ∈ S ∀k ≥ 0 for some compact S ⊂ X.

Thus, from (1), there exists σS > 0 such that

‖xk+1 − xk‖ ≥
1

σS
dist(xk, X

?). (8)

Another implication of (7) is that if for each given k, we let x? be such that ‖xk−x?‖ = dist(xk, X
?),

then

dist2(xk+1, X
?) ≤ dist2(xk, X

?)−
(

1− Lα

2

)
‖xk+1 − xk‖2. (9)

It follows from (9) and (8) that

dist2(xk+1, X
?) ≤

[
1− σ−2S

(
1− Lα

2

)]
dist2(xk, X

?).
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