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1 Introduction

In the case of flow-type multimedia communications, as opposed to elastic traffic, the average
packet loss is not the only measure of interest. The burstiness of the loss process, the number of
losses in a block of packets has a great impact both on the user perceived visual quality and on
the possible ways of improving it, for example by forward error correction or receiver-based
error concealment.

In this report we present a model to analyze the packet loss process of a bursty source, for
example VBR video, multiplexed with background traffic in a single multiplexer with a finite
queue and exponentially distributed packet sizes. We model the bursty source by an L-state
Markov Modulated Poisson Process (MMPP) while the background traffic is modeled by a
Poisson process.

It is well known that compressed multimedia, primarily VBR video exhibits a self-similar
nature [1]. Yoshihara et al. use the superposition of 2-state IPPs to model self-similar traffic in
[2], and compare the loss probability of the resulting MMPP/1/D/K queue with simulations.
They found that the approximation works well under heavy load conditions and gives an upper
bound on packet loss probabilities. Ryu and Elwalid [3] showed that short term correlations
have dominant impact on the network performance under realistic scenarios of buffer sizes for
real-time traffic. Thus the MMPP may be a practical model to derive approximate results for
the queuing behavior of LRD traffic such as real-time VBR video, especially in the case of
small buffer sizes. Recently Cao et al. [4] showed that the traffic generated by a large number
of sources tends to Poisson as the load increases due to statistical multiplexing justifying the
Poisson model for the background traffic.

The report is organized as follows. Section 2 gives an overview of the previous work on the
modeling of the loss process of a single server queue with exponential service times. In Section
3 we describe our model to calculate the loss probability in a block of packets. In Section 4.1
we derive the quantities used to calculate the loss probabilities.

2 Related Work

In [5], Cidon et al. present an exact analysis of the packet loss process in an M/M/1/K queue,
that is the probability of loosing j packets in a block of n packets, and show that the distribution
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of losses may be more bursty compared to the independence assumption. They also consider
a discrete time system describing the behavior of ATM fed with a Bernoulli arrival process.
In [6], Gurewitz et al. present explicit expressions for the above quantities in interest for the
M/M/1/K queue. In [7] the multidimensional generating function of the probability of j losses
in a block of n packets is obtained and an easy-to-calculate asymptotic result is given under the
condition that n ≤ K + j +1.

The waiting time and queue length distribution of the N/G/1/K queue was derived in [8]
including the MMPP/G/1/K queue as a special case.

3 Model description

We consider a system with exponentially ditributed size packets having an average transmis-
sion time D. Packets arrive to the system from two sources, a Markov Modulated Poisson
Process (MMPP) and a Poisson process, representing the tagged source and the background
traffic respectively. The packets are stored in a buffer that can host up to K packets, and are
served according to a FIFO policy. Every n consecutive packets from the tagged source form
a block, and we are interested in the probability distribution of the number of lost packets in a
block arriving from the MMPP in the steady state of the system. Throughout the calculations
we use notations similar the those in [5].

We assume that the sources feeding the system are independent. The MMPP is described by
the infinitesimal generator Q with elements ri j and the arrival rate matrix Λ = diag{λ1, . . . ,λL},
where λi is the average arrival rate while the underlying Markov chain is in state i. The Poisson
process modeling the background traffic has average arrival rate λ. The superposition of the
two sources can be described by a single MMPP with arrival rate matrix Λ̂ = Λ⊕ λ = Λ +
λI = diag{λ̂1, . . . , λ̂L}, and infinitesimal generator Q̂ = Q, where ⊕ is the Kronecker sum.
Packets arriving from both sources have the same length distribution, thus the same service
time distribution.

Our purpose is to calculate the probability P( j,n),n ≥ 1,0 ≤ j ≤ n of j losses in a block of
n packets. We define the probability Pa

i,l( j,n),0 ≤ x ≤ KD, l = 1 . . .L,n ≥ 1,0 ≤ j ≤ n as the
probability of j losses in a block of n packets, given that the number of packets in the system
is i just before the arrival epoch of the first packet in the block and the first packet of the block
is generated in state l of the MMPP. As the first packet in the block is arbitrary,

P( j,n) =
L

∑
l=1

K

∑
i=0

Π(i, l)Pa
i,l( j,n) (1)

The probability Π(i, l) of a packet arriving in state (i, l) of the queue can be calculated as
outlined in Section 4.2.

The probabilities Pa
i,l( j,n) can be derived according to the following recursion. The recur-

sion is initiated for n = 1 with the following relations

Pa
i,l( j,1) =

{

1 j = 0
0 j ≥ 1

i ≤ K −1

Pa
i,l( j,1) =

{

0 j = 0, j ≥ 2
1 j = 1

K −1 < i. (2)

2



Using the notation pm = λm
λm+λ and pm = λ

λm+λ , for n ≥ 2 the following equations hold

Pa
i,l( j,n) =

L

∑
m=1

i+1

∑
k=0

Ql,m
i+1(k){pmPa

i+1−k,m( j,n−1)+ pmPs
i+1−k,m( j,n−1)} (3)

for 0 ≤ i ≤ K −1 and

Pa
i,l( j,n) =

L

∑
m=1

K

∑
k=0

Ql,m
M (k){pmPa

K−k,m( j−1,n−1)+ pmPs
K−k,m( j−1,n−1)} (4)

for i = K. Ps
i,l( j,n) is given by

Ps
i,l( j,n) =

L

∑
m=1

i+1

∑
k=0

Ql,m
i+1(k){pmPa

i+1−k,m( j,n)+ pmPs
i+1−k,m( j,n)} (5)

for 0 ≤ i ≤ K −1 and

Ps
i,l( j,n) =

L

∑
m=1

K

∑
k=0

Ql,m
M (k){pmPa

K−k,m( j,n)+ pmPs
M−k,m( j,n)} (6)

for i = K. The probability Ps
i,l( j,n),0 ≤ i ≤ K, l = 1 . . .L,0 ≤ j ≤ n is the probability of j losses

in a block of n packets, given that the number of packets in the system is i just before the arrival
of a packet from the background traffic and the MMPP is in state l. In (3) to (6) Qlm

i (k) denotes
the joint conditional probability of that out of i packets k leave during an interarrival time and
the next arrival occures in state m of the underlying Markov chain, given that the last arrival
occured in state l and is calculated in Section 4.1.

The procedure of computing Pa
i,l( j,n) is as follows. First we calculate Pa

i,l( j,1), i = 0 . . .KN
from the initial conditions (2). Then in iteration k we first calculate Ps

i,l( j,k),k = 1 . . .n− 1
using equations (5) and (6) and the probabilities Pa

i,l( j,k), which have been calculated during
iteration k−1. Then we calculate Pa

i,l( j,k +1) using equations (3) and (4).

4 Derivation of Ql,m
i (k) and Πi,l

In this section we show how to calculate the quantity Ql,m
i (k) and the steady state probability

of the MMPP+M/M/1/K queue.

4.1 Calculation of Ql,m
i (k)

The probability of k service completions during an interarrival time from the joint arrival pro-
cess, Ql,m

i (k), is given by

Ql,m
i (k) = Pl,m(k) i f k < i

Ql,m
i (k) = ∑∞

j=i Pl,m( j) i f k = i,
(7)

where Pl,m(k) denotes the joint probability of having k service completions with exponentially
distributed service times between two arrivals and the next arrival coming in state m of the
MMPP given that the last arrival came in state l.
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The z-transform Pl,m(z) of Pl,m(k) is given by

Pl,m(z) =
∞

∑
k=0

(

∫ ∞

0

λk
t

k!
e−λt f l,m(t)dt

)

zk

= f l,m∗(µ−µz), (8)

where f l,m(t) is the interarrival time distribution given that the next arrival is in state m and
the last arrival was in state l of the MMPP. The Laplace transform of f l,m(t) is denoted with
f l,m ∗ (s) and is given by

f l,m∗(s) = L
{

e(Q̂−Λ̂)xΛ̂
}

= (sI − Q̂+ Λ̂)−1Λ̂. (9)

The inverse z-transform of (8) can be expressed analytically by partial fraction decomposition
as long as L ≤ 4, and has the form

Pl,m(k) =
L

∑
j=1

Alm
j

1

αk
j

, (10)

where α j is the jth root of T (z) = det[(µ− µz)I − Q̂ + Λ̂] and can be calculated algebraically
for L ≤ 4.

In the following we show how the calculation proceeds for L = 3. To calculate the roots α j

we first calculate the roots β j of t(s) = det[sI − Q̂ + Λ̂] in (9). To do so, we rewrite it to the
form

t(s) = a3s3 +a2s2 +a1s+a0, (11)

where

a3 = 1

a2 = r12 + r13 +λ1 + r31 + r32 +λ3 + r21 + r23 +λ2

a1 = λ2 ∗ r31 + r13 ∗λ3 − r2
21 + r13 ∗ r23 + r13 ∗ r32 + r13 ∗ r21 + r21 ∗ r31 + (12)

r21 ∗ r32 + r21 ∗λ3 + r23 ∗ r31 + r23 ∗λ3 +λ2 ∗ r32 +λ2 ∗λ3 + r12 ∗ r31 + (13)

r12 ∗ r32 + r12 ∗λ3 + r12 ∗ r21 + r12 ∗ r23 + r12 ∗λ2 + r12 ∗λ2 + r13 ∗λ2 + (14)

λ1 ∗ r31 +λ1 ∗ r32 +λ1 ∗λ3 +λ1 ∗ r21 +λ1 ∗ r23 +λ1 ∗λ2

a0 = r12 ∗λ2 ∗ r32 + r12 ∗λ2 ∗λ3 + r13 ∗ r21 ∗λ3 − r2
21 ∗ r31 − r2

21 ∗ r32 − r2
21 ∗λ3 + (15)

r12 ∗ r21 ∗ r31 + r12 ∗ r21 ∗ r32 + r12 ∗ r21 ∗λ3 + r12 ∗ r23 ∗ r31 + r12 ∗ r23 ∗λ3 + (16)

r13 ∗ r23 ∗λ3 + r13 ∗λ2 ∗ r32 + r13 ∗λ2 ∗λ3 +λ1 ∗ r21 ∗ r31 +λ1 ∗ r21 ∗ r32 + (17)

λ1 ∗ r21 ∗λ3 +λ1 ∗ r23 ∗ r31 +λ1 ∗ r23 ∗λ3 +λ1 ∗λ2 ∗ r31 + (18)

λ1 ∗λ2 ∗ r32 +λ1 ∗λ2 ∗λ3 − r31 ∗ r21 ∗ r23. (19)

We denote the roots of (11) with β j, j = 1,2,3. Knowing β j we can perform the partial fraction
decomposition of (9) with respect to s

f l,m∗(s) =
L

∑
j=1

Blm
j

s+β j
, (20)
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where Blm
j can be calculated as

Blm
1 = (clm

2 ∗β2
1 − clm

1 ∗β1 + clm
0 )/(β2 −β1)/(β3 −β1)

Blm
2 = (clm

2 ∗β2
2 − clm

1 ∗β2 + clm
0 )/(β1 −β2)/(β3 −β2)

Blm
3 = (clm

2 ∗β2
3 − clm

1 ∗β3 + clm
0 )/(β2 −β3)/(β1 −β3).

(21)

The coefficients clm
2 ,clm

1 ,clm
0 are the following:

c11
2 = λ1

c11
1 = λ1(r31 + r32 +λ3 + r21 + r23 +λ2)

c11
0 = λ1(r21r31 + r21r32 + r23r31 + r21λ3 + r23λ3 +λ2r31 +λ2r32r31 + r3+λ2λ3)

c12
2 = 0

c12
1 = λ2r21

c12
0 = λ2(r21r31 + r21r32 + r1λ3 + r13r32)

c13
2 = 0

c13
1 = λ3r13

c13
0 = λ3(r21r23 + r13r21 + r13r23 + r13λ2)

c21
2 = 0

c21
1 = λ1r21

c21
0 = λ1(r21r31 + r21r32 + r21λ3 + r23r31)

c22
2 = λ2

c22
1 = λ2(r31 + r12 + r13 +λ1 + r32 +λ3)

c22
0 = λ2(r12r31 + r12r32 + r12λ3 + r13r32 + r13λ3 +λ1r31 +λ1r3+λ1λ3)

c23
2 = 0

c23
1 = λ3r23

c23
0 = λ3(r23r12 + r13r23 + r23λ1 + r13r21)

c31
2 = 0

c31
1 = λ1r31

c31
0 = λ1(r21r32 + r21r31 + r23r31 +λ2r31)

c32
2 = 0

c32
1 = λ2r32

c32
0 = λ2(r32r12 + r13r32 + r32λ1 + r21r31)

c33
2 = λ3

c33
1 = λ3(r13 + r12 +λ1 + r21 + r23 +λ2)

c33
0 = λ3(r13r23 + r13r21 − r2

21 + r12r21 + r12r23 + r13λ2 + r12λ2 +λ1r21 +λ1r23 +λ1λ2).

(22)
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Thus the Laplace transform of the conditional probability f l,m(t) has the form

f l,m(s) =
L

∑
j=1

Blm
j

1
s−β j

(23)

and f l,m(t) is

f l,m(t) =
L

∑
j=1

Blm
j eβ jt . (24)

From the Laplace transform of the interarrival time distribution we get the z-transform of the
number of departures by substituting s = (µ−µz). Thus the roots α j of T (z) can be calculated
as

α j = 1+β j/µ. (25)

The coefficients Al,m
j in (10) can be calculated as

Al,m
j = Bl,m

j /(µα j). (26)

Given the probability Pl,m(k) one can express Qi(k) as

Qi(k) =











∑L
j=1 Alm

j

(

1
α j

)k
0 ≤ k < i

∑L
j=1

Alm
j

1−1/α j

(

1
α j

)i
k = i.

(27)

4.2 Calculation of the steady state probability

In this section we show how to calculate the steady state probablity Π(i, l) of that an arrival
from the MMPP arrives in state (i, l) in the MMPP+M/M/1/K queue. We suppose that the
steady state probability π(i, l) of the MMPP+M/M/1/K queue has been calculated by some
matrix-geometric approach [8].

Then the probabilities Π(i, l), 0 ≤ i ≤ K,1 ≤ l ≤ L can be calculated by applying the con-
ditional PASTA property

Π(i, l) =
π(i, l)λl

∑L
l=1 λl ∑K

i=0 π(i, l)
. (28)
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