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Abstract—Motivated by various surveillance applications,
we consider wireless devices that periodically generate com-
putationally intensive tasks. The devices aim at maximizing
their performance by choosing when to perform the compu-
tations and whether or not to offload their computations to a
cloud resource via one of multiple wireless access points. We
propose a game theoretic model of the problem, give insight
into the structure of equilibrium allocations and provide an
efficient algorithm for computing pure strategy Nash equilib-
ria. Extensive simulation results show that the performance
in equilibrium is significantly better than in a system without
coordination of the timing of the tasks’ execution, and the
proposed algorithm has an average computational complexity
that is linear in the number of devices.

I . I N T R O D U C T I O N

Mobile edge computing (MEC) is considered to be-
come an enabler of a variety of Internet of Things (IoT)
applications that are based on a pervasive deployment
of wireless sensors. Examples range from water pipeline
surveillance [1], through pursuit problems and discrete
manufacturing [2] to body area networks [3]. Many of
these applications involve the periodic collection of sensory
data, which need to be processed timely to enable control
decisions. Processing often requires some form of data
analytics, e.g., visual analysis, which is computationally
demanding.

The key advantage of MEC compared to centralized
cloud infrastructures is that computational resources are
located close to the network edge [4]. Thus, even though
MEC infrastructures may be less resource-rich than cen-
tralized clouds, such as Microsoft Azure or AWS, due to
their proximity to the sensors they may be able to provide
response times that make them suitable for computation
offloading for real-time applications.

The proximity of MEC resources makes low response
times for individual sensors possible, but when multiple
wireless sensors attempt to offload to the MEC simultane-
ously, the response times might increase due to contention
for the communication and the computational resources [5],
[6], [7]. Coordination is thus essential for maintaining low
response times in the case of MEC computation offloading.

Coordination for offloading periodic tasks involves de-
ciding whether or not to offload the computations, deciding
which of the available wireless communication channels
to use for offloading, and in the case of periodic tasks,
it involves deciding when to collect sensory data and
when to offload the computation. In addition coordination
should respect that sensors may be managed by different
entities, with individual interests. The resulting coordination
problem not only has a huge solution space with a
combinatorial structure, but it also requires consideration of

the potentially diverse requirements of the sensors in terms
of response time and energy consumption for performing
the computation. Efficient coordination of computation
offloading for wireless sensors with periodic tasks is thus
a complex problem.

In this paper we address this problem by considering the
allocation of cloud and wireless resources among wireless
devices that generate tasks periodically. The devices can
choose the time slot in which to perform their periodic
task, and can decide whether to offload their computation
to a cloud through one of many access points or to
perform the computation locally. We provide a game
theoretical treatment of the problem, and prove the existence
of pure strategy Nash equilibria. Our proof provides a
characterization of the structure of the equilibria, and serves
as an efficient decentralized algorithm for coordinating
the offloading decisions of the wireless devices. We use
extensive simulations to assess the benefits of coordinated
computation offloading compared to uncoordinated com-
putation offloading where devices choose a time slot at
random, and in the chosen time slot play an equilibrium
allocation. Our results show that the proposed algorithm
computes equilibria with good system performance in a
variety of scenarios in terms of task periodicity, the number
of devices and the number of access points.

The rest of the paper is organized as follows. In Section II
we present the system model and the problem formulation.
In Section III we present algorithmic and analytical results.
In Section IV we show numerical results and in Section V
we discuss related work. Section VI concludes the paper.

I I . S Y S T E M M O D E L A N D P R O B L E M
F O R M U L AT I O N

We consider a computation offloading system that con-
sists of N devices,A acces points (APs) and a cloud service.
We denote by N={1, 2, ..., N} and A={1, 2, ..., A} the
set of devices and the set of APs, respectively. Each device
generates a computationally intensive task periodically
every T time units. Device i’s task is characterized by the
mean size Di of the input data and by the mean number of
CPU cycles Li required to perform the computation. We
make the reasonable assumption that the number X of CPU
cycles required per bit can be modeled by a random variable
following a Gamma distribution [8], [9], and assume E[X]
to be known from previous measurements. Thus, assuming
independence the mean number of CPU cycles can be
expressed as Li = DiE[X].

We consider that time is partitioned into T time slots,
and we denote by T ={1, 2, ..., T} the set of time slots.
Each device can choose one time slot in which it wants
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Fig. 1. An example of a mobile cloud computing system than consists
of N devices, T = 4 time slots, and A = 3 APs.

to perform the computation and in the chosen time slot
it can decide whether to perform the computation locally
or to offload the computation to the cloud server through
one of the APs. Therefore, each device i ∈ N can choose
one element of the set Di = {A ∪ {0}} × T , where 0
corresponds to local computing. We denote by di∈Di the
decision of MU i, and refer to it as its strategy. We refer
to the collection d=(di)i∈N as a strategy profile, and we
denote by D =×i∈NDi the set of all feasible strategy
profiles. The considered model of homogeneous task
periodicities is reasonable for surveillance of homogeneous
physical phenomena, we leave the case of heterogeneous
periodicities to be subject of future work.

For a strategy profile d we denote by O(t,a)(d) =
{i|di = (t, a)} the set of devices that offload using AP a
in time slot t, and we denote by n(t,a)(d) = |O(t,a)(d)| the
number of devices that use AP a in time slot t. Furthermore,
we define the set of all devices that offload in time slot
t as Ot(d) = ∪a∈AO(t,a)(d), and the total number of
devices that offload in time slot t as nt(d)=

∑
a∈A n(t,a)(d).

Finally, we denote by O(d) = ∪t∈T Ot(d) the set of all
devices that offload in strategy profile d.

A. Local computing

In the case of local computing each device has to
use its own computing resources in order to perform the
computation. We consider that different devices may have
different computational capabilities and we denote by F 0

i

the computational capability of device i. Furthermore, we
consider that the computational capability F 0

i of device i
is independent of the chosen time slot, and hence the time
that is needed for device i to perform its computation task
that requires Li CPU cycles can be expressed as

T 0
i = Li/F

0
i . (1)

In order to express the energy consumption in the case of
local computing we denote by vi the energy consumption
per CPU cycle [10], and we express the energy that device i
would spend on performing a computation task that requires
Li CPU cycles as

E0
i = viLi. (2)

B. Computation offloading

In the case of computation offloading the computation
is performed in the cloud, but the input data for the
computation task need to be transmitted through one of
the APs. In what follows we introduce our communication

and computation models that describe how the wireless
medium and the cloud computing resources are shared
among devices that offload their tasks, respectively.

1) Communication model: We consider that the uplink
rate ωi,(t,a)(d) that device i can achieve if it offloads
through AP a in time slot t is a non-increasing function
fa(n(t,a)(d)) of the number n(t,a)(d) of devices that use
the same AP a in time slot t. Furthermore, we consider
that each device is characterized by PHY rate Ri,a, which
depends on device specific parameters such as physical
layer signal characteristics and the channel conditions.
Therefore, the uplink rate of device i on AP a can be
different from the uplink rates of the other devices on the
same AP and can be expressed as

ωi,(t,a)(d) = Ri,a × fa(n(t,a)(d)). (3)

This communication model can be used to model through-
put sharing mechanisms in TDMA and OFDMA based
MAC protocols [11].

Given the uplink rate ωi,(t,a)(d), the time needed for
device i to transmit the input data of size Di through AP
a in time slot t can be expressed as

T txi,(t,a)(d) = Di/ωi,(t,a)(d). (4)

We consider that every device i knows the transmit power
Pi,a that it would use to transmit the data through AP a,
where Pi,a may be determined using one of the power
control algorithms proposed in [12], [13]. The transmit
power Pi,a and the transmission time T txi,(t,a)(d) determine
the energy consumption of device i for transmitting the
input data of size Di through AP a in time slot t

Etxi,(t,a)(d) = Pi,aT
tx
i,(t,a)(d). (5)

2) Computation model: We denote by F c the computa-
tional capability of the cloud service, and we consider that
the computational capability F ci,t(d) that device i would
receive from the cloud in time slot t is a non-increasing
function fi(nt(d)) of the total number nt(d) of devices
that offload in time slot t

F ci,t(d) = F c × fi(nt(d)). (6)

Therefore, the time needed for performing device i’s task in
the cloud may be different in different time slots, and given
the number Li of CPU cycles needed for the computation
task it can be expressed as

T exei,t (d) = Li/F
c
i,t(d). (7)

We consider that a single time slot is long enough for
performing each user’s task both in the case of local
computing and in the case of computation offloading.
This assumption is reasonable in the case of real time
applications, where the worst-case task completion time
must be less than a fraction of the periodicity.

Figure 1 shows an example of a mobile cloud computing
system where devices can choose one slot out of four time
slots to perform the computation. In the case of computation
offloading, each device in the chosen time slot can offload
its task to the cloud through one of three APs, e.g., in
time slot 1 devices 1 and 2 offload their tasks through AP
1, device 3 offloads its task through AP 3, and device 4
performs the computation locally.
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C. Cost Model

We consider that devices are interested in minimizing
a linear combination of their computing time and their
energy consumption, and denote by 0 ≤ γTi , γ

E
i ≤ 1 the

corresponding weights, respectively. We can then express
the cost of device i in the case of local computation as

C0
i = γTi T

0
i + γEi E

0
i . (8)

Similarly, we can express the cost of device i in the case
of offloading through AP a in time slot t as

Cci,(t,a)(d)=γTi (T exei,t (d)+T txi,(t,a)(d))+γEi E
tx
i,(t,a)(d). (9)

In (9) we made the common assumption that the time
needed to transmit the result of the computation from the
cloud service to the device can be neglected [5], [14], [15],
[7], because for many applications (e.g., object recognition,
tracking) the size of the output data is significantly smaller
than the size Di of the input data. We can thus express
the cost of device i in strategy profile d as

Ci(d)=
∑

di∈T ×{0}

1(t,0)(di)·C0
i+

∑
di∈T ×A

1(t,a)(di)·Cci,(t,a)(d), (10)

where 1(t,d)(di) is the indicator function, i.e., 1(t,d)(di) = 1
if di = (t, d) and 1(t,d)(di) = 0 otherwise.

D. Multi-slot computation offloading game

We consider that the objective of each device is to
minimize its own total cost (10), i.e., to find a strategy

d∗i ∈ arg mindi∈Di
Ci(di, d−i), (11)

where Ci(di, d−i) is the cost of device i if it chooses
strategy di given the strategies d−i of the other devices.
Since devices may be autonomous entities with individual
interests, we model the problem as a strategic game Γ=<
N , (Di)i, (Ci)i>, in which the set of players is the set
of devices (we use these two terms interchangeably). We
refer to the game as the multi-slot computation offloading
game (MSCOG). The MSCOG is a player specific network
congestion game, as illustrated in Fig. 2.

Our objective is to answer the fundamental question
whether there is a strategy profile from which no device
would want to deviate, i.e., a pure strategy Nash equilibrium.

Definition 1. A pure strategy Nash equilibrium (NE) is
a strategy profile d∗ in which all players play their best
replies to each others’ strategies, that is,

Ci(d
∗
i , d
∗
−i) ≤ Ci(di, d∗−i),∀di ∈ Di,∀i ∈ N .

Given a strategy profile d = (d′i, d−i), an improvement
step of device i is a strategy d′i such that Ci(d′i, d−i) <
Ci(di, d−i). A best improvement step is an improvement
step that is a best reply. A (best) improvement path is
a sequence of strategy profiles in which one device at
a time changes its strategy through performing a (best)
improvement step. We refer to the device that makes the
best improvement step as the deviator. Observe that no
device can perform a best improvement step in a NE.

I I I . C O M P U T I N G E Q U I L I B R I A

A. Single time slot (T = 1)

We start with considering the case T =1, i.e., a single
time slot.

Ci
0

d

o

v

1 2 Aa

Fig. 2. Network model of the MSCOG.

Theorem 1. The MSCOG for T = 1 possesses a pure
strategy Nash equilibrium.

Proof. We prove the result by showing that the game is best
response equivalent to a player specific congestion game
Γ̃ on a parallel network, i.e., a singleton player specific
congestion game [16]. Observe that if for T =1 we contract
the edge (v, d) in the network shown in Fig. 2, i.e., if we
replace the edge (v, d) and its two end vertices v and d by
a single vertex, then we obtain a parallel network. Let us
define the local computation cost of player i in Γ̃ as C̃0

i(N−
n1(d))=C0

i −fi(1 + n1(d))+c, and the cost of offloading
through AP a as f̃i,a(n(1,a)(d))=fi,a(n(1,a)(d))+c, where
c is a suitably chosen constant to make all costs non-
negative. Observe that due to the contraction of the edge
(v, d) the offloading cost is C̃ci,a=Cci,a−fi(n1(d)), and
thus the difference between the cost function of player
i in Γ̃ and that in Γ only depends on the strategies of
the other players. This in fact implies that Γ̃ and Γ are
best-response equivalent, and thus they have identical sets
of pure strategy Nash equilibria. Since Γ̃ is a singleton
player specific congestion game, it has a NE, and so does
Γ, which proves the result.

Furthermore, a Nash equilibrium of the MSCOG can be
found in polynomial time.

Corollary 1. Consider a MSCOG with T = 1 and N
players. Let d∗ be a Nash equilibrium of the game, and
consider that a new player is added to the game. Then
there is a sequence of best responses that leads to a NE.

Proof. The result follows from the best response equiva-
lence to Γ̃, and from the proof of Theorem 2 in [17].

Unfortunately, the contraction technique used in the proof
of Theorem 1 cannot be applied for T > 1, as the resulting
game would no longer be a congestion game.

B. Multiple time slots (T ≥ 1)

In order to answer the question for T ≥ 1 we first show
that if a pure strategy NE exists for T ≥ 1 then its structure
cannot be arbitrary.

Theorem 2. Assume that d∗ is a NE of the MSCOG with
T ≥ 1. Then the following must hold
(i)mint′∈T nt′(d∗)≤nt(d∗)≤mint′∈T nt′(d∗)+1 for ∀t,t′∈T ,
(ii) if nt(d∗) = nt′(d∗) + 1 for some t′ ∈ T \ {t}, then
n(t,a)(d∗) ≤ n(t′,a)(d∗) + 1 for every AP a ∈ A, and
(iii) if n(t,a)(d∗) = n(t′,a)(d∗) − k for k > 1 and t′ 6= t,
then nt′(d∗) ≤ nt(d∗) ≤ nt′(d∗) + 1.

Proof. Clearly, all statements hold for T =1. Assume that
T >1 and ∃t,t′ ∈ T such that nt(d∗)>nt′(d∗)+1. Then
∃a ∈ A such that n(t,a)(d∗) ≥ n(t′,a)(d∗)+1. Therefore,
player i∈O(t,a)(d∗) could decrease her cost by changing

3



d∗ = MB(N , T A, F c, F 0
i )

1: Let N ← 1
2: for N = 1 . . . |N | do
3: Let A′ ← ∅ /*APs with decreased number of offloaders*/
4: Let i← N
5: d∗i = argmind∈Di

Ci(d, d∗(N − 1))
6: Let d← (d∗i , d∗(N − 1))
7: if d∗i = (t, a) s.t. a ∈ A then
8: /*Players j ∈ O(t,a)(d) play best replies*/
9: (d′, t′, A′) = DPD(d, d∗(N − 1), (t, a), A′)

10: if ∃j∈Ot(d′), ∃dj∈Dj s.t.Cj(dj , d
′
−j)<Cj(d

′
j , d
′
−j)then

11: /*Players j ∈ Ot(d′) play best replies*/
12: dj = argmind∈Dj

Cj(d, d
′
−j)

13: Let d← (dj , d
′
−j), Update A′

14: if ∃i∈Odi(d),di 6=argmind∈Di
Ci(d, d−i) /∈A′ then

15: Let (t, a)← dj , go to 9
16: else
17: Let d′ ← d
18: end if
19: end if
20: if A′ 6= ∅ then
21: /*Players j ∈ O(d′) ∪ L(d′) play best replies*/
22: (d, (t, a), A′) = SID(d′, A′)
23: if ∃i∈O(t,a)(d), di 6=argmin

d∈Di

Ci(d, d−i) /∈A′ then

24: go to 9
25: else if ∃i∈O(d)∪L(d),di6=argmin

d∈Di

Ci(d, d−i)∈A′ then

26: Let d′ ← d, go to 22
27: end if
28: end if
29: end if
30: Let d∗(N)← d′
31: end for
32: return d∗(N)

Fig. 3. Pseudo code of the MB algorithm.

the strategy to offloading through AP a in time slot t′. This
contradicts d∗ being a NE and proves (i).

We continue by proving (ii). Assume that there is an
AP a such that n(t,a)(d∗) > n(t′,a)(d∗) + 1 holds. Since
nt(d∗) = nt′(d∗) + 1, we have that player i ∈ O(t,a)(d∗)
could decrease her cost by changing the strategy from (t,a)
to (t′,a). This contradicts d∗ being a NE and proves (ii).

Finally, we prove (iii). First, assume that nt(d∗)<nt′(d∗).
Since n(t,a)(d∗)<n(t′,a)(d∗)−1, we have that player i∈
O(t′,a)(d∗) could decrease her cost by changing the strategy
from (t′,a) to (t,a). This contradicts d∗ being a NE and
proves that nt(d∗)≥nt′(d∗). Second, assume that nt(d∗)>
nt′(d∗)+1 holds. Since n(t,a)(d∗) < n(t′,a)(d∗)−1, there is
at least one AP b 6= a such that n(t,b)(d∗) ≥ n(t′,b)(d∗)+1,
and thus player i ∈ O(t,b)(d∗) could decrease her cost by
changing the strategy to (t′, b). This contradicts d∗ being a
NE and proves that nt(d∗) ≤ nt′(d∗) + 1 must hold.

In what follows we prove our main result concerning
the existence of an equilibria in general case.

Theorem 3. The MSCOG for T ≥ 1 possesses a pure
strategy Nash equilibrium.

We provide the proof in the rest of the section.

C. The MyopicBest (MB) Algorithm

We prove Theorem 3 using the MB algorithm, shown in
Fig. 3. The MB algorithm adds players one at a time, and
lets them play their best replies given the other players’
strategies. Our proof is thus based on an induction in the
number N of players, and starts with the following result.

(d, t, A′) = DPD(d, d∗(N − 1), (t, a), A′)

1: /*Players that want to stop to offload*/
2: D′1={j|dj = (t, a), (t, 0) = argmind∈Dj

Cj(d, d−j)}
3: /*Player that want to change offloading strategy*/
4: D′2={j|dj =(t, a), (t′, b)=argmind∈Dj

Cj(d, d−j) /∈ A′,

(t, a) 6= (t′, b)}
5: while |D′1 ∪D′2| > 0 do
6: /*Players that want to stop to offload have priority*/
7: if |D′1| > 0 then
8: Take i ∈ D′1
9: di = (t, 0)

10: else
11: Take i ∈ D′2
12: Let di = argmind∈T ×ACi(d, d−i)
13: Let (t, a)← di
14: end if
15: Let d← (di, d−i)
16: Update A′, D′1, D

′
2

17: end while
18: return (d, t, A′)

Fig. 4. Pseudo code of the DPD algorithm.
Theorem 4. The MB algorithm terminates in a NE for
N ≤ T .

Proof. It is easy to see that if a strategy profile d∗(N) is
a NE for N ≤ T then by Theorem 2 there is at most one
player per time slot, and the MB algorithm computes such
a strategy profile.

We continue by considering the case N >T . Let us
assume that for N−1≥T there is a NE d∗(N − 1) and
that upon induction step N a new player i enters the game
and plays her best reply d∗i with respect to d∗(N−1). After
that, players can make best improvement steps one at a
time starting from the strategy profile d = (d∗i ,d

∗(N−1)).
If d∗i = (t, 0), then n(t,a)(d) = n(t,a)(d∗(N − 1)) holds
for every (t, a) ∈ T ×A, and thus d is a NE. Otherwise,
if d∗i = (t, a), for some a ∈ A, some players j ∈ O(t,a)(d)
may have an incentive to make an improvement step be-
cause their communication and cloud computing costs have
increased, and some players j ∈ Ot(d)\O(t,a)(d) may have
an incentive to make an improvement step because their
cloud computing cost has increased. Among these players,
the MB algorithm allows players j ∈ O(t,a)(d) to perform
best improvement steps, using the DoublePokeDeviator
(DPD) algorithm shown in Fig. 4. There are two types of
players that can make a best improvement step using the
DPD algorithm. The first type are players j ∈ O(t,a)(d)
for which a best reply is to stop to offload. The second
type are players j ∈ O(t,a)(d) for which a best reply is an
offloading strategy (t′, b) ∈ T ×A\{(t, a)} for which the
number of offloaders in d is not smaller than the number
of offloaders in the NE d∗(N − 1). The DPD algorithm
allows either one player of the first type, or one player of
the second type to perform a best improvement step, and
as we show next it terminates in a finite number of steps.

Proposition 1. Let d be a strategy profile in which there
is at least one player j ∈ O(t,a)(d) that can be chosen by
the DPD algorithm. Then the length of a best improvement
path generated by the DPD algorithm is at most N − 1.

Proof. Let us denote by d′ a strategy profile after a player
j ∈ O(t,a)(d) performs its best improvement step. First,
observe that if player j’s best improvement step is to stop
to offload, then the DPD algorithm terminates since it
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allows only players that play the same strategy as the last
deviator to perform best improvement steps. Furthermore, if
d = (d∗i ,d

∗(N − 1)), then n(t,a)(d′) = n(t,a)(d∗(N − 1))
for every (t, a) ∈ T ×A, and thus d′ is a NE.

Otherwise, if player j’s best improvement step is (t′, b)∈
T ×A\{(t, a)}, then n(t′,b)(d′) = n(t′,b)(d) + 1 holds, and
we can have one of the following: (1) there is no player
j′ ∈ O(t′,b)(d) that wants to deviate from (t′, b), (2) there
is a player j′ ∈ O(t′,b)(d) that wants to deviate from (t′, b).

If case (1) happens then the DPD algorithm terminates,
because there is no player that plays the same strategy as
the last deviator and that can decrease its cost using the
DPD algorithm. Otherwise, if case (2) happens then a new
best improvement step can be triggered, which will bring
the system to a state where n(t′,b)(d′) = n(t′,b)(d) holds.

In what follows we show that none of the players that
has changed its offloading strategy in one of the previous
best improvement steps would have an incentive to deviate
again. Let us consider a player j′ that changed its strategy
from (t′, b) to another offloading strategy, and let us assume
that in one of the subsequent best improvement steps one
of the players changes its offloading strategy to (t′, b), and
thus it brings the system to a state where n(t′,b)(d′) =
n(t′,b)(d) + 1 holds. We observe that player j that has
changed its strategy from (t, a) to (t′, b) before player j′

deviated from (t′, b) would have no incentive to deviate
from its strategy (t′, b) after a new player starts offloading
through AP b in time slot t′. This is because (t′, b) was its
best response while player j′ was still offloading through
AP b in time slot t′, i.e, while n(t′,b)(d′) = n(t′,b)(d) + 1
was true. Therefore, a new best improvement step can
be triggered only if there is another player that wants to
change from (t′, b) to another offloading strategy. If this
happens, n(t′,b)(d′) = n(t′,b)(d) will hold again, and thus
the maximum number of players that offload through AP b
in time slot t′ will be at most n(t′,b)(d)+1 in all subsequent
best improvement steps. Consequently, player j would have
no incentive to leave AP b in time slot t′ in the subsequent
steps. Therefore, each player deviates at most once in a
best improvement path generated by the DPD algorithm,
and thus the algorithm terminates in at most N − 1 best
improvement steps, which proves the proposition.

The DPD algorithm may be called multiple times during
the execution of the MB algorithm, but as we show next
for any fixed N , it is called a finite number of times.

Proposition 2. The DPD algorithm is executed a finite
number of times for any particular N .

Proof. Let us assume that the DPD algorithm has been
called at least once during the execution of the MB
algorithm, and let us denote by d′ the most recent strategy
profile computed by the DPD algorithm. Now, let us assume
that in the next best improvement step generated by the
MB algorithm a player i ∈ O(d′)∪L(d′) changes its
strategy to (t, a)∈T ×A. Starting from a strategy profile
d=((t, a), d′−i) players j∈O(t,a)(d) are allowed to perform
the next best improvement step using the DPD algorithm.

Observe that players j′ ∈ O(t,a)(d′) that in the pre-
vious best improvement steps changed their strategy to
(t, a) using the DPD algorithm and triggered one of the

players to leave the same strategy (t, a) would have no
incentive to perform a best improvement step using the
DPD algorithm. This is because the previous deviators
j′ ∈ O(t,a)(d′) brought n(t,a)(d′) to its maximum, that
is to n(t,a)(d∗(N − 1)) + 1, which decreased again to
n(t,a)(d∗(N−1)) after the next deviator left strategy (t, a).
Since the number of previous deviators j′ ∈ O(t,a)(d′) that
have no incentive to perform a new best improvement step
using the DPD algorithm increases with every new best
improvement path generated by the DPD algorithm, players
will stop performing best improvement steps using the DPD
algorithm eventually, which proves the proposition.

So far we have proven that the DPD algorithm generates
a finite number of finite best improvement paths. In the
following we use this result for proving the convergence
of the MB algorithm.

Proof of Theorem 3. We continue with considering all
conditions under which the DPD algorithm may have
terminated. First, let us assume that the last deviator’s
best improvement step is a strategy within time slot t′.
The proof of Proposition 1 shows that the DPD algorithm
terminates if one of the following happens: (i) starting
from a strategy profile d = (d∗i ,d

∗(N − 1)) all players
performed their best improvement steps, (ii) some players
did not deviate and the last deviator’s strategy was (t′, 0),
i.e., the last deviator changed to local computing in time
slot t′, (iii) some players did not deviate and there was
no player that wanted to change from the last deviator’s
strategy (t′, b) ∈ T ×A.

Let us first consider case (i), and the last deviator
that performed its best improvement step. If its best
improvement step was to stop to offload, n(t,a)(d′) =
n(t,a)(d∗(N − 1)) holds for every (t, a) ∈ T × A.
Otherwise, if a best improvement step of the last deviator
was to change its offloading strategy to (t′, b), we have that
n(t,a)(d′) ≥ n(t,a)(d∗(N − 1)) for every (t, a)∈ T × A,
where the strict inequality holds only for (t′, b), and
n(t′,b)(d′) = n(t′,b)(d∗(N − 1)) + 1. Since there is no
offloading strategy for which the number of offloaders is
less than the number of offloaders in the NE d∗(N − 1),
there is no player j∈O(d′) that can decrease its offloading
cost. Furthermore, there is no player that wants to change
its strategy from local computing to offloading, and thus a
strategy profile computed by the DPD algorithm is a NE.

If case (ii) or case (iii) happen the MB algorithm allows
players that offload in the same time slot as the last
deviator to perform any type of best improvement steps.
Furthermore, if case (ii) happens and there are no APs
with decreased number of offloaders compared with the
NE d∗(N−1), i.e., n(t,a)(d′) = n(t,a)(d∗(N−1)) holds for
every (t, a) ∈ T ×A, then the strategy profile d′ computed
by the DPD algorithm is a NE. Observe that n(t,a)(d′) =
n(t,a)(d∗(N−1)) holds for every (t, a) ∈ T ×A if strategy
profile d′ is obtained by the DPD algorithm starting from
strategy profile d = (d∗i ,d

∗(N − 1)).
Otherwise, if case (ii) happens such that there is a strategy

(t, a) ∈ T ×A for which n(t,a)(d′) < n(t,a)(d∗(N − 1))
holds, then players j ∈ Ot′(d′) that offload in the same time
slot as the last deviator may want to change their offloading
strategy to (t, a). Let us assume that there is a player
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j ∈ Ot′(d′) that wants to change its offloading strategy to
(t, a) and let us denote by d a resulting strategy profile.
Since n(t,a)(d) = n(t,a)(d′) + 1 and nt(d) = nt(d′) + 1
hold, some players j ∈ O(t,a)(d) may want to perform a
best improvement step using the DPD algorithm, which
can happen only a finite number of times accoring to
Proposition 2.

We continue the analysis by considering case (iii). Ob-
serve that if there is a strategy (t, a) for which n(t,a)(d′) <
n(t,a)(d∗(N − 1)) players j ∈ Ot′(d′) that offload in the
same time slot as the last deviator may want to change
their offloading strategy to (t, a). Furthermore, players
j ∈ Ot′(d′) \O(t′,b)(d′) may want to stop to offload or to
change to any offloading strategy (t, a) ∈ T ×A\{(t′, b)}
since their cloud computing cost increased. Let us assume
that there is a player j ∈ Ot′(d′) that wants to change
its offloading strategy to (t, a) ∈ T × A \ {(t′, b)} and
let us denote by d the resulting strategy profile. Since
n(t,a)(d) = n(t,a)(d′) + 1 and nt(d) = nt(d′) + 1 hold,
some players j ∈ O(t,a)(d) may want to perform a
best improvement step using the DPD algorithm, which
can happen only a finite number of times accoring to
Proposition 2.

If case (ii) or case (iii) happens and there is no player
j ∈ Ot′(d′) that wants to deviate, the MB algorithm allows
players from the other time slots t ∈ T \ {t′} to perform
best improvement steps using SelfImposedDeviator (SID)
algorithm shown in Fig. 5. Observe that players from time
slots t ∈ T \ {t′} are not poked to deviate by the other
players, and only reason why they would have an incentive
to deviate is that n(t,a)(d′) < n(t,a)(d∗(N − 1)) holds
for some strategies (t, a) ∈ T × A. The SID algorithm
first allows one of the players j ∈ O(d′) \ Ot′(d′) that
already offloads to perform a best improvement step, and
if there is no such player the SID algorithm allows one of
the players j ∈ L(d′) that performs computation locally
to start to offload. Let us assume that there is a strategy
(t, a) for which n(t,a)(d′) < n(t,a)(d∗(N − 1)) holds and
that there is a player j ∈ O(d′) \ Ot′(d′) ∪ L(d′) that
wants to deviate to strategy (t, a). We denote by d the
resulting strategy profile, after player j performs its best
improvement step. Since n(t,a)(d) = n(t,a)(d′) + 1 and
nt(d) = nt(d′) + 1 hold, some players j ∈ O(t,a)(d) may
want to perform a best improvement step using the DPD
algorithm, which can happen only a finite number of times
accoring to Proposition 2. Finally, let us consider case
(iii) such that there is a player j ∈ Ot′(d′) \ O(t′,b)(d′)
that wants to stop to offload because its cloud computing
cost increased. Let us denote by d a strategy profile after
player j changes its strategy from (t′, a) 6= (t′, b) to local
computing. We have that n(t′,a)(d) = n(t′,a)(d′)− 1, and
if n(t′,a)(d′) = n(t′,a)(d∗(N − 1)) we have that players
j′ ∈ O(d) \ O(t′,a)(d) may have an incentive to change
their offloading strategy to (t′, a) if doing so decreases their
offloading cost. We have seen that a best improvement step
of this type can trigger the DPD algorithm a finite number
of times according to Proposition 2. Now, let us assume that
a player j′ ∈ O(t,b)(d), where (t, b) ∈ T × A \ {(t′, a)},
changes its offloading strategy from (t, b) to (t′, a), and
that by doing so it does not trigger the DPD algorithm.
The resulting strategy profile d = ((t′, a), d−j′) is such

(d, (t, a), A′) = SID(d, A′)
1: /*Players that offload and can decrease their offloading cost*/
2: D1={j∈O(d)|(t,a)=argmind∈Dj

Cj(d,d−j)∈A′, dj 6=(t, a)}
3: /*Players that compute locally and want to start to offload*/
4: D2={j∈L(d)|(t,a)=argmind∈Dj

Cj(d, d−j) ∈ A′}
5: if |D1 ∪D2| 6= ∅ then
6: /*Players that offload have priority*/
7: if D1 6= ∅ then
8: Take i ∈ D1

9: else if D2 6= ∅ then
10: Take i ∈ D2

11: end if
12: d′i = argmind∈Di

Ci(d, d−i)
13: Let d← (d′i, d−i)
14: Let (t, a)← d′i
15: Update A′

16: end if
17: return (d, (t, a), A′)

Fig. 5. Pseudo code of the SID algorithm.

that n(t,b)(d) = n(t,b)(d′) − 1 holds, and if n(t,b)(d′) =
n(t,b)(d∗(N − 1)) some players may have an incentive
to change their offloading strategy to (t, b) if doing so
decreases their offloading cost.

We continue by considering the case where all subse-
quent best improvement steps are such that deviators change
to a strategy for which the number of offloaders is less
than the number of offloaders in the NE d∗(N −1) and by
doing so they do not trigger the DPD algorithm. Therefore,
the resulting best improvement path is such that the cost of
each deviator decreases with every new best improvement
step it makes. Assume now that after k ≥ 2 improvement
steps player j′ wants to return back to strategy (t, b). By
the definition of the resulting best improvement path, the
cost of player j′ in the (k+ 1)-th improvement step is not
only less than the cost in the k-th best improvement step,
but also less than its cost in the first best improvement step.
Therefore, player j′ will not return to a strategy it deviated
from, and thus it will deviate at most T × A − 1 times.
Consequently, when there are no players that can trigger
the DPD algorithm, players that change their startegy from
local computing to offloading using the SID algorithm, can
only decrease their offloading cost in the subsequent best
improvement steps, and thus they would have no incentive
to stop to offload. Since the number of players is finite,
the players will stop changing from local computing to
offloading eventually, which proves the theorem.

Even though the convergence proof of the MB algorithm
is fairly involved, the algorithm itself is computationally
efficient, as we show next.

Theorem 5. When a new player i enters the game in
an equilibrium d∗(N − 1), the MB algorithm computes a
new equilibrium d∗(N) after at most N × T ×A− 2 best
improvement steps.

Proof. In the worst case scenario the DPD algorithm
generates an N − 2 steps long best improvement path,
and a player that offloads in the same time slot as the last
deviator, but not through the same AP changes to local
computing, because its cloud computing cost increased.
Observe that the worst case scenario can happen only
if |O(d∗(N − 1))| = N − 1 holds. Furthermore, N − 2
players will have an opportunity to deviate using the DPD
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algorithm and a player that offloads in the same time slot as
the last deviator will have an opportunity to stop to offload
only if n(t,a)(d∗(N − 1)) = n(t′,b)(d∗(N − 1)) holds for
every (t, a), (t′, b) ∈ T ×A. Furthermore, in the worst case
scenario, the best improvement path generated by the DPD
algorithm is followed by an N × (T × A− 1) long best
improvement path, in which deviators change to a strategy
for which the number of offloaders is less than the number
of offloaders in the NE d∗(N − 1) and by doing so they
do not trigger the DPD algorithm. Therefore, a NE can
be computed in at most N − 2 +N × (T × A− 1) best
improvement steps.

By addding players one at a time, it follows that the
MB algorithm has quadratic worst case complexity.

Theorem 6. The MB algorithm computes a NE allocation
in O(N2 × T ×A) time.

Implementation considerations: The MB algorithm
can be implemented in a decentralized manner, by letting
devices perform the best improvement steps one at a time.
For computing a best response, besides its local parameters
(e.g. Di, Li, F 0

i ), each device i requires information about
achievable uplink rates, available MEC resources, and
the number of users sharing the APs and the cloud. In
practice these information can be provided by the MEC.
As discussed in [5], [18], [7], two main advantages of such
a decentralized implementation compared to a centralized
one are that the MEC can be relieved from complex
centralized management, and devices do not need to reveal
their parameters, but only their most recent decisions.

I V. N U M E R I C A L R E S U LT S

In the following we show simulation results to evaluate
the cost performance and the computational efficiency of
the MB algorithm. We consider that the devices are placed
uniformly at random over a square area of 1km × 1km,
while the APs are placed at random on a regular grid
with A2 points defined over the area. We consider that
the channel gain of device i to AP a is proportional to
d−αi,a , where di,a is the distance between device i and AP
a, and α is the path loss exponent, which we set to 4
according to the path loss model in urban and suburban
areas [19]. For simplicity we assign a bandwidth of 5 MHz
to every AP a, and the data transmit power of Pi,a is drawn
from a continuous uniform distribution on [0.05, 0.18] W
according to measurements reported in [20]. We consider
that the uplink rate of a device connected to an AP a
scales directly proportional with the number of devices
offloading through AP a. The computational capability F 0

i

of device i is drawn from a continuous uniform distribution
on [0.5, 1] GHz, while the computation capability of the
cloud is F c = 100 GHz [21]. We consider that the
computational capability that a device receives from the
cloud scales inversely proportional with the number of
devices that offload. The input data size Di and the number
Li of CPU cycles required to perform the computation are
uniformly distributed on [0.42, 2] Mb and [0.1, 0.8] Gcycles,
respectively. The consumed energy per CPU cycle vi is
set to 10−11(F 0

i )2 according to measurements reported
in [10], [9]. The weights attributed to energy consumption

γEi and the response time γTi are drawn from a continuous
uniform distribution on [0, 1].

We use three algorithms as a basis for comparison for
the proposed MB algorithm. In the first algorithm players
choose a time slot at random, and implement an equilibrium
allocation within their chosen time slots. We refer to
this algorithm as the RandomSlot (RS) algorithm. The
second algorithm considers that all devices perform local
execution. The third algorithm is a worst case scenario
where all devices choose the same time slot and implement
an equilibrium allocation within that time slot. Observe
that this corresponds to T = 1. We define the performance
gain of an algorithm as the ratio between the system cost
reached when all devices perform local execution and the
system cost reached by the algorithm. The results shown
are the averages of 100 simulations, together with 95%
confidence intervals.

A. Performance gain vs number of devices

Fig. 6 shows the performance gain as a function of the
number N of devices for A = 4 APs. The results show
that the performance gain decreases with the number of
devices for the MB algorithm for all values of T , for the
RS algorithm and for the deterministic worst case T = 1.
This is due to that the APs and the cloud get congested as
the number of devices increases. The performance gain of
the MB algorithm is up to 50% higher than that of the RS
algorithm for T > 1; the gap between the two algorithms
is largest when the ratio N/T is approximately equal to
4. The reason is that as T increases the average number
of offloaders per time slot remains balanced in the case of
the MB algorithm. On the contrary, in the case of the RS
algorithm some time slots may be more congested than
others, since the players choose their time slot at random.
However, the average imbalance in the number of offloaders
per time slot decreases as the number of devices increases,
thus the results are similar for large values of N . At the
same time, the performance gain of the MB algorithm
compared to that of the deterministic worst case T = 1
is almost proportional to the number T of time slots, and
shows that coordination is essential for preventing severe
performance degradation. It is also interesting to note that
for T = 1 the performance gain decreases with N at a
much higher rate than for T > 1, which is due to the fast
decrease of the number of offloaders, as we show next.

Fig. 7 shows the ratio of players that offload for the same
set of parameters as in Fig. 6. The results show that in
the worst case, for T = 1, the ratio of players that offload
decreases almost linearly with N , which explains the fast
decrease of the performance gain observed in Fig. 6. On
the contrary, for larger values of T the ratio of players
that offload appears less sensitive to N . We observe that
the ratio of players that offload is in general higher in
equilibrium than in the strategy profile computed by the
RS algorithm, which explains the superior performance of
MB observed in Fig. 6.

B. Performance gain vs number of APs

Fig. 8 shows the performance gain as a function of the
number A of APs for N = 50 devices. We observe that
the performance gain achieved by the algorithms increases
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Fig. 9. Number of iterations vs number of devices (N ).

monotonically with the number of APs for all values of T
with a decreasing marginal gain. The reason is that once
T ×A ≥ N every device can offload its task through its
favorite AP without sharing it, and hence the largest part
of the offloading cost comes from the computing cost in
the cloud. However, a small change in the performance
gain is still present even for very large values of A because
the density of the APs over a region becomes larger as
A increases, and hence the channel gain, which depends
on the distance between the device and the APs becomes
larger on average. The results also show that MB always
outperforms RS, and its performance gain compared to
that of RS increases with T . Most importantly, the number
of APs required for a certain performance gain is almost
50% lower using the MB algorithm compared to the RS
algorithm for higher values of T , i.e., significant savings
can be achieved in terms of infrastructural investments.

C. Computational Complexity

In order to assess the computational efficiency of the MB
algorithm we consider the number of iterations, defined
as the number of induction steps plus the total number of
update steps over all induction steps needed to compute a
NE. Fig. 9 shows the number of iterations as a function
of the number N of devices for A = 4 APs. The results
show that the number of iterations scales approximately
linearly with N for both algorithms, and indicates that the
worst case scenario considered in Theorem 6 is unlikely
to happen. The first interesting feature of Fig. 9 is that
the number of iterations is slightly less in the case of
the MB algorithm than in the case of the RS algorithm
for all values of T , except for T = 1 for which the two
algorithms are equivalent. The reason is that in the case
of the MB algorithm the number of offloaders per time
slot is more balanced, and hence the devices have less
incentive to deviate when a new device enters the system,
and their updates are always at least as good as in the case
of RS algorithm, since the MB algorithm allows devices

to change between time slots. On the contrary, in the case
of the RS algorithm some of the time slots may be very
congested, and the devices that offload within these time
slots have a higher incentive to deviate when a new device
enters the system. The second interesting feature of Fig. 9
is that the number of iterations is smaller for larger values
of T for smaller values of N , but for larger values of N the
results are reversed. The reason is that for smaller values
of N the time slots are less congested on average as T
increases, and hence the devices do not want to update
their strategies so often. On the contrary, as N increases
the benefit of large values of T becomes smaller, because
the congestion per time slots increases, and hence devices
may want to update their strategies more often.

Overall, our results show that the proposed MB algo-
rithm can compute efficient allocations for periodic task
offloading at low computational complexity.

V. R E L AT E D W O R K

The scheduling of periodic tasks received significant
attention for real-time systems [22], [23], but without
considering communications. Similarily, the scheduling
of communication resources has been considered without
considering computation [24]. Most works that considered
both communication and computation considered a single
device [25], [10], [6], [26], [27], and thus they do not
consider the allocation of resources between devices.

Related to our work are recent works on energy efficient
computation offloading for multiple mobile users [28], [29],
[30]. [28] proposed a genetic algorithm for maximizing the
throughput in a partitioning problem for mobile data stream
applications, while [29] proposed a heuristic for minimizing
the users’ cost in a two-tiered cloud infrastructure with
user mobility in a location-time workflow framework. [30]
considered minimizing mobile users’ energy consumption
by joint allocation of wireless and cloud resources, and
proposed an iterative algorithm.

A few recent works provided a game theoretic treatment
of the mobile computation offloading problem for a

8



single time slot [31], [32], [5], [18], [33], [34], [7]. [31]
considers a two-stage game, where first each mobile user
chooses the parts of its task to offload, and then the
cloud allocates computational resources to the offloaded
parts. [32] considered a three-tier cloud architecture, and
provided a distributed algorithm for the computing a mixed
strategy equilibrium. [33] considered tasks that arrive
simultaneously and a single wireless link, and showed the
existence of equilibria when all mobile users have the same
delay budget. [5] showed that assuming a single wireless
link and link rates determined by the Shannon capacity of
an interference channel, the resulting game is a potential
game. [18] extended the model to multiple wireless links
and showed that the game is still a potential game under
the assumption that a mobile user experiences the same
channel gain for all links. [7] considered multiple wireless
links, equal bandwidth sharing and a non-elastic cloud,
and provided a polynomical time algorithm for computing
equilibria. Compared to these works, our model of periodic
tasks considers the scheduling of tasks over time slots and
wireless resources, and is thus a first step towards bridging
the gap between early works on scheduling [23] and recent
works on computation offloading [5], [7].

From a game theoretical perspective the importance of
our contribution is the analysis of a player-specific network
congestion game for which the existence of equilibria is
not known in general [16], thus the proposed algorithm
and our proof of existence advance the state of the art in
the study of equilibria in network congestion games.

V I . C O N C L U S I O N

We provided a game theoretic treatment of computation
offloading for periodic tasks. We proved the existence of
equilibrium allocations, characterized their structure and
provided a polynomial time decentralized algorithm for
computing equilibria. Simulations show that the proposed
algorithm achieves good system performance for a wide
range of system sizes and task periodicities. Our results
show that periodic computation offloading can be efficiently
coordinated using low complexity algorithms despite the
vast solution space and the combinatorial nature of the
problem. An interesting open question is whether our results
can be extended to devices with heterogeneous periodicities,
we leave this question subject of future work.
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