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Abstract—Offloading computation to a mobile cloud is a
promising approach for enabling the use of computationally
intensive applications by mobile devices. In this paper we
consider autonomous devices that maximize their own per-
formance by choosing one of many wireless access points
for computation offloading. We develop a game theoretic
model of the problem, prove the existence of pure strategy
Nash equilibria, and provide a polynomial time algorithm
for computing an equilibrium. For the case when the cloud
computing resources scale with the number of mobile devices
we show that all improvement paths are finite. We provide
a bound on the price of anarchy of the game, thus our
algorithm serves as an approximation algorithm for the
global computation offloading cost minimization problem.
We use extensive simulations to provide insight into the
performance and the convergence time of the algorithms in
various scenarios. Our results show that the equilibrium cost
may be close to optimal, and the convergence time is almost
linear in the number of mobile devices.

I. INTRODUCTION

Computationally intensive applications, including aug-
mented reality, natural language processing, face, gesture
and object recognition, and various forms of user profiling
for recommendations [1], [2] are increasingly used on
mobile devices. Many of these applications consume a
significant amount of energy, which can be detrimental to
battery life, and together with potentially slow response
times due to the limited computational power of the mobile
handsets, it may limit user acceptance.

A promising approach to extend the battery lifetime of
mobile handsets and to serve the computational needs of
computationally intenstive applications is mobile cloud
computing [3], [4]. Mobile cloud computing allows to
offload the computations through a wireless access point
to a cloud infrastructure with significant computational
power. The computations can be performed in the cloud
and the results sent back to the mobile handset. Commercial
cloud infrastructures, such as Amazon EC2, may have
plentyful computational resources, but they may not be
able to provide sufficiently low response times for many
applications. It may thus be better to offload computations
to less resourceful mobile edge computing (MEC) infras-
tructures, which are considered an enabler of 5G mobile
networks, as they are located close to the network edge [5].

The proximity of MEC resources to the network edge
ensures low propagation times, but when many mobile
devices attempt to offload computations simultaneously,
the response times could be affected by the contention
between the mobile devices for MEC computing resources

The work was partly funded by SSF through the Modane project and
by the Swedish Research Council through project 621-2014-6.

and for wireless communication resources [6], [7]. The
problem is inherently difficult for various reasons. First,
the computational tasks of the mobile devices may have
different complexities and may need the transmission of
different amounts of data. Second, each device could aim at
minimizing a combination of its response time and energy
consumption for performing the computation. Third, the
number of offloading choices for each mobile device in-
creases with the number of access points. Thus, developing
scalable algorithms that coordinate the offloading decisions
of the mobile devices to ensure the efficient use of MEC
resources and to provide predictable performance to the
mobile devices is a challenging problem.

In this paper we address this problem by considering
the allocation of cloud and wireless resources among
mobile devices that can choose either to offload their
computation to a cloud through one of many access
points or to perform the computation locally. We make
three important contributions to solve the problem. First,
based on a game theoretical treatment of the problem, we
propose an efficient distributed algorithm for coordinating
the offloading decisions of the mobile devices, and prove
convergence of the algorithm to a pure strategy Nash
equilibrium when the computational capability assigned to
a mobile device by the cloud is a non-increasing function
of the number of mobile users that offload. Second, we
show that a simple distributed algorithm can be used for
computing equilibria when the cloud computing resources
scale directly proportional with the number of mobile users.
Finally, by establishing a bound on the price of anarchy of
the strategic game, we show that the proposed algorithms
have a bounded approximation ratio. We use extensive
simulations to illustrate the computational efficiency of the
algorithms and to evaluate their approximation ratio for
scenarios of practical interest.

The rest of the paper is organized as follows. We present
the system model in Section II. We present the algorithms
and prove their convergence in Sections III and IV. We
provide a bound on the approximation ratio in Section V
and present numerical results in Section VI. Section VII
discusses related work and Section VIII concludes the
paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a mobile cloud computing system that
serves a set N={1, 2, ..., N} of mobile users (MU). To
facilitate the analysis, we make the assumption that the
set of MUs changes slowly, e.g., in the order of seconds
or minutes, similar to other works [4], [8], [9], [10]. Each
MU has a computationally intensive task to perform, which
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Fig. 1. An example of a mobile cloud computing system

is characterized by the size Di of the input data (e.g., in
bytes), and by the number Li of CPU cycles required to
perform the computation. Each MU can decide whether to
perform the task locally or to offload the computation to a
cloud server through one of a set of access points (APs)
denoted by A={1, 2, ..., A}.

A. Communication model

If the MU decides to offload the computation to the cloud
server, it has to transmit Di amount of data pertaining
to its task to the cloud server through one of the APs.
Thus, together with local computing MU i can choose one
element of the set Di={0, 1, 2, ..., A}, where 0 corresponds
to local computing. We denote by di ∈Di the decision
of MU i, and refer to it as her strategy. We refer to the
collection d=(di)i∈N as a strategy profile, and we denote
by D=×i∈NDi the set of all feasible strategy profiles.

For a strategy profile d we denote by na(d) the number
of MUs that use AP a for computation offloading, and
by n(d)=

∑
a∈A na(d) the number of MUs that offload.

Similarily, for an AP a ∈ A we denote by Oa(d) = {i|di =
a} the set of MUs that offload using AP a, and we define
the set of offloaders as O(d) = ∪a∈AOa(d).

We denote by Ri,a the PHY rate of MU i on AP a,
which depends on the physical layer signal characteristics
and the corresponding channel gain. We denote by ωi,a(d)
the uplink rate that MU i receives when she offloads via
AP a. ωi,a(d) depends on the PHY rate Ri,a and on the
number na(d) of MUs that offload via AP a

ωi,a(d) =
Ri,a
na(d)

. (1)

This model can be used to model the bandwidth sharing
in TDMA and OFDMA based MAC protocols [11].

The uplink rate ωi,a(d) together with the input data size
Di determines the transmission time T c,offi,a (d) of MU i
for offloading via AP a,

T c,offi,a (d) =
Di

ωi,a(d)
. (2)

To model the energy consumption of the MUs, we
assume that MU i uses a constant transmit power of
Pi for sending the data, thus the energy consumption
of MU i for offloading the input data of size Di via AP a is

Eci,a(d) =
DiPi
ωi,a(d)

. (3)

B. Computation model

In what follows we introduce our model of the time and
energy consumption in the case of local computing and in
the case of computation offloading.

1) Local computing: In the case of local computing the
task has to be processed using local computing resources.
We denote by F 0

i the computational capability of MU i,
and hence the local computing time needed to perform
its computation task that requires Li CPU cycles can be
expressed as

T 0
i =

Li
F 0
i

. (4)

We consider that the energy consumption of local computing
is proportional to the computation time, thus denoting by
vi the consumed energy per CPU cycle, we obtain

E0
i = viLi. (5)

2) Cloud computing: In the case of cloud computing,
after the data are transmitted via an AP, processing
is done at the cloud server. We denote by F c the
computation capability of the cloud, and we consider that
the computation capability F ci (n(d)), assigned to MU i by
the cloud is a non-increasing function of the number n(d)
of MUs that offload. Given F ci (n(d)) we use a linear
model to compute the execution time of a task <Di, Li>
that is offladed by MU i,

T c,exei =
Li

F ci (n(d))
. (6)

Figure 1 shows an example of a mobile cloud computing
system in which three of five MUs offload their tasks using
one of three APs.

C. Cost Model

We model the cost of a MU as a linear combination
of the time it takes to finish the computation and the
corresponding energy consumption. We use the weights γTi
attributed to the time it takes to finish the computation and
γEi attributed to energy consumption, in order to model
the delay sensitivity of the application and the consumed
energy, respectively, 0 ≤ γEi , γTi ≤ 1.

Using these notation, for the case of local computing
the cost of MU i is determined by the local computing
time and the consumed energy per CPU cycle

C0
i = γTi T

0
i + γEi E

0
i = (

γTi
F 0
i

+ γEi vi)Li. (7)

For the case of offloading via AP a, the cost of MU i is
determined by the transmission time, the corresponding
transmit energy, and the computing time in the cloud

Cci,a(d) = γTi (T c,exei + T c,offi,a (d)) + γEi E
c
i,a(d)

= (γTi + γEi Pi)
Di

ωi,a(d)
+ γTi

Li
F ci (n(d))

.(8)

Similar to previous works [7], [12], [13], we do not model
the time needed to transmit the results of the computation
from the cloud server to the MU, as for typical applications
like face and speech recognition, the size of the result of
the computation is much smaller than Di.

To define the cost of MU i in strategy profile d, let us
introduce the indicator function I(di, a) for MU i as

I(di, a)=

{
1, if di = a
0, otherwise. (9)
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d = ImprovementPath(d)

1: while ∃i ∈ N s.t. ∃d′i, Ci(d′i, d−i) < Ci(di, d−i) do
2: di = d′i
3: end while
4: return d

Fig. 2. Pseudo code of the ImprovementPath algorithm.

We now express the cost of MU i in strategy profile d as

Ci(d) = C0
i I(di, 0) +

∑
a∈A

Cci,a(d)I(di, a). (10)

Finally, we define the total cost C(d) =
∑
i∈N Ci(d).

D. Computation Offloading Game

We consider that each MU aims at minimizing its cost
(10), i.e., it aims at finding a strategy

d∗i ∈ arg mindi∈Di
Ci(di, d−i), (11)

where we use d−i to denote the strategies of all MUs except
MU i. This problem formulation is not only reasonable
when MUs are autonomous, but as we show later, our
algorithms also serve as polynomial-time approximations
for solving the problem of minimizing the total cost C(d).

We thus consider that the MUs play a strategic game
Γ =<N , (Di)i, (Ci)i>, in which the players are the MUs.
We refer to the game as the multi access point computation
offloading game (MCOG), and we are interested in whether
the MUs can compute a strategy profile in which no MU
can further decrease her cost by changing her strategy, i.e.,
a pure Nash equilibrium of the game Γ.

Definition 1. A Nash equilibrium (NE) of the strategic
game <N , (Di)i, (Ci)i> is a strategy profile d∗ such that

Ci(d
∗
i , d
∗
−i) ≤ Ci(di, d∗−i), ∀di ∈ Di.

Given a strategy profile (di, d−i) we say that strategy
d′i is an improvement step for MU i if Ci(d′i, d−i) <
Ci(di, d−i). We call a sequence of improvement steps in
which one MU changes her strategy at a time, according
to the ImprovementPath Algorithm shown in Figure 2, an
improvement path. Furthermore, we say that a strategy d∗i
is a best reply to d−i if it solves (11), and we call an
improvement path in which all improvement steps are best
reply a best improvement path. Observe that in a NE all
MUs play their best replies to each others’ strategies.

III. EQUILIBRIA AND THE JPBR ALGORITHM

We start the analysis with the definition of the set of
congested APs and of the notion of the reluctance to offload.

Definition 2. For a strategy profile d we define the set
DO→O(d) of congested APs as the set of APs with at least
one MU for which changing to another AP is a better reply,

DO→O(d) ={a ∈ A|∃i ∈ Oa(d),∃b ∈ A \ {a},
(nb(d) + 1)/Ri,b<na(d)/Ri,a}.

Similarily, for a strategy profile d we define the set
DO→L(d) of APs with at least one MU for which local
computing is a best reply,

DO→L(d) = {a∈A|∃i ∈ Oa(d), Cci,a(d) > C0
i }

Definition 3. The reluctance to offload via AP a of MU i
in a strategy profile d is ρi(d) =

Cc
i,a(d)
C0

i
.

To facilitate the analysis, for a strategy profile d we rank
the MUs that play the same strategy in decreasing order of
their reluctance to offload, and we use the tuple (a, l) to
index the MU that in the strategy profile d occupies position
l in the ranking for AP a, i.e., ρ(a,1)(d) ≥ ρ(a,2)(d) ≥
. . . ≥ ρ(a,na(d))(d). Note that for AP a it is MU (a, 1) that
can gain most by changing her strategy to local computing
among all MUs i ∈ Oa(d).

A. The ImproveAP Algorithm

Using these definitions, let us start with investigating
whether the simple ImprovementPath algorithm can be used
for computing a NE. To do so, we analyze the finiteness
of improvement paths, and as a first step, we show that
improvement paths may be infinite in the MCOG.

Example 1. Consider a MCOG with N = {a, b, c, d, e}
and A = {1, 2, 3} as illustrated in Figure 1. Figure 3
shows a cyclic improvement path starting from the strategy
profile (1, 2, 1, 0, 0), in which MUs a and c are connected
to AP 1, MU b is connected to AP 2 and MUs d and e
perform local computation.

di da db dc dd de

d(0) 1 2 1 0 0
d(1) 1 2 2 0 0
d(2) 1 0 2 0 0
d(3) 1 0 2 2 0
d(4) 1 0 2 2 2
d(5) 1 0 1 2 2
d(6) 1 3 1 2 2
d(7) 1 3 1 2 0
d(8) 1 3 1 0 0
d(9) 1 2 1 0 0
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2
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(γT

b +γE
b Pb)Db+3γT

b
Lb
Fc>C

0
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d

Ld
Fc (3)
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3
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(γT
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e
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Fc (4)
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2
3Rc,2 (5)

C0
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1
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(γT
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b

Lb
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2
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(γT
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e
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0
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1
Rd,2

(γT
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d Pd)Dd+4γT
d

Ld
Fc>C

0
d (8)

Rb,2>Rb,3 (9)

Fig. 3. A cyclic improvement path in a computation offloading game
with 3 APs and 5 MUs. Rows correspond to strategy profiles, columns to
MUs. An arrow between adjacent rows indicates the MU that performs
the improvement step. The cycle consists of 9 improvement steps and
the inequalities on the right show the condition under which the change
of strategy is an improvement step.

Starting from the initial strategy profile (1, 2, 1, 0, 0), MU
c revises its strategy to AP 2, which is an improvement
step if Rc,2 > Rc,1, as shown in inequality (1) in
the figure. Observe that after 9 improvement steps the
MUs reach the initial strategy profile. For each step the
inequality on the right provides the condition for being an
improvement. It follows from inequalities (1), (5) and (9)
that Rc,2 > Rc,1, Rc,1 > 2

3Rc,2 and Rb,2 > Rb,3, respec-
tively. Since, 1

Rb,3
(γTb + γEb Pb)Db + 5γTb

Lb

F c >
1

Rb,3
(γTb +

γEb Pb)Db + 3γTb
Lb

F c holds, from inequalities (2) and (6)
it follows that Rb,3 > 1

2Rb,2. Combining inequalities
(3) and (8) we have that γTd

Ld

F c >
1

Rd,2
(γTd + γEd Pd)Dd.

Similarly, it follows from inequalities (4) and (7) that
γTe

Le

F c > 1
Re,2

(γTe + γEe Pe)De. Given these constraints,
an instance of the example can be formulated easily, even
in the case of homogeneous PHY rates, i.e., Ri,a = Ri′,a
for every i, i′ ∈ N , i 6= i′. An important consequence of
the cycle in the improvement path is that the MCOG does
not allow a generalized ordinal potential function, and the
ImprovementPath algorithm cannot be used for computing
NE. Although improvement paths may cycle, as we next
show, improvement paths are finite if we only allow the
MUs to change between APs but not to start or to stop
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d = ImproveAP(d)

1: while DO→O(d) 6= ∅ do

2: (i′, a′)← arg max
{i∈O(d),∃a∈A,Ci(a,d−i)<Ci(d)}

Ci(d)

Ci(a, d−i)
3: Let d = (a′, d−i′)
4: end while
5: return d

Fig. 4. Pseudo code of the ImproveAP algorithm.

offloading. We refer to this algorithm as the ImproveAP
algorithm, and show its pseudo code in Figure 4. Our first
result shows that all improvement paths generated by the
ImproveAP algorithm are finite.

Lemma 1. The ImproveAP algorithm terminates after a
finite number of improvement steps.

Proof. We prove the lemma by showing that the function

Φ(d) =

A∑
a′=1

na′ (d)∑
n=1

log(n)−
A∑

a′=1

N∑
i′=1

log(Ri′,a′)I(di′ , a
′).

decreases strictly at every improvement step generated by
the ImproveAP algorithm.

Let us consider an improvement step made by MU
i in which she changes from offloading via AP b to
offloading via AP a. Observe that after this improvement
step the number n(d) of MUs that offload remains un-
changed. Hence, according to (8) and (10), the condition
Ci(a, d−i)<Ci(b, d−i) implies na(a, d−i)/nb(b, d−i)<
Ri,a/Ri,b. Since na(a, d−i), nb(b, d−i), Ri,a,Ri,b>0 this
is equivalent to

log(na(a, d−i))−log(nb(b, d−i)) < log(Ri,a)−log(Ri,b).
(12)

Let us rewrite Φ by separating the terms for APs a and b,

Φ(a, d−i) =

na(a,d−i)∑
n=1

log(n) +

nb(a,d−i)∑
n=1

log(n) +
∑
a′ 6=a,b

na′ (a,d−i)∑
n=1

log(n)

− log(Ri,a)−
A∑

a′=1

∑
i′ 6=i

log(Ri′,a′)I(di′ , a
′).

Since na(a, d−i) = na(b, d−i) + 1 and nb(b, d−i) =
nb(a, d−i) + 1, we have that

Φ(a, d−i)− Φ(b, d−i) = log(na(a, d−i))− log(nb(b, d−i))

− (log(Ri,a)− log(Ri,b)).

It follows from (12) that Φ(a, d−i)−Φ(b, d−i) < 0. Since
the number of strategy profiles is finite, Φ(d) can not
decrease infinitely and the ImproveAP algorithm terminates
after a finite number of improvement steps.

Thus, if MUs can only change between APs, they
terminate after a finite number of improvement steps.

B. The JPBR Algorithm

In what follows we use the ImproveAP algorithm as
a building block for proving that a NE always exists
in the MCOG even if it cannot be computed using the
ImprovementPath algorithm.

Theorem 1. The MCOG possesses a pure strategy Nash
equilibrium.

Proof. We use induction in the number N of MUs in order
to prove the theorem. We denote by N (t) = t the number
of MUs that are involved in the game in induction step t.

For N (1)=1 the only participating MU plays her best
reply d∗i (1). Since there are no other MUs, d∗(1) is a
NE. Observe that if d∗i (1)=0, MU i would never have
an incentive to deviate from this decision, because the
number of MUs that offload will not decrease as more
MUs are added. Otherwise, if MU i decides to offload,
she would play her best reply which is given by d∗i (1)=
arg maxa∈ARi,a.

Assume now that for t−1>0 there is a NE d∗(t− 1).
Upon induction step t one MU enters the game; we refer
to this MU as MU N (t). Let MU N (t) play her best reply
d∗
N(t)(t) with respect to the NE strategy profile of the

MUs that already participated in induction step t−1, i.e.,
with respect to d−N(t)(t)=d∗(t− 1). After that, MUs can
perform best improvement steps one at a time starting from
the strategy profile d(t)=(d∗

N(t)(t),d−N(t)(t)), following
the algorithm shown in Figure 5. We refer to this as the
update phase. In order to prove that there is a NE in
induction step t, in the following we show that the MUs
will perform a finite number of best improvement steps in
the update phase.

Observe that if d∗
N(t)(t) = 0, then na(d(t)) = na(d∗(t−

1)) for every a ∈ A and thus d(t) is a NE. If d∗
N(t)(t) =

a ∈ A, but none of the MUs want to deviate from their
strategy in d∗(t− 1) then d(t) is a NE. Otherwise, we can
have one or both of the following cases: (i) for some MUs
i ∈ Oa(d(t)) offloading using AP b ∈ A \ {a} becomes a
best reply, (ii) for some MUs i ∈ O(d(t)) local computing
becomes a best reply.

Let us first consider case (i) and let MUs execute the
ImproveAP algorithm. Recall that by Lemma 1 the MUs
will reach a strategy profile in which there is no MU that
can further decrease her cost by changing her strategy
between APs. In the resulting strategy profile the number
of MUs that offload will be n(d∗(t− 1)) + 1. Furthermore,
there will be one AP (denoted by a′) for which the number
of offloaders is na′(d∗(t−1)) + 1, while for the other APs
a 6= a′ it is na(d∗(t − 1)). As a consequence, there can
be no MU that wants to start offloading in the resulting
strategy profile if she did not want to do so in d∗(t− 1).

If in this strategy profile no MU wants to stop offloading
either, i.e., |DO→L(d(t))| = 0, then we reached a NE.
Otherwise |DO→L(d(t))| > 0, which is the same as
case (ii) above. Note that if case (i) did not happen, i.e.
|DO→Od(t)| = 0, then AP a′ is the same AP a that
was chosen by MU N (t) when it was added. Now if
a′ ∈ DO→L(d(t)), let MU (a′, 1) perform an improvement
step and let d′(t) be the resulting strategy profile. Since
MU (a′, 1) changed her strategy from AP a′ to local
computation, na(d′(t)) = na(d∗(t − 1)) holds for every
AP a ∈ A and d′(t) is a NE.

Otherwise, if a′/∈DO→L and |DO→L|>0, we have that
there is MU i that wants to change her strategy from
offloading through AP b∈A\{a′} to local computing. Note
that the only reason why MU i would want to change to
local computing is that the number of MUs that offload was
incremented by one, i.e., n(d(t))=n(d∗(t−1))+1. Among
all MUs that would like to change to local computing, let
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us allow the MU i with highest reluctance to perform the
improvement step (note that this is MU (b, 1), b 6=a′). We
denote the resulting strategy profile by d′(t). Due to this
improvement step nb(d′(t))=nb(d∗(t− 1))−1, and thus
some MUs that perform local computation may be able to
decrease their cost by connecting to AP b. If there is no MU
i∈N\O(d′(t)) that would like to start offloading, then there
is no more MU that would like to stop offloading either
because n(d′(t))=n(d∗(t−1)). Otherwise, among all MUs
i ∈ N \ O(d′(t)) that would like to start offloading, let
MU i′ with lowest reluctance to offload, i.e., ρi′(b, d′−i′(t)),
connect to AP b. We now repeat these steps starting from
Line 8 until no more MUs want to stop offloading. Note
that when one MU is replaced by another MU, the number
of MUs that offload through any of the APs does not change.
Therefore, offloading cost of the MU that starts to offload
will not increase in the following update steps and she will
not want to stop to offload. Since the MU that starts to
offload will not have an incentive to stop to offload and
the number of MUs is finite, the sequence of stopping to
offload and starting to offload is finite too.

Let b be the AP that the last MU that stopped offloading
was connected to. If the last MU that stopped offloading
was replaced by a MU that did not offload before, then
we reached a NE. Otherwise some MUs that offload via
AP a ∈ A \ {b} may want to connect to AP b, and we let
them execute the ImproveAP algorithm, which by Lemma 1
terminates in a finite number of improvement steps. Now,
no MU wants to stop offloading, and if there is no MU
that wants to start offloading either then we reached a NE.
Otherwise if there is a MU that wants to start to offload,
we repeat the steps starting from Line 8. Let us recall that
the MU that starts to offload would not want to stop to
offload and as a consequence the size of the set DO→L will
decrease every time when a MU stops to offload. Therefore,
after a finite number of steps, the MUs will reach either an
equilibrium in which the number of offloaders is the same
as in the strategy profile d∗(t − 1) or an equilibrium in
which the number of offloaders is incremented by 1, which
proves the inductive step.

Consider now that we add one MU at a time and for
every new MU we compute a NE following the proof of
Theorem 1. We refer to the resulting algorithm as the Join
and Play Best Replies (JPBR) algorithm. In what follows
we provide a bound on the complexity of this algorithm.

Proposition 1. When MU N (t) enters the game in an
equilibrium d∗(t − 1), a new Nash equilibrium can be
computed in O((A+ 2)N (t) − 2A) time.

Proof. In the worst case scenario |O(d∗(t−1))| = N (t)−2,
d∗
N(t)(t) = a ∈ A and case (ii) happens such that in the

next N (t) − 2 update steps all MUs i ∈ O(d∗(t− 1)), i.e.,
N (t) − 2 MUs change between APs before they reach the
strategy profile in which there is no MU that can decrease
her offloading cost by choosing another AP. Furthermore,
in the worst case scenario, this is followed by a sequence
of update steps in which N (t) − 2 MUs stop to offload
and N (t) − 3 MUs start to offload and between every stop
to offload and start to offload update step, MUs change
between the APs. When a MU stops to offload, the sequence

Update phase of JPBR algorithm
1: /* Corresponds to case (i) */
2: Let d′(t) = ImproveAP(d(t))
3: /* Corresponds to case (ii) */
4: if a′∈DO→L(d′(t)), na′(d′(t))=na′(d∗(t−1))+1 then
5: Let i′ ← (a′, 1)
6: Let d′(t) = (0, d′−i′(t))/* Best reply by MU i′ */
7: else
8: while DO→L(d′(t)) 6= ∅ do
9: b← arg maxa∈DO→L

ρ(a,1)(d′(t))
10: /* AP with MU with highest reluctance to offload */
11: Let i′ ← (b, 1)
12: Let d′(t) = (0, d′−i′(t))
13: /* Best reply by MU (b, 1) */
14: if ∃i ∈ N \O(d′(t)) s.t. C0

i > Ci(b, d
′
−i(t)) then

15: i′ ← arg min
{i∈N\O(d′(t))|C0

i>Ci(b,d′−i(t))}
ρi(b, d

′
−i(t))

16: /*MU with lowest reluctance to offload*/
17: Let d′(t)=(b, d′−i′(t)) /* Best reply by MU i′ */
18: else
19: Let d′(t) = ImproveAP(d′(t))
20: end if
21: end while
22: end if

Fig. 5. Pseudo code of the update phase of the JPBR algorithm.

in which MUs change between APs consists of at most
A−1 update steps. Therefore, a NE is reached after at most
(N (t)− 2) + (N (t)− 2) + (N (t)− 3) + (N (t)− 2)(A− 1)
update steps.

Since we add one MU at a time, we can formulate the
following result.

Corollary 1. The JPBR algorithm terminates in an equi-
librium allocation in O((A + 2)N2/2−(A − 1)N) time.

So far we have shown that starting from a NE and adding
a new MU, a new NE can be computed. We now show a
similar result for the case when a MU leaves.

Theorem 2. Consider the MCOG and assume that the
system is in a NE. If a MU leaves the game and the
remaining MUs play their best replies one at a time, they
converge to a NE after a finite number of updates.

Proof. Let us consider that MU i leaves the game when
the system is in a NE. If the strategy of MU i was to
perform local computation, none of the remaining MUs
would have an incentive to change their strategies. If the
strategy of MU i was to offload using one of the APs, we
can consider MU i as a MU that after changing its strategy
from offloading to local computing would have no incentive
to offload again. Recall from the proof of Theorem 1 that
when a MU changes her strategy from offloading to local
computing the game converges to a NE after a finite number
of updates. This proves the theorem.

Observe that Theorem 1 and Theorem 2 allow for the
efficient computation of Nash equilibria even if the number
of MUs changes, if the time between MU arrivals and
departures is sufficient to compute a new equilibrium. Fur-
thermore, the computation can be done in a decentralized
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manner, by letting MUs perform best improvements one at a
time. The advantage of such a decentralized implementation
compared to a centralized solution could be that MUs do
not have to reveal their parameters.

IV. THE CASE OF AN ELASTIC CLOUD

The JPBR algorithm can be used for computing an
equilibrium for MCOG with polynomial complexity. In
what follows we show that a much simpler algorithm
can be used for computing an equilibrium if the cloud
computation capability assigned to MU i is independent
of the other players’ strategies, F ci (n(d)) = F c, and thus
of the number of MUs that offload. This model can be
relevant for large cloud computing infrastructures, in which
the cloud computing resources scale with the number of
MUs, and we refer to this model as the elastic cloud model.
In the case of the elastic cloud model the cost function in
the case of offloading can be expressed as

Cci,a(d) = (γTi + γEi Pi)Di
na(d)

Ri,a
+ γTi

Li
F c

. (13)

Before we formulate the theorem, let us recall the
definition of a generalized ordinal potential from [14].

Definition 4. A function Φ : ×Di → R is a gener-
alized ordinal potential function for the strategic game
< N , (Di)i, (Ci)i > if for an arbitrary strategy profile
(di, d−i) and for any corresponding improvement step d′i
it holds that

Ci(d
′
i, d−i)−Ci(di, d−i) < 0⇒

Φ(d′i, d−i)− Φ(di, d−i) < 0.

Theorem 3. The MCOG with elastic cloud admits the
generalized ordinal potential function

Φ(d) =

A∑
a′=1

na′ (d)∑
n=1

log(n)−
A∑

a′=1

N∑
i′=1

log(Mi′Ri′,a′)I(di′ , a
′),

(14)
and hence it possesses a pure strategy Nash equilibrium.

Proof. To prove that Φ(d) is a generalized ordinal potential
function, we first show that Ci(a, d−i) < Ci(0, d−i)
implies Φ(a, d−i) < Φ(0, d−i).

According to (7), (10) and (13), the condition
Ci(a, d−i) < Ci(0, d−i) implies that

(γTi + γEi Pi)Di
na(a, d−i)

Ri,a
+ γTi

Li
F c

< (
γTi
F 0
i

+ γEi vi)Li.

After algebraic manipulations we obtain

na(a, d−i)

Ri,a
< Mi ,

γEi vi + γTi ( 1
F 0

i
− 1

F c )

γTi + γEi Pi
· Li
Di
. (15)

Since na(a, d−i) > 0 and MiRi,a > 0, (15) implies that

log(na(a, d−i)) < log(MiRi,a). (16)

For the strategy profile (a, d−i) it holds that

Φ(a, d−i) =

na(a,d−i)∑
n=1

log(n) +
∑
a′ 6=a

na′ (a,d−i)∑
n=1

log(n)

− log(MiRi,a)−
A∑

a′=1

∑
i′ 6=i

log(Mi′Ri′,a′)I(di′ , a
′),

and for the strategy profile (0, d−i)

Φ(0, d−i) =

na(0,d−i)∑
n=1

log(n) +
∑
a′ 6=a

na′ (0,d−i)∑
n=1

log(n)

−
A∑

a′=1

∑
i′ 6=i

log(Mi′Ri′,a′)I(di′ , a
′).

Since na(a, d−i) = na(0, d−i) + 1, we obtain Φ(a, d−i)−
Φ(0, d−i) = log(na(a, d−i)) − log(MiRi,a). It follows
from (16) that Φ(a, d−i)−Φ(0, d−i) < 0. Similarly, we can
show that Ci(0, d−i) < Ci(a, d−i) implies Φ(0, d−i) <
Φ(a, d−i).

Second, we show that Ci(a, di) < Ci(b, di) implies
Φ(a, di) < Φ(b, di). According to (10) and (13), the
condition Ci(a, di) < Ci(b, di) implies that

(γTi + γEi Pi)Di
na(a, d−i)

Ri,a
< (γTi + γEi Pi)Di

nb(b, d−i)

Ri,b

which is equivalent to

na(a, d−i)/nb(b, d−i) < Ri,a/Ri,b. (17)

Since na(a, d−i), nb(b, d−i), Ri,a, Ri,b>0 (17) implies

log(na(a, d−i))−log(nb(b, d−i)) < log(Ri,a)−log(Ri,b).
(18)

Let us rewrite Φ by separating the terms for APs a and b,

Φ(a, d−i) =

na(a,d−i)∑
n=1

log(n) +

nb(a,d−i)∑
n=1

log(n) +
∑
a′ 6=a,b

na′ (a,d−i)∑
n=1

log(n)

− log(MiRi,a)−
A∑

a′=1

∑
i′ 6=i

log(Mi′Ri′,a′)I(di′ , a
′).

Since na(a, d−i) = na(b, d−i) + 1 and nb(b, d−i) =
nb(a, d−i) + 1, we have that Φ(a, d−i) − Φ(b, d−i) =
log(na(a, d−i))−log(nb(b, d−i))−(log(Ri,a)−log(Ri,b)).
It follows from (18) that Φ(a, d−i)−Φ(b, d−i) < 0, which
proves the theorem.

It is well known that in a finite strategic game that admits
a generalized ordinal potential all improvement paths are
finite [14]. Therefore, the existence of a generalized ordinal
potential function allows us to use the ImprovementPath
Algorithm (c.f., Figure 2) for computing a NE.

Corollary 2. The ImprovementPath algorithm terminates
in a NE after a finite number of improvement steps for the
MCOG with elastic cloud.

V. PRICE OF ANARCHY

We have so far shown that NE exists and provided
low complexity algorithms for computing an NE. We
now address the important question how far the system
performance would be from optimal in a NE. To quantify
the difference from the optimal performance we use the
price of anarchy (PoA), defined as the ratio of the worst
case NE cost and the minimal cost

PoA =
max

d∗

∑
i∈N Ci(d∗)

min
d∈D

∑
i∈N Ci(d)

. (19)

In what follows we give an upper bound on the PoA.
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Theorem 4. The price of anarchy for the computation
offloading game is upper bounded by∑

i∈N C
0
i∑

i∈N min{C0
i , C̄

c
i,1, ...,

¯Cci,A}
.

Proof. First we show that if there is a NE in which all
MUs perform local computation then it is the worst case
NE. To show this let d∗ be an arbitrary NE. Observe that
Ci(d

∗
i , d
∗
−i)≤C0

i holds for every player i∈N . Otherwise,
if ∃i∈N such that Ci(d∗i , d

∗
−i)>C

0
i , player i would have

an incentive to deviate from decision d∗i , which contradicts
our initial assumption that d∗ is a NE. Thus in any NE∑
i∈N Ci(d

∗
i , d
∗
−i)≤

∑
i∈N C

0
i , and if all MUs performing

local computation is a NE then it is the worst case NE.
Now we derive a lower bound for the optimal solution

of the computation offloading game. Let us consider an
arbitrary decision profile (di, d−i) ∈ D. If di = 0, then
Ci(di, d−i) = C0

i . Otherwise, if di = a for some a ∈ A,
we have that in the best case di′ = 0 for every i′ ∈ N \{i},
and thus n(d) = 1. Therefore, ωi,a(di, d−i) ≤ Ri,a and
F ci (n(di, d−i)) ≤ F c, which implies that

Cci,a(di, d−i)=(γTi +γEi Pi)
Di

ωi,a(di, d−i)
+γTi

Li
F ci (n(di, d−i))

≥ (γTi + γEi Pi)
Di

Ri,a
+ γTi

Li
F c

= ¯Cci,a.

Hence, we have Ci(di, d−i) ≥ min{C0
i , C̄

c
i,1, ...,

¯Cci,A}
and

∑
i∈N Ci(di, d−i) ≥

∑
i∈N min{C0

i , C̄
c
i,1, ...,

¯Cci,A}.
Using these we can establish the following bound

PoA=
max

d∗

∑
i∈NCi(d∗)

min
d∈D

∑
i∈NCi(d)

≤
∑
i∈NC

0
i∑

i∈Nmin{C0
i ,C̄

c
i,1,...,

¯Cci,A}
,

which proves the theorem.

VI. NUMERICAL RESULTS

We use extensive simulations to evaluate the cost
performance and the computational time of the JPBR
algorithm. We consider that the APs and MUs are placed
over a 1km × 1km region. The APs are located at grid
points in the region, while the MUs are placed uniformly
at random. We consider that the channel gain of MU i to
AP a is proportional to d−αi,a , where di,a is the distance
between MU i and AP a, and α is the path loss exponent,
which we set to 4 according to the path loss model in
urban and subrurban areas [15]. The channel bandwidth
Ba of every AP a was set to µ = 5 MHz, while the
data transmit power Pi of every MU i was set to to 0.4W
according to [16]. The computational capability F 0

i of MU
i was drawn from a continuous uniform distribution on
[0.5, 1] Gcycles, while the computation capability of the
cloud F c was set to 100 Gcycles [17]. Unless otherwise
noted, the input data size Di and the number Li of
CPU cycles required to perform the computation are
uniformly distributed on [0.42, 2] Mb and [0.1, 0.8] Gcycles,
respectively. The consumed energy per CPU cycle vi was
set to 10−11(F 0

i )2 according to measurements reported
in [4], [18]. The weights attributed to energy consumption

γEi and the response time γTi were drawn from a continuous
uniform distribution on [0, 1].

In order to evaluate the cost performance of the equilib-
rium strategy profile d∗ computed by the JPBR algorithm,
we computed the optimal strategy profile d̄ that minimizes
the total cost, i.e., d̄ = arg mind

∑
i∈N Ci(d). Furthermore,

as a baseline for comparison we use the system cost that
can be achieved if all MUs execute their computation tasks
locally, which coincides with the bound on the PoA.

A. Optimal vs. Equilibrium Cost

Figure 6 shows the cost ratio C(d∗)/C(d̄) vs. the
number of MUs. The results are shown for the case of
the elastic cloud as well as for the case when the cloud
computational capability assigned to a MU that offloads is
a reciprocal function of the number of MUs that offload, i.e.
F ci (d) = F c

an(d) . We refer to this latter case as a non-elastic
cloud and to the coefficient a as the cloud provisioning
coefficient. A coefficient of a = 1 corresponds to a cloud
with fixed amount of resources, a < 1 to resources that
scale slower than the demand, while a > 1 corresponds to
a cloud with backup resources that scale with the demand.

To make the computation of the optimal strategy profile
d̄ feasible, unless otherwise noted, we considered a scenario
with A = 3 APs and we show the cost ratio C(d∗)/C(d̄)
as a function of the number of MUs. We consider the non-
elastic cloud model that does not implement redundancy
mechanisms for three values of the cloud provisioning
coefficient (a = 0.5, 1 and 2).

The results in Fig. 6 show that the performance of JPBR
is close to optimal (cost ratio is close to 1) in all cases,
and the cost ratio is fairly insenstive to the number of
MUs, which is due to the number of MUs that choose
to offload, as we will see later. The results for the bound
on the PoA additionally confirm that the JPBR algorithm
performs good in terms of the cost ratio. It is interesting
to note that the gap between the PoA bound and the actual
cost ratio decreases with increasing number of MUs. This
is due to the benefit of offloading decreases as the number
of MUs increases, and as a result the optimal solution and
the JPBR algorithm will converge to a strategy profile in
which most of the MUs perform local computation. We can
also observe that the upper bound on the PoA decreases as
a increases, and thus the problem becomes computationally
easier for larger values of a.

In order to gain insight in the structure of the equilibrium
strategy profiles d∗, it is interesting to compare the number
of MUs that offload in equilibrium d∗ and the number of
MUs that offload in the optimal solution d̄. We define the
offloading difference ratio (n(d∗)−n(d̄))/N , and show it in
Figure 7 for the same set of parameters as in Figure 6. The
results show that the offloading difference ratio increases
with the number of MUs, which explains the increased cost
ratio observed in Figure 6, as more offloaders reduce the
achievable rate, which in turn leads to increased costs. The
observation that the number of MUs that offload is higher in
equilibrium than in the optimal solution is consistent with
the theory of the tragedy of the commons in the economic
literature [19]. The results also show that the offloading
difference ratio is slightly lower in the case of the elastic
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Fig. 6. The cost ratio and the upper bound on the PoA for the elastic
and non-elastic cloud (a = 0.5, 1, 2), A = 3 APs. The results shown are
the averages of 600 simulations, together with 95% confidence intervals.
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Fig. 7. Offloading difference ratio vs. number of MUs N for the elastic
and non-elastic cloud (a = 0.5, 1, 2), A = 3 APs. The results shown are
the averages of 600 simulations, together with 95% confidence intervals.
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cloud (a = 1), uniform, exponential and Weibull distributions of the
input data sizes, A = 3 APs, N = 12 MUs. The results shown are the
averages of 100 simulations, together with 95% confidence intervals.
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Fig. 9. Number of iterations vs. number of MUs N for the elastic and
non-elastic cloud (a = 1), A =10 and 100 APs. The results shown are
the averages of 100 simulations, together with 95% confidence intervals.

cloud, which is due that a higher proportion of MUs offload
in the optimal solution for the elastic cloud.

B. Impact of the input data size

In order to analyse the impact of the input data size we
considered three distributions with the same mean for the
input data size, uniform (lower limit fixed to 0.42 and upper
limit scales with the mean), exponential, and Weibull (shape
parameter 0.5), and considered that all MUs have to offload
a task that requires a computation of Li= 0.45 Gcycles.
Figure 8 shows the cost ratio C(d∗)/C(d̄) and the upper
bound on the PoA as a function of the mean input data
size. The results are shown for the non-elastic cloud (a=1),
N = 12 MUs and A= 3 APs, and show that while the
cost ratio does not change, the upper bound on the PoA
decreases with the mean input data size and for large
data sizes it reaches the cost ratio. This is due to the
transmission time increases with the input data size and if
the MUs have to offload a large amount of data, it becomes
optimal for most of them to perform local computation,
which coincides with the worst case equilibrium. Note that
the upper bound on the PoA decreases slower in the case
of the Weibull distribution because for the same mean it
has a median that is smaller than that of the uniform and
exponential distributions.

C. Computational Complexity

In order to evaluate the computational complexity of
the JPBR algorithm, we consider the number of iterations,
the total number of update steps over all induction steps
plus the number of induction steps, to compute the strategy
profile d∗ for the elastic cloud and for the non-elastic
cloud (a = 1), A=10 and A=100 APs. Figure 9 shows

the number of iterations as a function of the number of
MUs for two orderings of adding MUs: in the first case
the MUs are added in random order, while in the second
case the MUs are added in increasing order of their ratio
Di

C0
i Li

. We refer to the latter as the least reluctance first
(LRF ) order. Intuitively, one would expect that the LRF
order results in a smaller number of iterations, since the
MUs with lower Di

C0
i Li

ratio have lower computational
capability to execute computationally more demanding
tasks with smaller offloading data size than the MUs with
higher Di

C0
i Li

. However, the simulation results show that
the number of iterations is fairly insensitive to the order
of adding the MUs and mostly depends on the number of
MUs. This insensitivity allows for a very low-overhead
decentralized solution, as the coordinator need not care
about the order in which the MUs are added for computing
the equilibrium allocation. The results also show that the
number of iterations scales approximately linearly with the
number of MUs, and indicates that the worst case scenario
described in Corollary1 is unlikely to happen. Thus JPBR
is an efficient decentralized algorithm for coordinating
computation offloading among autonomous MUs.

VII. RELATED WORK

Most previous works considered the problem of energy
efficient computation offloading for a single mobile user [3],
[4], [6], [20], [21], and thus they do not consider the
allocation of resources between mobile users.

Some recent works considered the problem of energy ef-
ficient computation offloading for multiple mobile users [8],
[22], [9]. [8] studied the partitioning problem for mobile
data stream applications, and proposed a heuristic for solv-
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ing the optimization problem that maximizes throughput.
[22] considered a two-tiered cloud infrastructure under
user mobility in a location-time workflow framework, and
proposed a heuristic for minimizing the users’ cost. [9]
provided an iterative algorithm for solving the optimization
problem that minimizes the mobile users’ energy consump-
tion by joint allocation of wireless and cloud resources.

A few recent works provided a game theoretic treatment
of the computation offloading problem [23], [24], [7],
[25], [26], [27]. [23] considered a two-stage problem,
where first each mobile user decides which parts of a
task to offload so as to minimize its energy consumption
and to meet its service response deadline, and then the
cloud allocates computational resources to the offloaded
tasks. [24] considered a three-tier cloud architecture and
stochastic task arrivals, and provided a distributed algorithm
for the computation of an equilibrium. [26] considered
tasks that arrive at the same time, a single wireless link, and
elastic cloud, and showed the existence of equilibria when
all mobile users have the same delay budget. Our work
differs from [23] in that we consider that the allocation of
cloud resources is known to the mobile users, from [24]
in that we consider contention in the wireless access, and
from [26] in that we consider multiple wireless links and
a non-elastic cloud.

Most related to our work are [7], [25], [27]. [7] consid-
ered a single wireless link and an elastic cloud, assumed
upload rates to be determined by the Shannon capacity
of an interference channel, and showed that the game is
a potential game. [25] extended the model to multiple
wireless links and showed that the game is still a potential
game under the assumption that a mobile user experiences
the same channel gain for all links. Unlike these works,
we consider time-fair bandwidth sharing and the case of a
non-elastic cloud. [27] considered multiple wireless links,
fair bandwidth sharing and a non-elastic cloud, and claims
the game to have an exact potential.

The importance of our contribution from a game theo-
retical perspective is that the computation offloading game
with non-elastic cloud is a player-specific congestion game
for which the existence of equilibria is not known in
general [28], thus the JPBR algorithm and our proof of
equilibrium existence advance the state of the art in the
study of equilibria in general congestion games.

VIII. CONCLUSION

We have provided a game theoretic analysis of selfish
mobile computation offloading. We proposed a polynomial
complexity algorithm for computing equilibrium allocations
of the wireless and cloud resources, and provided a bound
on the price of anarchy, which serves as an approximation
ratio bound for the optimization problem. Our numerical
results show that the proposed algorithms and the obtained
equilibria provide good system performance irrespective of
the number of mobile users and access points, for various
distributions of the input data size and task complexity, and
confirm the low complexity of the proposed algorithms.
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