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Abstract— This paper studies minimum-energy packet for-
warding policies for communicating sensor measurements from
plant to controller over an unreliable multi-hop wireless net-
work so as to guarantee that the optimal controller achieves
a prespecified closed-loop performance. For fixed sampling
interval, we demonstrate that the minimal linear-quadratic
control loss is monotonically decreasing in the reliability of
the sensor-to-controller communication. This allows us to de-
compose the overall design problem into two separate tasks:
finding the minimum end-to-end reliability that allows to
achieve a prespecified linear-quadratic loss, and developing
minimum-energy packet forwarding policies under a deadline-
constrained reliability requirement. We develop optimal so-
lutions for both subproblems and show how the co-designed
system with minimum forwarding energy cost and guaranteed
LQG control performance can be found by a one-dimensional
search over admissible sampling periods. The paper ends with
a numerical example which demonstrates the effectiveness of
the proposed framework.

I. INTRODUCTION

Networked control systems (NCSs) are distributed systems
that utilize communication networks to exchange information
between system components such as sensors, controllers
and actuators. Wireless communication promises advantages
over wired communication in terms of increased flexibility
and reduced wiring and maintenance costs, and is finding
its way into a wide variety of applications (see [1] and
the references therein). However, communication over an
unreliable low-power wireless sensor network induces non-
negligible communication delays and packet losses which
might have significant impact on the closed-loop perfor-
mance. In particular, the closed-loop performance depends
on the per-packet delivery delay and loss probability [2].

Although there is a vast literature on energy-efficient
wireless communication, few papers target per-packet real-
time communications suitable for analysis and design of
networked control systems. Rate adaptation techniques that
balance the transmission rate (which influence the per-packet
latency) and the power consumption have been extensively
studied (see e.g. [3]), but it is complex and costly to
implement in wireless sensor networks. Duty cycling is the
main technique to reduce energy consumption in wireless
sensor network. Some recent work [4], [5] study duty cycle
scheduling for maximizing the lifetime of a sensor network
while guaranteeing an upper bound on the end-to-end packet
delivery delay. An important observation from these papers
is that the energy cost increases with the packet injection
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rate (corresponding to the sampling rate of sensors) and the
end-to-end delivery reliability. With this in mind, it is natural
to account for the energy cost of the wireless network when
designing wireless control system.

In this paper, we develop a co-design framework which
allows to find the minimal energy cost for forwarding sensor
packets over a multi-hop lossy wireless network while ensur-
ing a targeted closed-loop control performance in terms of
linear-quadratic loss. The co-design framework decomposes
the overall design problem into two well-defined control
and network subproblems, and the joint optimality can be
proved by a similar monotonicity argument as in [2], [6]. In
the control subproblem, we develop the optimal controller
for fixed sampling interval, transmission delay and end-to-
end reliability and compute its associated linear-quadratic
loss. By a monotonicity argument, the control performance
constraint is transformed into a requirement on the minimum
deadline-constrained reliability of sensor packets. The net-
work subproblem then amounts to minimizing the forwarding
energy cost subject to this requirement on the minimum
probability that the packet is delivered within a hard deadline.
The minimal energy cost and the associated optimal design
is found by a one-dimensional search over sampling periods.

Some work has studied energy cost of the wireless network
in a networked control system. Shi et.al [7] considered
network lifetime maximization problems while satisfying de-
sired estimation accuracy. Later, Mo et. al [8] have proposed
a stochastic sensor scheduling algorithm to minimize the ex-
pected estimation error covariance matrix under given energy
constraints. The most related work is by Park et. al [9]. They
find critical protocol parameters to minimize the energy con-
sumption subject to constraints on the packet loss probability
and average delay computed from the desired control per-
formance. While the overall aim is similar, the assumptions,
solution techniques and optimality properties are distinctively
different from ours. It considers the IEEE 802.15.4 MAC
protocol in a star-topology network, heuristically replaces
the control performance with the average delay, and cannot
guarantee an optimal solution.

The paper is organized as follows. In Section II, we
introduce models and assumptions. Section III formulates the
minimum energy problem and describes a co-design frame-
work that decomposes the design problem into well-defined
control and network subproblems. Optimal solutions to these
subproblems are presented in Section IV and Section V,
respectively. Numerical examples are provided in Section VI.
Finally, Section VII concludes the paper.



II. MODELS AND ASSUMPTIONS

In this section, we detail the system model including
the process and the wireless network, and introduce the
assumptions and limitations of the controller architecture.

A. Process model

We consider the control of a stochastic linear system
dx = Axdt + Budt + dv,

where x € R" is the state, u € R" is the control signal,
A € R"™™ and B € R™™™ are the system matrices, and
v, is a Wiener process with incremental covariance R{. We
assume that a noisy measurement of the system output

y(kh) = Cz(kh) + w(kh)

is taken every sample period h. Here w(kh) is a discrete-time
white noise Gaussian process, independent of the disturbance
V., and with zero mean and covariance R,,. The sensor
measurements are time-stamped and sent over an unreliable
multi-hop network.

B. Network model

The network consists of a set of nodes N' = {1,..., N}
that can receive and transmit data to the other nodes. We
represent the network topology with a directed graph G =
(N, L) where the presence of a link (i,5) € £ means that
there is a non-zero probability that a packet transmitted by
node ¢ can be received and correctly decoded by node j.
Nodes are synchronized to a global clock and communication
is slotted. Each slot is ¢ seconds long and allows for the
transmission of a single packet and the reception of the
associated acknowledgement from the receiver. We assume
that packet losses on links are independent from losses on
other links, and that losses on each link (¢, j) € L follow a
Bernoulli process with loss probability p;;. While the sensor
data packets can be lost, we assume that acknowledgements
can not. Nodes do not have access to channel state, only their
statistics (i.e. the loss probabilities on the outgoing links).

The design problem for the network is to develop a
forwarding policy m that determines if a node should forward
a received packet or drop it, and to which node it should
attempt to transmit. We let C'(7) be the average energy cost
per injected packet for packet forwarding policy 7. Since
the sensor injects a new packet once every h seconds, the
network energy cost is C(m)/h.

C. Control architecture and control performance

The controller and actuator nodes are assumed to be
synchronized to the global clock and operate with a fixed
lag 7 < h relative to the sampling times of the sensor. The
controller uses the information available at times kh + 7 to
compute the control action (and hence consider packets that
have not arrived within 7 seconds to be lost). The actuator
uses zero-order-hold and maintains the same control action
between the controller updates [kh + 7, (k + 1)h + 7) for
k=0,1,... as seen in Figure 1.

Yk

PLANT/SENSOR
NODE

kh kh+h  kh+2h  kh+3h

CONTROLLER
NODE

% t : . " 0

ACTUATOR
NODE

|
kh+1 kh+h+71 kh+2h+71

Fig. 1. Networked control system block scheme with timing diagrams for
sensor, controller and actuator nodes.

Throughout this paper, we focus on co-design of the
minimum-energy forwarding policy and the control law to
guarantee a desired linear quadratic loss

s=n{ [ [0 ] (& & ][0 ]
FDQGD) L )

where the matrices )5, and ()f are symmetric and positive
semi-definite while ()¢, is symmetric and positive definite.
The expectation is taken over the random process and mea-
surement disturbances, as well as over the random packet
losses in the network. Since the sampling rate is a design
parameter in our system, it is critical to have a continuous-

time loss function as basis of comparison.

III. MINIMUM ENERGY CO-DESIGN PROBLEM

In the time-triggered control architecture described in
Section II-C, only packets received within 7 seconds are
considered by the controller node. Let p(m, h,7) be the
probability that packets injected at rate 1/h and forwarded
using policy 7 arrive at the controller within 7 seconds.
Hence, the problem becomes

minimize C(w)/h
h,m

subject to  J*(7, p(m, h, ), h) < Jreq,

where J*(7, p(m, h,7),h) is the optimal control loss under

the packet delay 7, packet loss probability p and sampling

period h. Furthermore, to limit the number of free parame-

ters, we let the maximal latency 7 equal the sampling period

h. Finally, the problem we consider in this paper is
mir}limize C(m)/h

subject to  J*(p(m, h), h) < Jreq.

Our design problem couples the sampling time selection,
the design of the optimal packet forwarding policy, and the
design of the control law in an apparently complex fashion.
However, as we will show next, the optimal control loss has
a monotonicity property that allows us to replace the control
performance constraint with a constraint on the end-to-end
reliability p(7, h). Specifically, we have the following result:



Theorem 3.1: For a given sampling interval h, the optimal
control loss J*(p, h) is monotone decreasing in the end-to-

end reliability p. o
Proof: The proof relies on a coupling argument on the
loss process for the end-to-end transmissions, see [6]. |

Using the monotonicity property of the control loss func-
tion J*(p(m, h),h), we can replace the performance con-
straint J*(p(m, h),h) < Jeq with the reliability constraint
p(m,h) > pmin(h), where pmin(h) is the unique end-to-end
reliability for which J*(pmin(h),h) = Jweq. We have not
been able to find an explicit formula for the inverse function
of J*, but due to the monotonicity property, this value can
be readily found by bisection.

By replacing the control performance constraint with
the associated end-to-end reliability requirement, the design
problem becomes

mil}Limize C(m)/h
subject to  p(m, h) > pmin(h).

For a fixed value of h, this problem amounts to finding the
policy of minimum expected energy that guarantees that the
probability that packets arrive at their destination within the
deadline h is greater than py,;,. An optimal solution to this
problem will be given in Section V. If we let C,i, (h) denote
the minimum expected energy of the optimal policy for a
given h, then original problem has been reduced to

mini}{nize Chnin(h)/h.
The optimal solution for this problem is simply found by
sweeping over all admissible sampling periods h.

In summary, for a given i we first compute the reliability
requirement pp,in(h) using bisection. Each step of the bi-
section algorithm requires finding the optimal controller and
evaluating its performance as detailed in Section IV. When
Pmin(h) is found, the optimal forwarding policy and the
associated minimum energy cost is found via a constrained
Markov decision process detailed in Section V. The jointly
optimal design is then found by a search over h.

IV. CONTROL SUBPROBLEM

The network delivers sensor packets with a fixed delay
of 7 seconds and losses with the probability ppmin(h) for a
given sampling interval h. We are interested in controllers
that work on the information available at times kh -+ 7, hold
the control signal constant over intervals [kh+7, (k+1)h +
7), and use control actions that are optimal in the sense of
the linear-quadratic loss function (1).

For notational convenience, we assume that 7' = Nh for
some integer N > 0. Let uy, = u(kh) be the control signal
computed at time kh+7 and applied to the process during the
time interval [kh+7, (k4+1)h+7) and let z;, = x(kh). Then,
the continuous-time loss function (1) can be transformed into
an equivalent discrete-time loss
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where ng, Efw S Suu and =§ are given in [6].

The optimal control problem is then to compute the
control sequence {uy} that minimizes the discrete-time loss
function. The evolution of the system between sampling
instants can be described in terms of the extended state vector

&k = col{zp, ugp_1} as
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where v;, and wy, are zero mean discrete-time Gaussian white
noise process with

E{ MG w;]}=[]§” R

where R, £ foh eA5ReeAT 5 ds.

Note that uy is not computed and applied until ¢t = kh +
T, at which time y;, is available to the controller unless it
has been dropped by the network. Hence, the controller has
access to the following information set when computing wy:

Iy & { Yk, U1, R},

where ). = (yk,...,yl), and Up_1 = (uk_l,...,ul) R
while Ry = (pk, R pl) is the realizations of the Bernoulli
random variable pj that models successful packet transmis-
sions.

1) Estimator Design: As in [10] the Kalman filter is the
optimal estimator for our setting. The minimum mean square
error (MMSE) estimate &, of &, given by &, = E{&| Zi }
can be computed recursively starting from the initial con-
ditions &y_; = col{Onx1, Omxi1} and Py_; = P,. The
innovation step is

Eeriie 2 Bl{&i1] T} = P + Tup 3)
ertilh = Eor1 — Spr1pk = Pegyr + Gy “4)
Pk+1|k £ E{€k+1‘k€;+1‘k| Ik} = @Pk.“gq).r + R, (5

where RU £ GR,GT and vy, is independent from Zj, while
the correction step is

Erirphrt = Erpipe + Prr1 K1 (21 — Cépar) - (6)

Chiilk1 = Spt1 — ék+1|lc+1 (7N
Peiiier1r = Proprpe — o1 K1 C Py 3
Kiq1 2 Py CT(C Py, CT + Ry) ™ )]

The following result, similar to [10], characterizes the esti-
mation error covariance matrix.



Proposition 4.1: The MMSE estimate ék.| i of & is given
by the time-varying Kalman filter (3) — (9). The expected
value of the covariance matrix can be bounded as

Pyp <E{Pui} < Prpg

where the bounds can be computed iteratively as

Prig = PPy 1®T + Ry — p@Ppp1CT
X(Cﬁk‘k_lCT + Rw)_ICPMk_l(PT
Prx = Prg—1— pPr—1CT B
X(CPyp—1CT + Ry) 'CPppia
P = (1=p)@Ly 1T+ R,
Py = (1- p)Bk\kfl

starting from the initial conditions Py _; = ?O|_1 = P.
When £ — oo, the iterations converge to the unique
stationary solutions P__ and P, of the modified algebraic
Riccati equations

Po =P, 0T + R,
— p®P, CT(CPLCT + R,,) 'CPo®T
P =(1-p)®P_OT+R,.

(10)
Y

2) Controller Design: Next, we develop the optimal state
feedback control law.

Proposition 4.2: Consider the aforementioned finite hori-
zon LQG control problem. The optimal control law

up = = (CTS) 1l + o) T (TS @ + EL,) & (12)

Ly

is a linear function of the estimated state. The matrix S
evolves according to the backward Riccati recursion

Sp = ®TSk41® + Zee — (DTSl + Zen)
X (TSl + Zyu) (TS, ® + Ef,)  (13)
where ék| r is the MMSE estimate of the state & based on
the information set Z;, computed with the Kalman filter (3) —

(9). As k — oo, the Riccati recursion converges to a unique
stationary solution S, satisfying

Soo = TSP + Egg — ((I)TSOOF + Egu)
X (TS0l 4 Euu) ' (T7 S0 ® + EL)
for which the associated stationary controller gain is

Lo = Jim Ly = ~(FTSoT + Euu) M (IT800® + EL,,) -

3) Optimal control cost: The loss function of the finite
horizon LQG for the networked control system can be written
as

N-1
I (p) = & Soo + Tr(So Po) + Tr(Skt11%)
k=0
N-1
+ Z Tr((®TSk1® + Eee — Sk)E{Pyi})  (14)
k=0

where expectation is taken over a Bernoulli sequence {py}
with E{pr} = p. Since no efficient way of computing the

expectation is known, one can use the upper and lower
bounds on E,{P} given in Proposition 4.1 to compute
associated upper and lower bounds on the finite-horizon
control cost J"(p) < JX(p) < J¥¥(p). For the infinite
horizon case, the bounds become

min : 1 min
it & Jim 5T

= Tr(SsoRy)
+ (1= p)Tr((DTSoc® + Ege — Soc) P )

1
max
—_ ‘]N

5)

ax & 1
J¥ £ lim
N—o00

= Tr(SooRU) + Tr((q)TSOOq) + Ef& - Sw)(ﬁoo
— pPCT(CPoCT + R,) 'CP)) (16)

where the matrices P__, P and S, are given in Proposi-
tion 4.1 and Proposition 4.2, respectively.

To sum up, the optimal estimator is the time-varying
Kalman filter given by (5), (8) and (9), while the optimal
control is given by (12). The combined performance, in
the sense of the continuous-time loss function (1), can be
bounded as in (15) and (16). It is this controller and these
performance bounds that we use in our co-design procedure.

V. NETWORK SUBPROBLEM

In this section, we present the solution for the network
subproblem of finding the policy that obtains the minimum
energy cost and guarantees a probability that packets arrive
within the sampling period (i.e., the packet deadline).

More specifically, we consider one sampling period sce-
nario where a single packet, generated at time ¢ = 0, should
be transmitted over a multi-hop wireless sensor network to
the sink node N within a deadline of D £ tﬂ time slots.
Recall that & is the sampling period and tg4 is the length
of each time slot. The aim is to minimize the transmission
energy cost C(m) subject to the deadline-constrained relia-
bility requirement ppin(h). This minimum energy problem
has recently been addressed in [11] with a general Markovian
link loss model. We re-state the problem formulation and the
main results for the independent packet losses in this paper.

A. Constrained Markov decision process formulation

The optimal forwarding problem can be formulated as a
constrained Markov decision process (CMDP) [11].

The decision is made at time ¢ € {0,1,...,D — 1}. The
state of the decision process m; denotes the packet location
at time ¢. The action j; chooses the next hop node. The state
transition probability Pr (mH_l |, jt) is determined by link
parameters. It has two cases depending on the action. If the
action is to hold the packet, i.e., j; = my, then

1 lf mH_l = jt7

Pr(myg1|my, ji) = {0 otherwise

If the action is to forward the packet, i.e., j; # m;, then

1- Pmyje if miy1 = jta
Pr(mt+1|mt7jt) = g\ Pmyj if myyp1 = my,
0 otherwise.



The initial state is my with the packet at the source node.
There is a terminal reward ,u(m D) if the packet arrives at
the sink node NV at the last time slot D,

1 ifmp =N,

p(mp) = {0

and a cost ¢(my, j;) when the action is to transmit the packet,

C(mtvjt) = {g

where 7 is the energy cost for transmitting one packet.

Let history h, be a sequence of previous states and actions,
ie., by £ (mo,jo,...,mu—1,ji—1,m¢), and Hy be the set
of all possible histories. The decision rule is a function
dy + Hy — P(A;) that maps H, into a set of probability
distributions on the action space A; that includes all possible
actions. A policy 7 £ (alo7 dy,..., dD,l) is a time sequence
of decision rules. Under a policy 7, the expected reward
(deadline-constrained packet reliability) is

R(r) = EL, {n(mp)}

and the expected energy cost is

otherwise,

if ji # my,
otherwise,

t=D—1
C(r) £ Ep, { Z c(me, ji) }-
t=0
The minimum energy forwarding problem is

C(m)
subject to  R(7) > pmin-

miniﬂmize (17
B. Construction and structure of the optimal policy
The Lagrange dual of the minimum energy problem (17) is
maximize mﬂin(C’(w) + A(pmin — R(7)))
subject to A >0

which is equivalent to

maxiémize %mﬁx{R(ﬂ) —6C(m)} — pn?% (18)
subject to § >0

where § = 1/\. By [12, Thm. 4.9], R(w) and C(x) are
convex functions, and the duality gap is zero. To solve the
problem (18), we hence need to study the weighted sum
maximization of reliability and energy,

mfrix{R(w) —6C(m)}

for a given § > 0.

The weighted energy cost 0C'() can be treated as negative
rewards. This weighted sum maximization problem is then
formulated as a Markov decision process. The optimal policy
can be found by dynamic programming (DP). At time ¢ and
node ¢, let the maximum utility be

U7 (t) = Ri(t) = 0C7 (1).

The maximum utility U (0) along with the optimal policy
are computed backwards by DP with the initial condition

1 ifi=N
B ooy =o.

Ri(D) = {0 ifi AN,

At each step with ¢ < D, the maximum utility is

Ur(t) = max { max U/ (t), Uf(t)} (19)
j

where U/ () is the utility of forwarding to neighbor j, and
Ul(t) is the utility of withholding the packet at node 4,
respectively. These utilities are computed as
Ul(t) = U (t+ 1)+ (1 — q)Uf (t+1) — 07 ;
~—
Tx Cost

Success forward Fail forward

Ult) =US(t+1).
——
Staying

Note the DP update requires the maximum utility U (¢t + 1)
computed at the previous time ¢ + 1, and also the maximum
utility U7 (¢ + 1) from node j by a similar DP algorithm.

The optimal action at time ¢ when node ¢ holds the packet
is to forward to the node that maximizes Eq. (19). The
optimal policy for the weighted sum maximization with a
given J is composed by the optimal action at each time and
node and is found along the DP backward computations.
With the optimal policy, the corresponding reliability R*(0)
and energy cost C*(0) can be readily computed.

Define R as the set of all possible R*(0) that can be
obtained by sweeping over values of ¢ in the dynamic
programming. We can obtain an optimal policy for the
minimum energy problem as follows.

Theorem 5.1 [11]: Let R™Y) = sup{R € R : R < pmin}
and R® =inf{R € R : R > puin} with associated energy
costs C1) and C(®. The optimal value of the minimum
energy forwarding problem (17) is then

1
C* _ C(]) + Pmin — R( )

e g @7 =)

(20)
Suppose optimal policies that can obtain R, C") and
R® . C® are 7V and 7(? respectively. An optimal policy
7* for the minimum energy problem is obtained by random
selection of policies (1) and 7(?) with probabilities

2 1
o0 = B = puin  poy _ pmin — R
R® R R® RO
VI. NUMERICAL EXAMPLES

We are now ready to demonstrate the co-design procedure
on a numerical example. Consider the process

0 1
de = 1 9 xdt + 1 udt + dv,,
y(kh) = 1 0 Ja(kh) +w(kh),

where v, has incremental covariance RS = diag{1,0.5} and
R,, = 10~*, and the linear-quadratic control loss in (1) with

:pr = dlag{275}’ Q‘a’:u = 02><1’ Q;},u = 19 and Q(C) = 02><2'
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Fig. 2. The minimum energy cost for different control loss requirements
and the corresponding optimal sampling periods (shown in gray scale).

Moreover, the optimal control loss is measured by the upper
bound for the infinite horizon case.

The topology of the wireless network between sensor and
controller is shown in Fig. 2 where node 1 is the source
and node 6 is the sink. The loss probability on each link
is randomly chosen between 0.1 and 0.8. Each time slot
is 0.02 seconds long. We assume the transmission energy
cost is the same and fixed for all nodes, and normalize this
value to 1. Fig. 2 displays the minimum energy cost for
a range of control performance requirements. The minimum
energy cost naturally increases when the control performance
requirement becomes increasingly stringent. Moreover, the
optimal sampling periods are shown in gray scale with
shorter periods for smaller control loss. The minimum sam-
pling period required to obtain a finite control loss is 40ms
which corresponds to the minimum hop count of two in
the wireless network. The associated optimal control cost
is six. An interesting observation is that it is very costly to
obtain the minimal control loss, and that significant energy
savings can be obtained by accepting a relatively small
deterioration in the control performance. Fig. 3 shows the
minimum energy cost for different sampling periods. For a
given control performance requirement, the relation between
sampling period and energy cost is neither monotone de-
creasing nor monotone increasing except for very lax control
performance requirements. This necessitates the procedure of
sweeping all sampling periods to obtain the minimum energy.

VII. CONCLUSION

We have studied the minimum-energy packet forwarding
policies for a guaranteed closed-loop control performance in
wireless control systems in which the sensor measurements
are sent from plant to controller over an unreliable multi-hop
network. Based on observation that for fixed sampling period
the minimal control loss is monotonically decreasing in the
end-to-end reliability, we propose an optimal decomposition
of the problem into two subproblems. The minimum end-
to-end reliability that allows to guarantee a target control
performance can be found by a bisection algorithm, and the
network subproblem of minimizing the energy cost subject
to a deadline-constrained reliability can be solved as a
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Fig. 3. The minimum energy cost for different sampling periods.

constrained Markov decision process. The jointly optimal
design is found by a search over sampling periods.

A natural extension would be to consider link-losses that
are correlated in time. The CMDP approach can readily
handle the case when link-losses are described by finite-state
Markov chains as long as the link states are known (possibly
with a delay). Extensions to scheduling with partial channel
state information are also possible. However, when the end-
to-end losses are correlated in time, it appears hard to design
optimal controllers that do not require full network state
information, and modular co-design remains challenging.
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