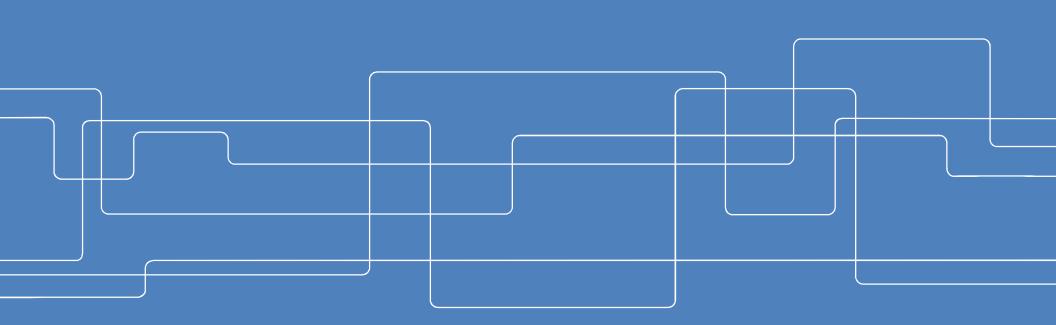


Decentralized Resource Management for Edge Computing


György Dán

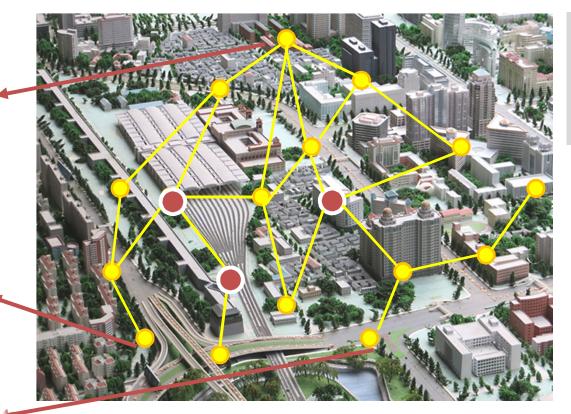
KTH/EECS/NSE

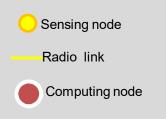
SSF Modane

CERCES

securing critical energy infrastructures Joint work with Sladana Josilo and Peiyue Zhao

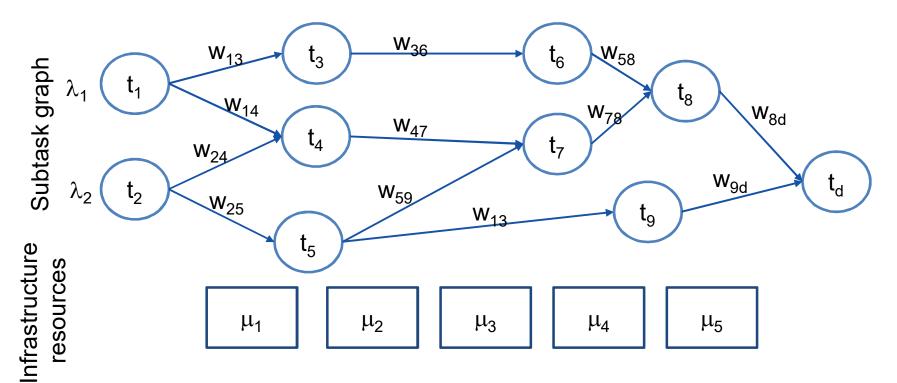
Edge Computing and IoT


Monitoring



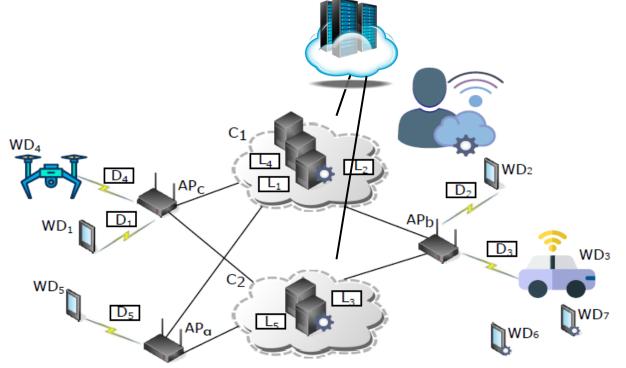
Maintenance

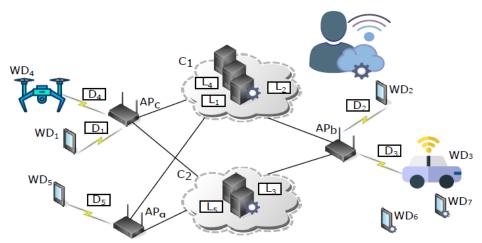
Control



- "Decentralized cloud computing" in small data centers at the network edge
 - Enabler of IoT, cognitive assistants, tactile internet
- Requires adaptive distributed allocation of computing and communication resources

Edge Computing Resource Management

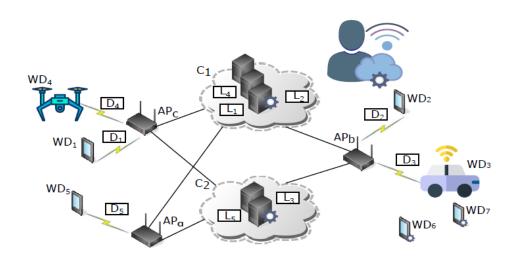

- Task partitioning and assignment
- Local vs. edge vs. cloud execution
- Joint management of wireless and computing resources


Edge Computing Resource Management

- Task partitioning and assignment
- Local vs. edge vs. cloud execution
- Joint management of wireless and computing resources

MEC System Model

- Wireless devices (WDs) \mathcal{N}
- Operator manages
 - Edge clouds (ECs) C
 - APs \mathcal{A}
 - WD *i* can connect to APs $A_i \subseteq A$


Computation offloading

- Task of WD $i, < D_i, L_i >$
 - size of the input data D_i
 - computational complexity L_i
- Decision d_i of WD $i \in \mathcal{N}$
- Set of decisions for all WDs is a *strategy profile* **d**

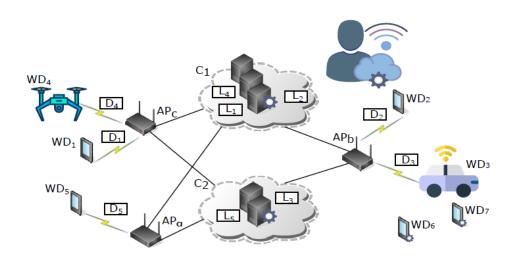
S. Josilo, G. Dán, ``Joint Management of Wireless and Computing Resources for Computation Offloading in Mobile Edge Clouds," IEEE Trans. on Cloud Computing, accepted for publication

Communication Model

- $R_{i,a}$: PHY rate of WD *i* on AP *a*
- $u_{i,a}$: uplink access provisioning coefficient

Transmission time

 $O_a(\mathbf{d})$: offloaders via AP *a* in strategy profile **d**


• Uplink rate of WD *i* via AP *a*

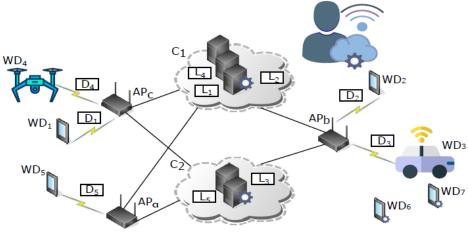
$$\omega_{i,a}(\mathbf{d}, \mathbf{u}_a) = R_{i,a} \frac{u_{i,a}}{\sum_{j \in O_a(\mathbf{d})} u_{j,a}}$$

• Transmission time of WD *i* for offloading via AP *a* $T_{i,a}^{off}(\mathbf{d},\mathbf{u}_a) = \frac{D_i}{\omega_{i,a}(\mathbf{d},\mathbf{u}_a)}$

Communication Model

- $R_{i,a}$: PHY rate of WD *i* on AP *a*
- $u_{i,a}$: uplink access provisioning coefficient

Transmission time


- Example: $u_{i,a} = 1$ corresponds to equal sharing
- Uplink rate of WD *i* via AP *a*

$$\omega_{i,a}(\mathbf{d}, \mathbf{u}_a) = R_{i,a} \frac{u_{i,a}}{\sum_{j \in O_a(\mathbf{d})} u_{j,a}}$$

• Transmission time of WD *i* for offloading via AP *a* $T_{i,a}^{off}(\mathbf{d}, \mathbf{u}_a) = \frac{D_i}{\omega_{i,a}(\mathbf{d}, \mathbf{u}_a)}$

Computing Model

Computation offloading

- F^c : computing capability of EC c
- $p_{i,c}$: computing power provisioning coefficient

Local computing

- F_i^l computing capability of WD i
- Local execution time of WD *i*'s task

$$T_{i,l}^{exe} = \frac{L_i}{F_i^l}$$

 $O_c(\mathbf{d})$: offloaders to EC c in strategy profile \mathbf{d}

• Computing capability allocated to WD *i* by EC *c*

$$F_i^c(\mathbf{d}, \mathbf{p}_c) = F^c \frac{p_{i,c}}{\sum_{j \in O_c(\mathbf{d})} p_{j,c}}$$

• Execution time of WD *i*'s task in EC *c* $T_{i,c}^{exe}(\mathbf{d}, \mathbf{p}_c) = \frac{L_i}{F_i^c(\mathbf{d}, \mathbf{p}_c)}$

Cost – Task Completion Time

Local Computing Cost

$$C_i^l = T_{i,l}^{exe}$$

Cloud Offloading Cost

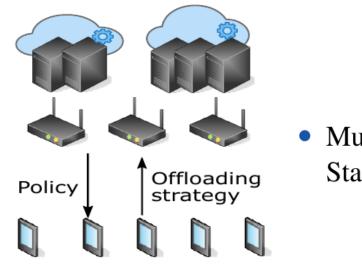
$$C_{i,a}^{c}(\mathbf{d}, \mathbf{u}_{a}, \mathbf{p}_{c}) = T_{i,a}^{off}(\mathbf{d}, \mathbf{u}_{a}) + T_{i,c}^{exe}(\mathbf{d}, \mathbf{p}_{c})$$

System Cost

$$C(\mathbf{d}, \mathbf{u}, \mathbf{p}) = \sum_{i \in \mathcal{N}} \sum_{(a,c) \in \mathcal{A}_i \times \mathcal{C}} I_{d_i,(a,c)} C_{i,a}^c(\mathbf{d}, \mathbf{u}_a, \mathbf{p}_c) + \sum_{i \in \mathcal{N}} I_{d_i,i} C_i^l,$$
offloading
$$I_{d_i,r} = \begin{cases} 1, \text{ if } d_i = r \\ 0, \text{ otherwise} \end{cases}$$

Mobile Edge Computation Offloading Game (MCOG)

Objective of the operator


• Minimization of total cost

 $\min_{\mathbf{u},\mathbf{p}\succeq\mathbf{0}} C(\mathbf{d},\mathbf{u},\mathbf{p})$

Objective of WDs

Minimization of own cost

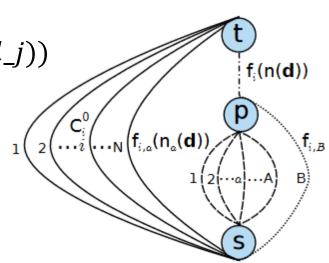
 $\min_{d_i \in \mathfrak{D}_i} C_i(d_i, d_{-i}, \mathbf{u}_a^*, \mathbf{p}_c^*)$

 Multi-leader common-follower Stackelberg game

Game theory crash course

- Best response
 - Optimal strategy given the other players' strategies

• $B(d_{-i}) = argmin_{d_i}C_i(d_i, d_{-i})$


- Nash equilibrium
 - Strategy profile d^* such that no player wants to deviate
 - $d_i^* \in B(d_{-i}^*)$
- Stackelberg equilibrium (SPE)

•
$$d_i^* = argmin_{d_i}C_i(d_i, B(d_i))$$

Game theory crash course

- Potential function
 - $\Psi(d_i, d_{-i}) \Psi(d'_i, d_{-i}) = u_i(d_i, d_{-i}) u_i(d'_i, d_{-i})$
- Generalized ordinal potential function
 - $u_i(d_i, d_{-i}) \Psi(d'_i, d_{-i}) > 0 \rightarrow \Psi(d_i, d_{-i}) \Psi(d'_i, d_{-i}) > 0$
- (Player specific weighted) Congestion game
 - Set of primary resources: T
 - Set of strategies: $d_i \subseteq T$
 - Cost function: $C_i(d) = \sum_{t \in d_i} c_i(f(j:t \in d_j))$

Questions addressed

- Does MCOG admit a SPE?
 - Cost minimizing (CM) operator
 - Time fair (TF) operator

 $\mathfrak{A}_t \!=\! \{\!(\mathbf{u},\mathbf{p}) | u_{i,a} \!=\! 1, p_{i,c} \!=\! 1, \forall i \in \mathcal{N}, a \!\!\in\!\! \mathcal{A}, c \!\!\in\!\! \mathcal{C} \}$

- Can SPE be computed using a decentralized algorithm?
 - What is the complexity of the algorithm?
 - How good is the resulting system performance?

Main result: Polynomial time decentralized algorithm with approximation ratio bound for optimizing MU assignment

S. Josilo, G. Dán, ``Joint Management of Wireless and Computing Resources for Computation Offloading in Mobile Edge Clouds," IEEE Trans. on Cloud Computing, accepted for publication

Optimal policy of the CM operator

Cost minimization problem

s.t.
$$\begin{split} \min_{\substack{(\mathbf{u},\mathbf{p})\in\mathfrak{A}_{c}}} C(\mathbf{d},\mathbf{u},\mathbf{p}) \\ \sum_{j\in O_{a}(\mathbf{d})} u_{j,a} &= 1, \quad \forall a\in\mathcal{A} \\ \sum_{j\in O_{c}(\mathbf{d})} p_{j,c} &= 1. \quad \forall c\in\mathcal{C} \end{split}$$

Optimal resource allocation policy of the CM operator

• Best response of the CM operator to strategy profile **d** chosen by WDs

$$u_{i,a}^{*}(\mathbf{d}) = \frac{\sqrt{D_{i}/R_{i,a}}}{\sum_{j \in O_{a}(\mathbf{d})} \sqrt{D_{j}/R_{j,a}}}, \forall i \in O_{a}(\mathbf{d}), \forall a \in \mathcal{A}$$
$$p_{i,c}^{*}(\mathbf{d}) = \frac{\sqrt{L_{i}/F^{c}}}{\sum_{j \in O_{c}(\mathbf{d})} \sqrt{L_{j}/F^{c}}}, \forall i \in O_{c}(\mathbf{d}), \forall c \in \mathcal{C}$$

Equivalent Game under the CM operator

Strategic game played by WDs

For any allocation policy of the operator, game Γ =< N, (D_i)_i, (C_i)_i > played by WDs is a player-specific weighted congestion game

Game Γ under the optimal policy of the CM operator

- We transform Γ into a congestion game Γ^c with resource dependent weights Offloading cost: $\bar{C}^c{}_{i,a}(\mathbf{d}) = \omega_{i,a} \sum_{j \in O_a(\mathbf{d})} \omega_{j,a} + \omega_{i,c} \sum_{j \in O_c(\mathbf{d})} \omega_{j,c}$ Weights: $\omega_{i,a} = \sqrt{\frac{D_i}{R_{i,a}}}, \omega_{i,c} = \sqrt{\frac{L_i}{F^c}}$
- Does strategic game Γ^c have a Nash equilibrium (NE)?

Main Results (CM operator)

NE existence

- Game Γ^c has a NE $\bar{\mathbf{d}}^*$
 - Proof based on exact potential function

Improve Local Computing (ILC) algorithm

- Starts from a strategy profile in which all WDs perform computation locally
- Allows WDs to start to offload in non-increasing order of their task complexities

$$AU(\mathbf{d})$$
1 while \exists WD j s.t. $d_j \neq \arg \min_{d'_j \in \mathfrak{D}_j} \bar{C}_j(d'_j, d_{-j})$
2 $|d^*_j = \arg \min_{d'_j \in \mathfrak{D}_j} \bar{C}_j(d'_j, d_{-j})$
3 $|\mathbf{d} = (d^*_j, d_{-j})$
4 end

Initialization results in minimal number of iterations

Main Results (CM operator)

SPE existence

- The MEC-OG has a SPE $(\bar{\mathbf{d}}^*, \mathbf{u}^*, \mathbf{p}^*)$
 - Optimal provisioning coefficients \mathbf{u}^* and \mathbf{p}^* have closed form expressions
 - ILC algorithm computes an equilibrium $\bar{\mathbf{d}}^*$ of offloading decisions

Price of anarchy (PoA)

• Ratio of worst case NE cost and minimal social cost

$$PoA \le \frac{3+\sqrt{5}}{2}$$

• Provides bound on approximation ratio

Game Γ^t =< N, (D_i)_i, (C_i)_i > played by WDs under TF operator is a player-specific congestion game

Offloading cost:
$$\widetilde{C^{c}}_{i,a}(\mathbf{d}) = \frac{D_{i}}{R_{i,a}}n_{a}(\mathbf{d}) + \frac{L_{i}}{F^{c}}n_{c}(\mathbf{d})$$

Γ^t is not a potential game
 Proof by constructing I-cycle

$$\begin{array}{c} (1,2,1,0,0) \xrightarrow{c} (1,2,2,0,0) \xrightarrow{b} (1,0,2,0,0) \xrightarrow{d} (1,0,2,2,0) \xrightarrow{e} (1,0,2,2,2) \\ \xrightarrow{c} (1,0,1,2,2) \xrightarrow{b} (1,3,1,2,2) \xrightarrow{e} (1,3,1,2,0) \xrightarrow{d} (1,3,1,0,0) \xrightarrow{b} (1,2,1,0,0) \end{array}$$

S. Josilo, G. Dán, ``A Game Theoretic Analysis of Selfish Mobile Computation Offloading," in Proc. of IEEE Infocom, May 2017

S. Josilo, G. Dán, ``Selfish Decentralized Computation Offloading for Mobile Cloud Computing in Dense Wireless Networks," IEEE Trans. on Mobile Computing, vol. 18., no. 1., Jan. 2019, pp. 207-220

18

Main Results for the TF operator

Γ^t admits a pure NE

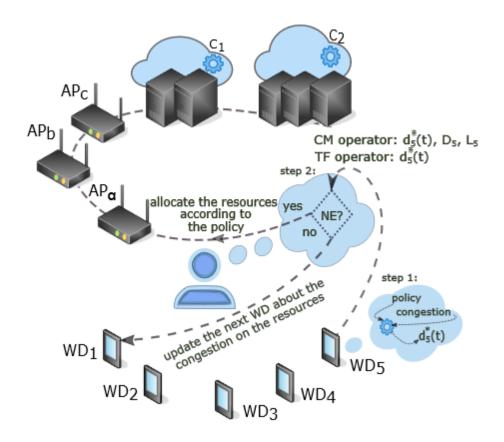
Constructive proof

- Join and Plan Asynchronous Updates (JPAU)
 - Starts from empty system
 - Adds WDs one at a time
 - Lets them play their best replies in a certain order

Computational complexity $O(AN^3)$

```
\mathbf{d}^{*} = JPAU(\mathcal{N}, \mathcal{A}, \mathcal{C})
1 /*First WD enters the game*/
2 Let \mathbf{d} \leftarrow \emptyset, i \leftarrow 1
3 d_i^*(1) = \operatorname{argmin}_{d_i \in \mathfrak{D}_i} C_i(d_i, d_{-i})
4 \mathbf{d}^{*}(1) = d_{i}^{*}(1)
 5 for n = 2 : N do
        Corresponds to induction phase*/
      d_i^*(n) = \arg \min_{d_i \in D_i} C_i(d_i, d_{-i}^*(n-1))
     \mathbf{d}(n) = (d_i^*(n), \mathbf{d}^*(n-1))
     if d_{i}^{*}(n) = (a, c)
       /*Corresponds to update phase*/
       if \exists j \in O_{(a,c)}(d(n)) for which a BR is local computing
       /*Corresponds to case (i)*/
       \mathbf{d}'(n) = (j, d_{-j}(n))
      end
15
     else if \exists j \in O_{(a,c')}(d(n)), c' \neq c for which a BR is local computing
       /*Corresponds to case (ii)*/
      \mathbf{d}'(n) = (j, d_{-j}(n))
       k \leftarrow O_c(\mathbf{d}'(n))
       \mathbf{d}'(n) = ((\cdot, c'), d'_{-k}(n))
      else if \exists j \in O_a(d(n)), a' \neq a for which a BR is changing to AP a'
       /*Corresponds to case (iii)*/
       \mathbf{d}'(n) = ((a', \cdot), d_{-1}(n))
       while \exists j \in O(d'(n)) that can decrease its offloading cost
        d_j^*(n) = \arg\min_{d'_i \in \mathfrak{D}_j} C_j(d'_j, d'_{-j}(n))
        \mathbf{d}'(n) = (d_{i}^{*}(n), d_{-i}^{i}(n))
77
       end
      else
28
      \mathbf{d}'(n) = \mathbf{d}(n)
29
      end
      a'' \leftarrow a for which n_a(\mathbf{d}'(n)) = n_a(\mathbf{d}^*(n-1)) + 1
      c \leftarrow c' for which n_{c'}(\mathbf{d}'(n)) = n_{c'}(\mathbf{d}^*(n-1)) + 1
     if \exists j \in O_{(a',c)}(a'(n), a' \neq a'') for which a BR is local computing
       /*Corresponds to case (iv)*/
       \mathbf{d}'(n) = (j, d'_{-i}(n))
       if \exists j \in O_{a''}(\mathbf{d}^{f}(n)) for which a BR is changing to AP a'
       k \leftarrow O_{a''}(\mathbf{d}'(n))
       \mathbf{d}'(n) = ((a', \cdot), d'_{-k}(n))
       else
        while \exists j \in O(d'(n)) that can decrease its offloading cost
        d_j^*(n) = \arg \min_{d'_i \in \mathfrak{D}_j} C_j(d'_i, d'_{-j}(n))
        \mathbf{d}'(n) = (d_{i}(n), d_{-i}'(n))
42
       end
43
       if \exists k \in N_n \setminus O(\mathbf{d}'(n)) for which a BR is (a', c)
        \mathbf{d}'(n) = ((a', c), d'_{-k}(n))
45
       if \exists j \in O_{(a',c)}(d'(n)), a' \neq a for which a BR is local computing
         go to 35
        end
      end
     end
52 \mathbf{d}^{*}(n) = \mathbf{d}'(n)
53 end
54 return d*(N)
```

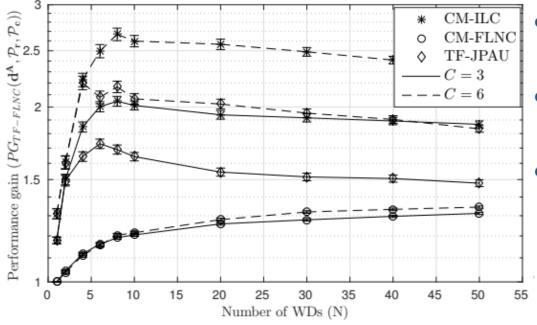

SPE existence


- The MEC-OG has a SPE $(\widetilde{\mathbf{d}}^*, \mathbf{u}^t, \mathbf{p}^t)$
 - Time-fair provisioning coefficients \mathbf{u}^t and \mathbf{p}^t
 - JPAU algorithm computes an equilibrium $\tilde{\mathbf{d}}^*$ of offloading decisions

Price of Anarchy

 $PoA \le N+1$

Decentralized Implementation


User Focused Performance Analysis

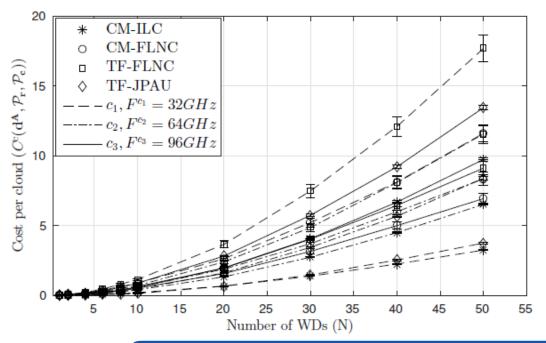
Evaluation scenario

• A = 5 APs, heterogeneous ECs $F^{c,tot} = 192$ Gcycles

• Tasks: $D_i \sim \mathcal{U}(0.2, 4) Mb$, $L_i = D_i X$ Gcycles , $X \sim \Gamma(0.5, 1.6)$ Gcycles/b Performance gain

Defined w.r.t. *equal alocation* (EA) policy and the *fastest-link nearest-cloud* (FLNC) algorithm

- *Performance gain* increases with decreasing marginal gain in N
- *Performance gain* increases with the number of edge ECs
 - Largest performance gain
 - Operator implements OA policy
 - WDs compute offloading decisions using the ILC algorithm

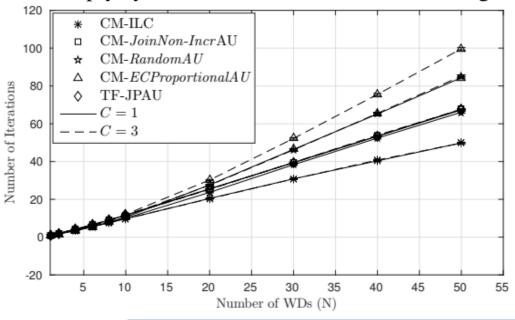

Cloud Focused Performance Analysis

Evaluation scenario

- A = 5 APs, C = 3 heterogeneous ECs $F^{c,tot} = 192$ Gcycles
- Tasks: $D_i \sim \mathcal{U}(0.2, 4) \ \textit{Mb}$, $L_i = D_i X \ \textit{Gcycles}$, $X \sim \Gamma(0.5, 1.6) \ \textit{Gcycles/b}$

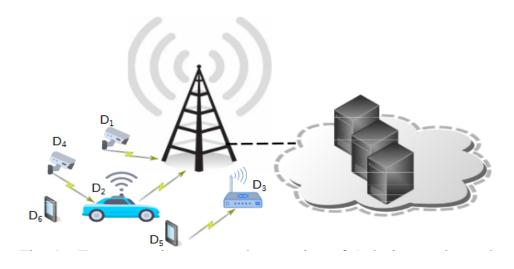
Cost per cloud

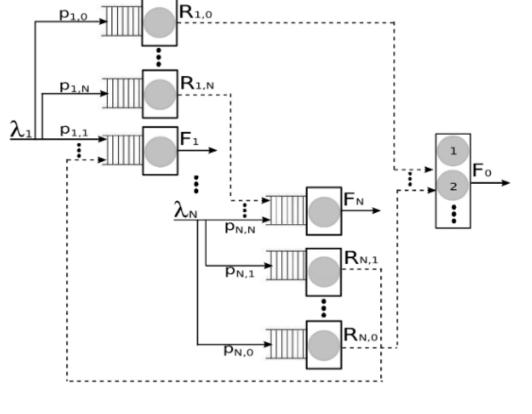
Defined as $C^{c}(\mathbf{d}) = \sum_{i \in O_{c}(\mathbf{d})} C_{i}(\mathbf{d})$


- *Cost per cloud* increases with the number *N* of WDs
- *Cost per cloud* is proportional to the EC's computing capability in case of equilibria under OA and EA policies

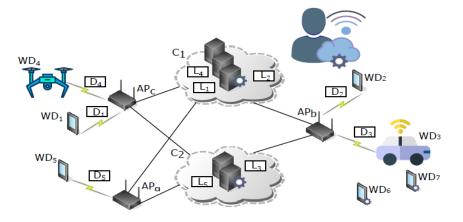
Computational Complexity

Evaluation scenario


- A = 5 APs, homogeneous ECs $F^{c,tot} = 192$ Gcycles
- Tasks: $D_i \sim U(0.2, 4) Mb$, $L_i = D_i X$ Gcycles, $X \sim \Gamma(0.5, 1.6)$ Gcycles/b Number of iterations
 - Randomly chosen strategy profile
 - All WDs offload-congestion per EC proportional to its computing capability
 - Empty system-WDs added in non-increasing order of their task complexities


- Number of iterations scales approximately linearly with the number N of WDs
- Number of iterations is sensitive to the starting strategy profile
 - Smallest in the case of the ILC algorithm

Alternative Model of Computation Offloading



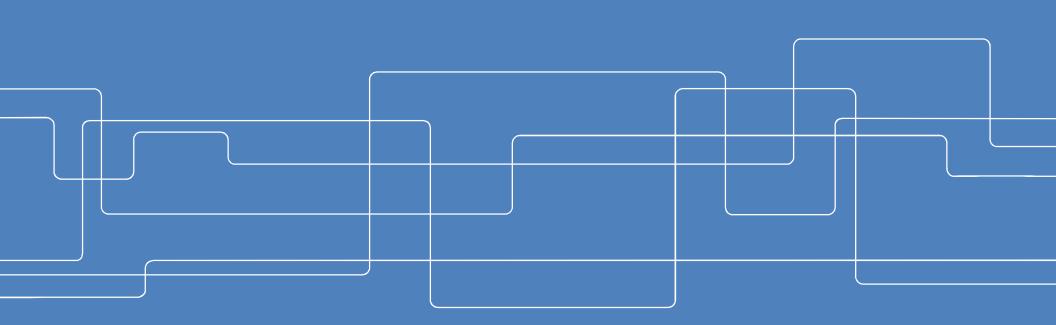
- Offloading to
 - Devices, edge cloud, remote cloud
- Model
 - Stochastic arrival process
 - Transmission and computing times
- Greedy vs. probabilistic offloading
- Results
 - Equilibrium offloading strategy

- Multi-user computation offloading
 - Joint management of communication and computing resources
 - Multi-user interaction
- Game theoretical approach to resource management
 - Polynomial time decentralized algorithm(s)
 - Approximation ratio bound
- Significant performance gains
 - Compared to uncoordinated behavior
- Many interesting open questions
 - Node-edge-cloud continuum
 - More detailed models of computing

References

- S. Josilo, G. Dán, ``A Game Theoretic Analysis of Selfish Mobile Computation Offloading," in Proc. of IEEE Infocom, May 2017
- P. Zhao, G. Dán, ``Resilient Placement of Virtual Process Control Functions in Mobile Edge Clouds,'' in Proc. of IFIP/TC6 Networking, May 2017
- P. Zhao, G. Dán, "Time Constrained Service-aware Migration of Virtualized Services for Mobile Edge Computing," in Proc. of International Teletraffic Congress (ITC), Sep. 2018
- P. Zhao, G. Dán, ``A Benders Decomposition Approach for Resilient Placement of Virtual Process Control Functions in Mobile Edge Clouds,'' IEEE Trans. on Network and Service Management, vol. 15., no. 4., Dec. 2018, pp. 1460-1472,
- S. Josilo, G. Dán, "Decentralized Scheduling for Offloading of Periodic Tasks in Mobile Edge Computing," in Proc. of IFIP Networking, May. 2018
- S. Josilo, G. Dán, "Joint Allocation of Computing and Wireless Resources to Autonomous Devices in Mobile Edge Computing," in Proc. of ACM SIGCOMM Mecomm'18 Workshop, Aug. 2018
- S. Josilo, G. Dán, ``Selfish Decentralized Computation Offloading for Mobile Cloud Computing in Dense Wireless Networks," IEEE Trans. on Mobile Computing, vol. 18., no. 1., Jan. 2019, pp. 207-220
- S. Josilo, G. Dán, ``Decentralized Algorithm for Randomized Task Allocation in Fog Computing Systems,"IEEE/ACM Trans. on Networking, vol. 27., no. 1., Feb. 2019, pp. 85-97
- S. Josilo, G. Dán, ``Wireless and Computing Resource Allocation for Selfish Computation Offloading in Edge Computing," in Proc. of IEEE Infocom, May 2019
- P. Zhao, G. Dán, "Scheduling Parallel Migration of Virtualized Services under Time Constraints in Mobile Edge Clouds," in Proc. of International Teletraffic Congress (ITC), Aug. 2019
- S. Josilo, G. Dán, ``Joint Management of Wireless and Computing Resources for Computation Offloading in Mobile Edge Clouds,'' IEEE Trans. on Cloud Computing, accepted for publication

Decentralized Resource Management for Edge Computing


György Dán

KTH/EECS/NSE

SSF Modane

CERCES

securing critical energy infrastructures Joint work with Sladana Josilo and Peiyue Zhao

