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Abstract: This paper proposes a supervisory control structure for networked systems with
time-varying delays. The control structure, in which a supervisor triggers the most appropriate
controller from a multi-controller unit, aims at improving the closed-loop performance relative
to what can be obtained using a single robust controller. Our analysis considers average dwell-
time switching and is based on a novel multiple Lyapunov-Krasovskii functional. We develop
analysis conditions that can be verified by semi-definite programming, and show that associated
state feedback synthesis problem also can be solved using convex optimization. Small and large
scale networked control systems are used to illustrate the effectiveness of our approach.

1. INTRODUCTION

Networked control systems are distributed systems that
use shared communication networks to exchange infor-
mation between system components such as sensors,
controllers and actuators (Zhang et al. [2001], Walsh
et al. [2002]). The networked control system architecture
promises advantages in terms of increased flexibility, re-
duced wiring, and lower maintenance costs, and is finding
its way into a wide variety of applications, ranging from
automobiles and automated highway systems, to process
control and power distribution systems, see e.g., Walsh
et al. [2002] – Navet et al. [2005].

The use of a shared communication network introduces
time-varying information delays and losses which may
deteriorate system performance, even to the point where
the closed-loop system becomes unstable. A conservative
approach is to design a robust controller that considers
the worst-case (maximal) delay. However, this might cause
poor performance if the actual delay is only rarely close to
its upper bound. Therefore, there is currently a renewed
interest in adapting the control law to the delay evolu-
tion (e.g. Chen et al. [2006], Hirche et al. [2006], Jiang
et al. [2009]). Inspired by the delay evolution that we
have experienced in applications, see Figure 1, we design
supervisory control scheme in the sense of Morse [1996].
This control architecture consists of a finite number of
controllers, each designed for a bounded delay variation
(corresponding, e.g., to low, medium and high, network
load) and a supervisor which orchestrates the switchings
among them.

The analysis of switched systems with fixed time-delays is
challenging and has attracted significant attention in the
literature, e.g. Xie and Wang [2005], Hirche et al. [2006],
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Fig. 1. The figure shows a recorded delay trace from
the multi-hop wireless networking protocol used for
networked control in Witrant et al. [2007]. The delay
exhibits distinct mode changes (here corresponding
to one, two or three-hop communication) and varies
around its piecewise constant mode-dependent mean.
Similar behavior was reported by Kuwata et al. [2008],
who measured the delay of sensor data sent over a
CAN bus. Their delay varied between 10-20 ms, but
increased abruptly to around 150 ms under certain
network conditions.

Sun et al. [2006], Yan and Özbay [2008]. Only recently, at-
tempts to analyze switched systems with time-varying de-
lays have begun to appear. Distinctively, Jiang et al. [2009]
have constructed multiple Lyapunov-Krasovskii function-
als to guarantee the stability under minimum dwell-time
condition for interval time-varying delays.

In this work, we analyze our proposed supervisory con-
trol structure by combining a novel multiple Lyapunov-
Krasovskii functional with the assumption of average
dwell-time switching. The average dwell-time concept, in-
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Fig. 2. The general block scheme of the proposed supervi-
sory control structure.

troduced by Hespanha and Morse [1999], is a natural de-
terministic abstraction of load changes in communication
networks, where minimal or maximal guarantees for the
duration of a certain traffic condition is hard to guar-
antee. We demonstrate that the existence of a multiple
Lyapunov-Krasovskii functional that ensures closed-loop
stability under average dwell-time switching can be veri-
fied by solving a set of linear matrix inequalities. In ad-
dition, we show that the state feedback synthesis problem
for the proposed supervisory control structure also can be
solved via semi-definite programming.

The organization of the rest of the paper is as follows.
Section 2 introduces the control structure used through-
out the paper and formalizes the relevant analysis and
synthesis problems. In Section 3, the multiple Lyapunov-
Krasovskii functionals are constructed for analyzing the
exponential stability of supervisory control system under
average dwell-time switchings. Then LMI conditions that
verify the existence of multiple Lyapunov functionals are
derived. State-feedback synthesis conditions are given in
Section 4. Numerical examples are used to demonstrate
the effectiveness of the proposed techniques in Section 5.

Notation: Throughout this paper, Rn denotes the n–
dimensional Euclidean space, Rm×n is the set of all m×n
real matrices, and the notation P > 0 for P ∈ Rn×n,
means that P is a symmetric and positive definite matrix.
Additionally, ’?’ represents symmetric terms in symmetric
matrices and in quadratic forms, ⊗ denotes the Kronecker
product, and R≥0 is the interval [0,∞).

2. SYSTEM MODELING

First consider the supervisory control system setup in
Figure 2. The switched linear system with time-varying
delays is

ẋ(t) = Ax(t) +Aσ(t)x
(
t− τσ(t)(t)

)
∀t ∈ R≥0

x(t) = φ(t) ∀t ∈ [−hM+1, 0] (1)

where x(t) ∈ Rn is the state, A ∈ Rn×n and Aσ(t) ∈ Rn×n
are the known system matrices and σ : R≥0 7→ M with
M = {1, . . . ,M}, for each t ∈ R≥0, is the switching control
signal. τσ(t)(t) is the time-varying delay function satisfying

h1 ≤ hσ(t) ≤ τσ(t)(t) ≤ hσ(t) ≤ hM+1 .

Here, φ(t) ∈ C([−hM+1, 0],Rn) is the initial function
where C([−hM+1, 0],Rn) is the Banach space of contin-
uous functions defined on [−hM+1, 0].

Definition 1. The system (1) is exponentially stable under
the switching signal σ(t) if there exist positive γ and α such
that the solution of x(t) of the system (1) satisfies

||x(t)|| ≤ γ||x(t0)||c e−α(t−t0), t ≥ t0 (2)

where ||x(t0)||c , sup
−hM+1≤θ≤0

{||x(t0 + θ)||, ||ẋ(t0 + θ)||}.

In order to guarantee exponential stability, we will put
restrictions on the switching signal σ(t). Specifically, we
will assume that the signal satisfies an average dwell-time
condition in the following sense.

Definition 2. (Liberzon [2003]). We denote the number of
jumps of a switching signal σ on the interval (t, T ) by
Nσ(T, t). Then we say that σ has the average dwell-time
τa if there exist two positive numbers N0 and τa such that

Nσ(T, t) ≤ N0 +
T − t
τa

, ∀T > t ≥ 0 . (3)

Let S[τa] be the set of all switching signals satisfying the
above condition.

According to Liberzon [2003], the constant N0 affects the
overshoot bound for Lyapunov-type stability but otherwise
does not change stability properties of the switched sys-
tem. For this reason, we also choose N0 = 0 as commonly
used in the literature.

We consider two specific problems in this paper. The first
is to verify that a given switched linear system (1) is
exponentially stable under average dwell-time switching.
The second one is to design state feedback controllers
for each mode i such that the supervisory control system
is exponentially stable with guaranteed convergence rate
under average dwell-time switching.

3. EXPONENTIAL STABILITY ANALYSIS USING
MULTIPLE LYAPUNOV–KRASOVSKII

FUNCTIONALS

The exponential stability of switched system (1) is equiva-
lent to the existence of scalar α ∈ R≥0 such that eαt||x(t)||
asymptotically converges to zero for each σ ∈ S[τa]. In
order to characterize the rate of convergence of the sys-
tem (1), let us consider the change of variables ξ(t) ,
eαtx(t). Then we have:

ξ̇(t) = αeαtx(t) + eαtẋ(t)

= αξ(t) + eαt
(
Ax(t) +Aix(t− τi(t)

))
= αξ(t) +Aξ(t) +Aie

αtx
(
t− τi(t)

)
= (αIn +A)ξ(t) + eατi(t)Aiξ

(
t− τi(t)

)
, (4)

where τi(t) ∈ [hi, hi+1) , ∀i ∈M.

Because of the change of variables, the switched system
model (4) has a time-varying coefficient. Similar to Seuret
et al. [2004], we can rewrite the system model (4) in a
polytopic form to get rid of time-varying term by using
the bounded delay values for each mode. For this purpose,
we express the term eατi(t) as a convex combination of the
bounds eαhi and eαhi+1 :

eατi(t) = λ1(t)eαhi + λ2(t)eαhi+1 , ∀i ∈M (5)

where λ1(t), λ2(t) ∈ R≥0 and λ1(t)+λ2(t) = 1, ∀t ∈ R≥0.
Hence, the delayed differential equation (1) is rewritten as



ξ̇(t) = Āξ(t) +

2∑
j=1

λj(t)Āijξ
(
t− τi(t)

)
(6)

where Ā , (αIn +A) and Āij , %ijAi with %ij , eαhi+j−1

when τi(t) ∈ [hi, hi+1) , ∀i ∈M.

We combine a novel multiple Lyapunov-Krasovskii func-
tional with the dwell-time approach of Hespanha and
Morse [1999] to establish exponential stability of the
switched system (1). For ease of notation, we state the
theorem for the case of two delay modes only, but the
approach extends immediately to a system with M modes.

Theorem 3. There exists a finite constant τa such that
the switched linear system (1) is exponentially stable over
S[τa] with a given decay rate α for time-varying delays
τi(t) ∈ [hi, hi+1), ∀i ∈ {1, 2} if there exist real matrices
Pi > 0, Qik > 0, Rik > 0, Sik > 0 and T ik > 0, ∀i, k ∈ {1, 2}
and a constant scalar µ > 1 satisfying Pi ≤ µPj , Q

i
k ≤

µQjk, Rik ≤ µRjk, Sik ≤ µSjk and T ik ≤ µT jk , ∀i, j, k ∈ {1, 2}
such that the LMIs Γij < 0 given in (7) and (8) hold for
all i, j ∈ {1, 2}.
Remark 1. Note that the decay rate α enters the LMIs (7)
and (8) in Ā and Āij .

Proof of Theorem 3: Analogously to Hespanha and
Morse [1999], our claim follows if we can find the Lyapunov
Krasovskii functionals Vi(t) that guarantee decay rate
α while in mode i and a constant µ > 1 such that
Vi(t) ≤ µVj(t) ∀i, j ∈ {1, 2}. Then (1) is exponentially
stable for every switching signal σ with average dwell-time
τa > τ∗a = lnµ

α .

The following Lyapunov-Krasovskii functional inspired
from Shao [2008] is considered

Vi(t) = ξ(t)TPiξ(t) +

2∑
k=1

∫ t

t−hk

ξ(s)TQikξ(s)ds

+

2∑
k=1

∫ t

t−hk+1

ξ(s)TRikξ(s)ds

+

2∑
k=1

∫ 0

−hk

∫ t

t+s

hk ξ̇(θ)
TSik ξ̇(θ)dθds

+

2∑
k=1

∫ −hk

−hk+1

∫ t

t+s

δk ξ̇(θ)
TT ik ξ̇(θ)dθds , (9)

(denoting δk , hk+1 − hk).

The derivative of Vi(t) along the trajectory of the system
is given by

V̇i(t) = 2ξ(t)TPiξ̇(t) + ξ(t)T
[ 2∑
k=1

(
Qik +Rik

)]
ξ(t)

−
2∑
k=1

ξ(t−hk)TQikξ(t−hk)−
2∑
k=1

ξ(t−hk+1)TRikξ(t−hk+1)

+ξ̇(t)T
[ 2∑
k=1

(
h2kS

i
k+δ2kT

i
k

)]
ξ̇(t)−

2∑
k=1

∫ t

t−hk

hk ξ̇(s)
TSik ξ̇(s)ds

−
2∑
k=1

∫ t−hk

t−hk+1

δk ξ̇(s)
TT ik ξ̇(s)ds . (10)

Using the Jensen’s inequality (Gu et al. [2003]), the
integral terms in the preceding equality are bounded as

−
∫ t

t−hk

hk ξ̇(s)
TSik ξ̇(s)ds

≤ −
(
ξ(t)− ξ(t− hk)

)T
Sik
(
ξ(t)− ξ(t− hk)

)
and

−
∫ t−hk

t−hk+1

δk ξ̇(s)
TT ik ξ̇(s)ds

≤ −
∫ t−τk(t)

t−hk+1

(hk+1 − τk(t))ξ̇(s)TT ik ξ̇(s)ds

−
∫ t−hk

t−τk(t)
(τk(t)− hk)ξ̇(s)TT ik ξ̇(s)ds

≤ −
(
ξ(t−τk(t))−ξ(t−hk+1)

)T
T ik
(
ξ(t−τk(t))−ξ(t−hk+1)

)
−
(
ξ(t−hk)− ξ(t− τk(t))

)T
T ik
(
ξ(t−hk)− ξ(t− τk(t))

)
.

Then this yields

V̇i(t) ≤ ξ(t)T
[
ĀTPi + PiĀ+

2∑
k=1

(
Qik +Rik − Sik

)
+ ĀT

2∑
k=1

(
h2kS

i
k + δ2kT

i
k

)
Ā

]
ξ(t) + 2ξ(t)T

[
Pi

2∑
j=1

(
λj(t)Āij

)
+ ĀT

2∑
k=1

(
h2kS

i
k + δ2kT

i
k

) 2∑
j=1

(
λj(t)Āij

)]
ξ(t− τi(t))

−ξ(t−h1)T (Qi1+T i1 +Si1)ξ(t−h1)+2

2∑
k=1

ξ(t)TSikξ(t−hk)

− ξ(t− h2)T
(
Qi2 + Si2 +

2∑
k=1

T ik +Ri1

)
ξ(t− h2)

− ξ(t− h3)T (T i2 +Ri2)ξ(t− h3) + 2

2∑
k=1

ξ(t− τk(t))TT ik

×ξ(t−hk)−2

2∑
k=1

ξ(t−τk(t))TT ikξ(t−τk(t))+ξ(t−τi(t))T

×
2∑
j=1

(
λj(t)Āij

)T[ 2∑
k=1

(
h2kS

i
k + δ2kT

2
k

)] 2∑
j=1

(
λj(t)Āij

)
× ξ(t− τi(t)) + 2

2∑
k=1

ξ(t− τk(t))TT ikξ(t− hk+1)

= ψ(t)T Γ̃i(t)ψ(t) ,

where ψ(t) = col{ξ(t), ξ(t − τ1(t)), ξ(t − τ2(t)), ξ(t −
h1), ξ(t− h2), ξ(t− h3)}.
Note that the time derivative of Vi(t) is bounded by a
quadratic function in ψ(t), i.e.

V̇i(t) ≤ ψ(t)T Γ̃i(t)ψ(t) ,

with

Γ̃i(t) = λ1(t)Γ̃i1 + λ2(t)Γ̃i2

for all i ∈ {1, 2}. Then, for two different modes, we write
the following two matrices:



Γ1
j =



Φ1 P1Ā1j 0 S1
1 S1

2 0 h1Ā
TS1

1 δ1Ā
TT 1

1 h2Ā
TS1

2 δ2Ā
TT 1

2

? −2T 1
1 0 T 1

1 T 1
1 0 h1Ā

T
1jS

1
1 δ1Ā

T
1jT

1
1 h2Ā

T
1jS

1
2 δ2Ā

T
1jT

1
2

? ? −2T 1
2 0 T 1

2 T 1
2 0 0 0 0

? ? ? −Ξ1
1 0 0 0 0 0 0

? ? ? ? −Ξ1
2 0 0 0 0 0

? ? ? ? ? −Ξ1
3 0 0 0 0

? ? ? ? ? ? −S1
1 0 0 0

? ? ? ? ? ? ? −T 1
1 0 0

? ? ? ? ? ? ? ? −S1
2 0

? ? ? ? ? ? ? ? ? −T 1
2


< 0 ∀j ∈ {1, 2} (7)

Γ2
j =



Φ2 0 P2Ā2j S2
1 S2

2 0 h1Ā
TS2

1 δ1Ā
TT 2

1 h2Ā
TS2

2 δ2Ā
TT 2

2

? −2T 2
1 0 T 2

1 T 2
1 0 0 0 0 0

? ? −2T 2
2 0 T 2

2 T 2
2 h1Ā

T
2jS

2
1 δ1Ā

T
2jT

2
1 h2Ā

T
2jS

2
2 δ2Ā

T
2jT

2
2

? ? ? −Ξ2
1 0 0 0 0 0 0

? ? ? ? −Ξ2
2 0 0 0 0 0

? ? ? ? ? −Ξ2
3 0 0 0 0

? ? ? ? ? ? −S2
1 0 0 0

? ? ? ? ? ? ? −T 2
1 0 0

? ? ? ? ? ? ? ? −S2
2 0

? ? ? ? ? ? ? ? ? −T 2
2


< 0 ∀j ∈ {1, 2} (8)

where Φi = PiĀ + ĀTPi +
∑2
k=1

(
Qik + Rik − Sik

)
, Ξi1 = Qi1 + T i1 + Si1, Ξi2 = Qi2 + Si2 +

∑2
k=1 T

i
k + Ri1 and

Ξi3 = Ri2 + T i2 ∀i ∈ {1, 2}.

Γ̃1
j =


Φ1 P1Ā1j 0 S1

1 S1
2 0

? −2T 1
1 0 T 1

1 T 1
1 0

? ? −2T 1
2 0 T 1

2 T 1
2

? ? ? −Ξ1
1 0 0

? ? ? ? −Ξ1
2 0

? ? ? ? ? −Ξ1
3


+ φT1

2∑
k=1

(
h2kS

1
k + δ2kT

1
k

)
φ1 , (11)

where φ1 =
[
Ā Ā1j 0n×4n

]
for all j ∈ {1, 2}, and

Γ̃2
j =


Φ2 0 P2Ā2j S2

1 S2
2 0

? −2T 2
1 0 T 2

1 T 2
1 0

? ? −2T 2
2 0 T 2

2 T 2
2

? ? ? −Ξ2
1 0 0

? ? ? ? −Ξ2
2 0

? ? ? ? ? −Ξ2
3


+ φT2

2∑
k=1

(
h2kS

2
k + δ2kT

2
k

)
φ2 , (12)

where φ2 =
[
Ā 0n Ā2j 0n×3n

]
for all j ∈ {1, 2}.

After applying the Schur complement twice to Γ̃ij to form

Γij , we arrive at an equivalent condition in terms of the

new matrices Γij :

Γi(t) = λ1(t)Γi1 + λ2(t)Γi2 < 0 ∀i ∈ {1, 2} . (13)

As argued above, the condition is satisfied if Γi1 and Γi2 are
both negative definite.

By guaranteeing that Γi(t) < 0, we ensure that the
dynamics in each fixed mode is exponentially stable with
decay rate α. However, to guarantee stability for the

switched system under the average dwell-time assumption,
we also need to guarantee that

Vi(t) ≤ µVj(t) , ∀i, j ∈ {1, 2} (14)

for some constant µ > 1. Noting that Vi(t) is linear in
Pi, Q

i
k, Rik, Sik and T ik, (14) is implied by the following

conditions:

Pi ≤ µPj , Qik ≤ µQjk , Rik ≤ µR
j
k , S

i
k ≤ µSjk , T ik ≤ µT

j
k

for all i, j, k ∈ {1, 2}. This concludes the proof. �

Remark 2. The analysis procedure extends immediatelly
to the system with M modes. However, the LMIs grow
in both size and number. As distinct from the two-mode
case, we need to check 2M LMIs (extensions of (7), (8))
whose dimensions are 2(2M + 1)n × 2(2M + 1)n, and
M(M − 1) additional LMIs (e.g., Pi ≤ µPj). The LMIs
use M(4M + 1) matrix variables, each with n(n + 1)/2
decision variables.

Proposition 4. A lower bound on the average dwell-time
ensuring the global stability of switched delay system (1) is
determined by solving the following optimization problem

α◦ =



maximize
Pi>0,Qi

k>0,

Ri
k>0,Si

k>0,T i
k>0

α

subject to

Γij < 0,

Pi ≤ µPj , Qik ≤ µQjk,
Rik ≤ µRjk, Sik ≤ µS

j
k,

T ik ≤ µT jk

(15)

for all i, j, k ∈ {1, 2}. Then the lower bound on average

dwell-time is calculated as τ◦a ,
lnµ
α◦

.



4. STATE-FEEDBACK CONTROLLER DESIGN

In this section, we will extend our analysis conditions
to state feedback design for exponential stability of the
supervisory control structure introduced in Section 2.
More precisely, we consider a linear time-invariant plant

ẋ(t) = Ax(t) +Bu(t)

where the control input is a mode-dependent linear feed-
back of the delayed state vector, i.e,

u(t) = Kix(t− τi(t)) (16)

when σ(t) = i (and hence, τi(t) ∈ [hi, hi + 1)), i ∈ M.
The design problem is to find feedback gain matrices Ki

that ensure closed-loop stability for all switching signals
in S[τa]. Clearly, this problem is closely related to the
stability analysis problem considered in Section 3, since
the supervisory control structure induces a switched linear
system on the form (1) with Aσ(t) = BKσ(t). We have the
following result:

Theorem 5. For a given decay rate α, there exists a state-
feedback control of the form (16) which exponentially
stablizes system (1) over S[τa] for time-varying delays
τi(t) ∈ [hi, hi+1), ∀i ∈ {1, 2} if there exist real constant

matrices X̃i > 0, P̃i > 0, Q̃ik > 0, R̃ik > 0, S̃ik > 0 and

T̃ ik > 0, ∀i, k ∈ {1, 2} and a constant scalar µ > 1 such
that the LMIs given in (19) and (20) for all j ∈ {1, 2}, and

P̃i ≤ µP̃j , Q̃ik ≤ µQ̃jk, R̃ik ≤ µR̃jk, S̃ik ≤ µS̃jk and T̃ ik ≤ µT̃ jk ,
∀i, j, k ∈ {1, 2} are feasible. A stabilizing control law is

given by (16) with gain Ki = ỸiX̃
−1
i for all i ∈ {1, 2}.

Proof: The structure of (7) and (8) is not suitable for
the synthesis of a state-feedback controller due to the
presence of multiple product terms ĀSik, ĀT ik, ĀijS

i
k and

ĀijT
i
k. These product terms prevent finding a linearizing

change of variable even after congruence transformation.
Briat et al. [2010] have used a relaxation approach to
solve the problem and decouple the multiple product at
the expense of an increase of the conservatism. Let (19)
and (20) be called as Θ1

j and Θ2
j , respectively, in the rest

of this paper. Then we prove that Θi
j < 0 ∀i ∈ {1, 2}

implies the feasibility of (7) and (8). Note that Θi
j can be

decomposed as

Θi
j = Θi

j |Xi=0 + UTi XiVi + V Ti XiUi < 0 ∀i ∈ {1, 2}
where U1 =

[
− In Ā Ā1j 0n×4n In 0n×4n

]
, V1 =[

In 0n×11n
]
, U2 =

[
− In Ā 0n Ā1j 0n×3n In 0n×4n

]
and V2 =

[
In 0n×11n

]
. Then invoking the projection

lemma (Gahinet and Apkarian [1994]), the feasibility of
Θi
j < 0 implies the feasibility of the LMIs

N T
Ui

Θi
j |X=0NUi

< 0 (21)

N T
Vi

Θi
j |X=0NVi

< 0 (22)

where NUi
and NVi

are basis of the null space of Ui
and Vi, respectively. After some tedious calculations, we
can show that LMIs (17) and (18) are equivalent to (7)
and (8) showing that Θi

j < 0 ∀i ∈ {1, 2} implies the
feasibility of (7) and (8). Moreover, LMI (22) characterizes
the conservatism of the relaxation.

Since LMI (17) and (18) do not include any multi-
ple product, it can easily be used for controller de-
sign. Hence, it is possible to use congruence transforma-

tions and change of variables so as to design the state-
feedback controller. Performing a congruence transfor-
mation with respect to matrix I12n ⊗ X−1 and apply-
ing the following linearizing change of variables X̃i ,
X−1i , P̃i , X−Ti PiX

−1
i , Q̃ik , X−Ti QikX

−1
i , R̃ik ,

X−Ti RikX
−1
i , S̃ik , X

−T
i SikX

−1
i , T̃ ik , X

−T
i T ikX

−1
i , Ξ̃i1 ,

X−Ti Ξi1X
−1
i , Ξ̃i2 , X−Ti Ξi2X

−1
i , Ξ̃i3 , X−Ti Ξi3X

−1
i and

Ỹi = KiX
−1
i , ∀i, k ∈ {1, 2} yields LMI (19) and (20). �

5. NUMERICAL EXAMPLES

5.1 Small Scale Example

We consider the following linear system

ẋ(t) =

[
0 1
0 −10

]
x(t) +

[
0

0.024

]
u(t) (23)

with a time-varying communication delay between sensor
and controller that behaves as shown in Figure 3. The
supervisor generates the switching signals shown in Fig-
ure 3 to trigger the suitable controller. The supervisory
controller is

u(t) =

{
KLx

(
t− τL(t)

)
if τL(t) ∈ [0.05, 0.15)

KHx
(
t− τH(t)

)
if τH(t) ∈ [0.15, 0.40)

. (24)

The lower bound on the average dwell-time τ◦a is deter-
mined as 0.2340 s for given µ = 1.4 by solving the opti-
mization problem (15). Indeed, the maximum exponential
decay rate α◦ is computed as 1.44 in (15). As a result, the
mode-dependent switching controllers are calculated as

KL = [−744.6069 −74.5248] ,

KH = [−578.0139 −57.6035] .

Additionally, using same Lyapunov Krasovskii functional,
we design a classical state-feedback controller to compare
the non-switching and switching control performance (in
terms of rise time, settling time and maximum overshoot).
For this reason, we apply the same Lyapunov Krasovskii
functional (9) with Qk = 0, Rk = 0, Sk = 0, Tk = 0 ∀k > 1
and τ(t) ∈ [0.05, 0.4). Then we define the maximum
exponential decay α as 1.33 and the resulting controller

K = [−603.4151 −60.2007] .

The average dwell time of communication delays seen in
Figure 3 satisfies the condition τ◦a < τa = 0.35 s. There-
fore, the supervisory control system is globally exponen-
tially stable for given switching signal.

The switching control system is faster than the non-
switching conrol system as shown in Figure 4. In addition
to simulation results, we can compare the exponential
decay rates of the switching and non-switching control
systems. It is clearly seen that α◦ > α (1.44 > 1.33). This
result shows that switching controller has slightly better
performance than non-switching one.

5.2 Large Scale Example: Wide-Area Power Networks

To demonstrate the applicability of our methods to real
system of higher dimension, we consider the IEEE nine-bus
system (Anderson and Fouad [2003]) shown in Figure 5.
We select the second order (swing) model with phase and
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1 Ā1j 0 0 0 0 XT

1 h1S
1
1 δ1T

1
1 h2S

1
2 δ2T

1
2

?
∑2
k=1

(
Q1
k +R1

k − S1
k

)
− P1 0 0 S1

1 S1
2 0 0 0 0 0 0

? ? −2T 1
1 0 T 1

1 T 1
1 0 0 0 0 0 0

? ? ? −2T 1
2 0 T 1

2 T 1
2 0 0 0 0 0

? ? ? ? −Ξ1
1 0 0 0 0 0 0 0

? ? ? ? ? −Ξ1
2 0 0 0 0 0 0

? ? ? ? ? ? −Ξ1
3 0 0 0 0 0

? ? ? ? ? ? ? −P1 −h1S1
1 −δ1T 1

1 −h2S1
2 −δ2T 1

2

? ? ? ? ? ? ? ? −S1
1 0 0 0

? ? ? ? ? ? ? ? ? −T 1
1 0 0

? ? ? ? ? ? ? ? ? ? −S1
2 0

? ? ? ? ? ? ? ? ? ? ? −T 1
2



< 0 (17)



−X2 −XT
2 XT
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Fig. 3. The communication delays in the network with
corresponding swithcing modes of supervisory
controller.
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Fig. 4. State trajectory of the closed-loop system under
supervisory control (solid line) and a single mode-
independent state feedback (dashed). Both simula-
tions are performed from the same initial values.
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Fig. 5. IEEE nine-bus power system.

frequency (δi, ωi) for the all generators i ∈ {1, 2, 3}. Then
the numerical model (25) is obtained using the Power
System Analysis Toolbox developed by Milano [2010].

We assume that the phase and frequency of each bus can
be measured and is communicated to a central control
location. In wide-area power systems, the communication
delays vary depending on communication technologies,
protocols and network load. In this example, we assume
that the delay varies between 50 and 200 ms and that mode
changes are such that the average dwell-time is guaranteed
to be at least 0.9 seconds.

The supervisory controller is designed for the delay in-
tervals [50, 100) and [100,200) ms. We design supervisory
control gains targeting a decay rate of α = 0.375, and use
µ = 1.4 to guarantee τa = 0.8972.

Solving the LMIs for this larger system takes a few hours,
but appears to be numerically stable. We find the feedback
gains

KL = [−35.14 −27.00 −1.72 23.82 23.06 −28.72] ,

KH = [−30.77 −24.47 −2.98 21.26 22.18 −22.89] .

We note that for this example, the feedback gains are
rather similar and conjecture that a single controller could
have been used with satisfactory performance.

6. CONCLUSION

This paper has been dedicated to analysis and synthesis
of a supervisory controller for networked control systems
with multiple time-varying delays. The main contribution
of this paper is to develop a stability analysis and a state
feedback synthesis technique for a supervisory control sys-
tem that switches among a multi-controller unit based on
the current network state. Remarkably, both the analysis
and state feedback synthesis problems can be solved via
convex optimization over linear matrix inequalities. Fi-
nally, examples were given to show the effectiveness of the
proposed analysis and synthesis techniques.
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