
Computer Networks 125 (2017) 160–171

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Distributed algorithms for content placement in hierarchical cache

networks

Sla đana Jošilo, Valentino Pacifici ∗, György Dán

Department of Communication Networks and ACCESS Linnaeus Center, School of Electrical Engineering, KTH Royal Institute of Technology,

Stockholm, Sweden

a r t i c l e i n f o

Article history:

Received 2 September 2016

Revised 17 February 2017

Accepted 26 May 2017

Available online 27 May 2017

Keywords:

Content caching

Distributed placement

Hierarchical cache network

Mobile backhaul

Approximation ratio

Heuristics

a b s t r a c t

The growing popularity of mobile multimedia content and the increase of wireless access bitrates are

straining backhaul capacity in mobile networks. A cost-effective solution to reduce the strain, enabled by

emerging all-IP 4G and 5G mobile backhaul architectures, could be in-network caching of popular con-

tent during times of peak demand. Motivated by the potential benefits of caching in mobile backhaul

networks, in this paper we formulate the problem of content placement in a hierarchical cache network

as a binary integer programming problem. We provide a polynomial time solution when the link costs

are induced by a potential and we propose a 2-approximation algorithm for the general case. The 2-

approximation requires full information about the network topology and the link costs, as well as about

the content demands at the different caches, we thus propose two distributed algorithms that are based

on limited information on the content demands. We show that the distributed algorithms terminate in

a finite number of steps, and we provide analytical results on their approximation ratios. We use simu-

lations to evaluate the proposed algorithms in terms of the achieved approximation ratio and computa-

tional complexity on hierarchical cache network topologies as a model of mobile backhaul networks.

© 2017 Elsevier B.V. All rights reserved.

d

a

h

c

c

c

h

o

t

h

t

a

a

t

o

r

w

a
1. Introduction

The penetration of high speed mobile access technologies, such

as HSDPA and LTE, together with the proliferation of powerful

handheld devices has stimulated a rapid increase of user demand

for mobile multimedia content in recent years. The traffic growth

is predicted to continue in coming years, with an estimated 10-fold

increase in mobile data traffic in 5 years and an increasing peak-to-

average traffic ratio, and puts significant strain on mobile backhaul

capacity.

Recent measurement studies of mobile data traffic indicate that

caching could be an effective means of decreasing the mobile

backhaul bandwidth requirements: caching could reduce the band-

width demand by up to 95% during peak hours and could at the

same time reduce content delivery time by a factor of three as

shown in [1] . Such a high cache efficiency is likely due to the

concentration of content popularity to relatively few content items

during peak hours, a phenomenon that has been observed for, e.g.,

multimedia content [2] . At the same time, mobile traffic is dom-

inated by downloads; up to 75% of daily traffic load comes from
∗ Corresponding author.

E-mail addresses: josilo@kth.se (S. Jošilo), pacifici@kth.se (V. Pacifici),

gyuri@kth.se (G. Dán).

l

l

n

s

http://dx.doi.org/10.1016/j.comnet.2017.05.029

1389-1286/© 2017 Elsevier B.V. All rights reserved.
ownload traffic, and the demand shows significant diurnal fluctu-

tions with low loads during early morning hours [3] .

Tunelling imposed by previous 3GPP standards made back-

aul in-network caching technically challenging [4] , allowing only

aches at the network edge, in emerging all-IP mobile backhaul ar-

hitectures the caches could be co-located with every switch and

ould implement cooperative caching policies throughout the back-

aul. Since fairly accurate content popularity predictions can be

btained for Web and video content [5,6] , the most popular con-

ents could be downloaded into the caches of the mobile back-

aul in the early morning hours when the load is relatively low,

hereby alleviating the traffic demand during peak hours. A similar

pproach could be used in content distribution networks (CDNs)

nd edge caching architectures in wireline networks, as done in

he Netflix Open Connect program [7] .

Given predicted content popularities, a fundamental problem

f in-network caching is to find efficient content placement algo-

ithms that take into consideration the characteristics of the net-

ork topology and of the content workload. The algorithms should

chieve close to optimal bandwidth cost savings and should have

ow computational complexity. Furthermore, they should require as

ittle information as possible, e.g., about content popularities and

etwork topology, in order to allow fully distributed operation and

caling to large topologies with small communication overhead.

http://dx.doi.org/10.1016/j.comnet.2017.05.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2017.05.029&domain=pdf
mailto:josilo@kth.se
mailto:pacifici@kth.se
mailto:gyuri@kth.se
http://dx.doi.org/10.1016/j.comnet.2017.05.029

S. Jošilo et al. / Computer Networks 125 (2017) 160–171 161

W

t

g

r

t

a

c

p

w

0

t

m

t

w

t

i

l

m

a

r

a

s

S

i

b

s

S

2

m

a

a

o

n

s

t

m

l

n

f

a

t

G

t

t

t

W

B

d

p

W

L

t

t

2

W

u

O

n0

i m

k n j

c0

c
i,n

c
n,i =

0

LCA(i, j)

Ni = {i, k, n}

Aj = {a, b, c}

Am = {d, e}
Rm = {a, b, c, d, e}

An0 = {g, h}

Fig. 1. Example hierarchical cache network with nodes in three levels, showing

commonly used notation.

i

r

c

t

j

t

i

|

s

A

m

2

i

i

s

o

c

a

d

i

l

d

t

n

w

i

a

a

B

s

d

w

b

C

F

2

d
hile previous works proposed centralized and distributed con-

ent placement algorithms for two-level hierarchical topologies [8] ,

eneral topologies with an ultrametric [9] , and topologies in a met-

ic space [10] , efficient distributed algorithms based on limited

opological information have received little attention.

Motivated by the observation that mobkile backhaul networks

nd edge caching architectures can often well be modeled by a

ache hierarchy, in this paper we formulate the problem of content

lacement based on predicted demands in a hierarchical cache net-

ork with asymmetric link costs. We formulate the problem as a

-1 integer programming problem, and show that under the poten-

ial induced link cost model the problem can be solved in polyno-

ial time. For the general case we show that a 2-approximation to

he problem can be obtained using a distributed greedy algorithm

hen global information is available, and propose two computa-

ionally simple distributed algorithms that do not require global

nformation. We evaluate the algorithms through extensive simu-

ations on various network topologies. Our results show that infor-

ation about object demands at descendants is not sufficient for

chieving good performance, but the proposed h -Push Down algo-

ithm achieves consistently good performance based on a limited

mount of information about object placements.

The rest of the paper is organized as follows. Section 2 de-

cribes the system model and provides the problem formulation.

ection 4 describes the 2-approximation algorithm based on global

nformation, and Section 5 describes the distributed algorithms

ased on limited information. Section 6 shows performance re-

ults based on simulations. Section 7 discusses related work and

ection 8 concludes the paper.

. System model and problem formulation

We consider a typical mobile backhaul, which is the primary

otivating use case of our work, and model its active topology by

 symmetric acyclic directed graph G (N , E) , where the vertices N

re routers that connect cell sites and may aggregate traffic from

ther routers (and thus cell cites), and for every connected pair of

odes i, j ∈ N there exist edges (i, j) ∈ E and (j, i) ∈ E . Observe that

ince G is connected and acyclic, G is a tree. The assumption that

he active topology is a tree is realistic for the access part of the

obile backhaul in urban environments. We denote by L the set of

eaf nodes in G, by I the set of internal nodes and by n 0 the root

ode, i.e., N = L ∪ I ∪ n 0 . We denote the unique simple path

rom node i to node j by P i, j =

(
(i, v 1) , (v 1 , v 2) , . . . , (v | P i, j |−1 , j)

)
,

nd we denote by | P i, j | the number of edges in path P i, j . Observe

hat | P i, j | = | P j,i | . We define the level l (i) of node i ∈ N in the tree

as the number of edges from node i to the tree’s root node n 0 in

he unique simple path from i to n 0 , i.e., l(i) = | P i, n 0 | . We denote

he children of node i ∈ N by C(i) � { j | (i, j) ∈ E ∧ l(j) > l(i) } and

he parent of node i by P(i) , where P(i) ∈ N such that i ∈ C(P(i)) .

e denote by P

l (i) the l th -ancestor of node i, e.g., P

2 (i) = P (P (i)) .

y definition P

0 (i) = i . We refer to an edge (i, j) as the downlink

irection if j ∈ C(i) and as the uplink direction if i ∈ C(j) .

We say that two nodes are siblings if they have the same

arent, and define the sibling set S(i) � { j |P(j) = P(i) ∧ i � = j} .
e denote the descendants of node i by D(i) � { j | l(j) > l(i) ∧

CA (i, j) = i } , where LCA(i, j) denotes the lowest common ances-

or of nodes i and j , furthermore we use the notation G i (N i , E i) for

he subgraph induced by N i = { i } ∪ D(i) rooted in i .

.1. Objects, demand and storage

We denote the set of objects requested by mobile nodes by O.

e follow common practice and consider that every object has

nit size [11,12] , which is a reasonable simplification if content
s divisible into unit-sized chunks. We denote the average request

ate (demand) predicted for the peak hours for object o ∈ O at the

ell site connected to node i by w

o
i
.

Every node i ∈ N is equipped with a cache, and we denote

he size of the cache at node i by K i . We denote the set of ob-

ects stored in the cache at node i by A i ⊂ O, |A i | ≤ K i . We use

he shorthand notation A V � (A j) j∈ V , where V ⊆ N , and A −i �
(A j) j∈N\{ i } . We denote by A i the set of object placements that sat-

sfy the storage capacity constraint at node i , i.e. A i = {A i ∈ 2 O :
A i | ≤ K i } , where 2 O is the powerset of O. Finally, we denote the

et of objects stored at node i and at its descendants by R i (A) =
 i

⋃

j∈D(i) R j (A) . Fig. 1 shows an example topology with a maxi-

um level of 2, illustrating some of the commonly used notation.

.2. Cost model

We denote the unit cost of using edge (i, j) by c i, j . Since dur-

ng peak hours most of the traffic in a mobile backhaul is flow-

ng downlink (serving users’ requests for content) [1,3] , we con-

ider that uplink edges have zero unit cost, i.e., c i, P(i) = 0 . With-

ut loss of generality, the cost of downlink edges is c P(i) ,i > 0 . We

onsider that edge costs are additive, i.e., if a request for object o

rrives at node i and is served from node j then the unit cost is

 i, j =

∑

(v ,w) ∈ P j,i c v ,w

. We call d i, j the distance from node j to node

 . Note that the terms c v, w

are zero if they correspond to an up-

ink, i.e., if w = P(v) . Furthermore, observe that in general d j, i � =
 i, j , thus distance is not symmetric (hence it is a hemimetric).

A request for object o generated by a mobile user connected to

he cell site at node i ∈ N is served locally if o ∈ A i . Otherwise, if

ode i has a descendant j ∈ D(i) for which o ∈ A j , the node for-

ards the request to the closest such descendant. Otherwise, node

 forwards the request to its parent P(i) , which follows the same

lgorithm for serving the request. If an object o is not stored in

ny node (i.e., o / ∈ R n 0) then it needs to be retrieved through the

ackbone via the root node n 0 at a unit cost of c 0 .

Given a placement A = (A j) j∈N we can define the unit cost to

erve a request for object o at node i as

 i (o, A) =

{

min { j∈N | o∈A j }
d i, j if o ∈ R n 0

d i, n 0 + c 0 if o / ∈ R n 0 ,

hich together with the demand w

o
i

determines the cost incurred

y node i as

 i (A) =

∑

o∈O
C o i (A) =

∑

o∈O
w

o
i d i (o, A) . (1)

inally, we define the total cost C(A) =

∑

i ∈N C i (A) .

.3. Problem formulation

Motivated by minimizing the congestion in the mobile backhaul

uring peak hours, our objective is to find a placement that mini-

162 S. Jošilo et al. / Computer Networks 125 (2017) 160–171

4

t

l

t

m

m

s

t

t

3

l

t

D

l

g

Ψ

i

Ψ

t

(v ,

T

M

t

P

c

t

s

o

n

w

E

t

−

t

c

i

i

f

c

p

L

i ∑
P

p

n

v

t

w

i

w
mizes the total cost C(A) . We refer to this as the mobile backhaul

content placement problem (MBCP), which can be formulated as

finding Ā = argmin A∈×i ∈N A i
C(A) .

It is easy to see that the MBCP problem can be formulated as

the following 0 − 1 integer linear program

min

∑

i ∈N

∑

o∈O
w

o
i

(∑

j ∈N , j � = i
d i, j x i, j,o + (d i, n 0 + c 0) x i, −1 ,o

)

s.t.

∑

o∈O x i,o ≤ K i , ∀ i ∈ N (2)

x i, j,o ≤ x j,o , ∀ i, j ∈ N , o ∈ O (3)

∑

j∈N x i, j,o + x i, −1 ,o ≥ 1 , ∀ i ∈ N , o ∈ O (4)

x i,o , x i, j,o , x i, −1 ,o ∈ { 0 , 1 } , (5)

where x i, o indicates whether object o is in the storage of node i

(i.e. x i,o = 1 ⇔ o ∈ A i), x i, j, o indicates whether a request for object

o at node i is served from node j , and x i, −1 ,o indicates whether ob-

ject o is retrieved from the Backbone, i.e., the level of the Backbone

is indicated with −1 .

3. Centralized algorithms

We start with considering centralized algorithms for finding an

optimal solution for the MBCP. First we show that, in the gen-

eral case, the MBCP problem cannot be solved in polynomial time

through linear relaxation, as the constraint matrix (2) –(4) is not

totally unimodular.

3.1. Arbitrary link costs

We start with the following definition.

Definition 1. Let A be a matrix with entries 0, +1 , or −1 . A is

totally unimodular if and only if each square submatrix of A has

determinant 0, +1 , or −1 .

We now recall a result from Schrijver [13] on the relation be-

tween total unimodularity and integer linear programming.

Theorem 1 (Hoffman and Kruskal’s Theorem [13]) . Let A be an in-

tegral matrix. A is totally unimodular if and only if for each integral

vector b the polyhedron { x | x ≥ 0; Ax ≤ b } is integral.

It follows from Theorem 1 that if the constraint matrix A of the

MBCP problem is totally unimodular, then the linear relaxation of

the MBCP problem would have integral solutions that would cor-

respond to the solutions of the 0 − 1 integer linear program. In

what follows we show that the constraint matrix A is not totally

unimodular for non-trivial instances of the MBCP problem, as it is

shown by the following Lemma.

Lemma 1. The constraint matrix for the MBCP problem is not totally

unimodular for |N | ≥ 4 .

Proof. Consider a MBCP problem defined for a system of |N | ≥ 4

nodes and an arbitrary number of objects. The constraint matrix A

has |N ||O| + |N | 2 |O| + |N ||O| rows and |N ||O| + 2 · |N | 2 |O| +
(|N | + 1) · |N ||O| non-zero entries. In the following we show that

there exists a 9 × 9 square sub-matrix A

′ of the constraint matrix

A that has 18 non-zero entries and is such that det (A

′) = 2 .

We construct the sub-matrix A

′ for one arbitrary object o , by

initially selecting a subset of 6 rows of A corresponding to con-

straint (3) , such that (i, j) ∈ {(1, 2), (2, 2), (1, 3), (3, 3), (2, 4), (3,
)}. Each selected row has exactly two non-zero entries, we select

he columns of A

′ corresponding to the non-zero entries in the se-

ected rows. Finally, we add to A

′ the 3 rows of A , corresponding

o constraint (4) , for nodes i ∈ {1, 2, 3} and object o . The resulting

atrix A

′ is illustrated in Table 1 .

It is easy to verify that det (A

′) = 2 , which proves the result. �

A consequence of Lemma 1 is that solving the MBCP problem

ight be computationally infeasible already for moderate sized in-

tances of the problem. We are thus interested in finding compu-

ationally feasible, scalable distributed algorithms to approximate

he solution of the MBCP problem in the general case.

.2. Potential induced downlink costs

In what follows, we consider a special case of the MBCP prob-

em where the downlink costs are potential induced . We start with

he following definition.

efinition 2. A function Ψ : N �→ R

+ is a potential if it assigns one

abel to each of the nodes in N , such that each node’s label is

reater than any label of its children, i.e., Ψ (P(i)) > Ψ (i) , ∀ i ∈ I.

The downlink cost c P(i) ,i is induced by the potential function

if it tantamounts the potential difference between the nodes,

.e., c P(i) ,i = Ψ (P(i)) − Ψ (i) . Observe that, for the root node n 0 ,

(P(n 0)) = Ψ (n 0) + c 0 . If the downlink costs are induced by Ψ,

he distance d i, j between two arbitrary nodes i, j ∈ N is d i, j =∑

w) ∈ P j,i
c v ,w

= Ψ (LCA (i, j)) − Ψ (i) .

heorem 2. There exists a centralized algorithm that solves the

BCP problem with potential induced downlink costs in polynomial

ime.

roof. We prove the theorem by showing that, if the downlink

osts are potential induced then the MBCP problem can be reduced

o a minimum-cost flow problem. We assume that graph G is non-

ingleton, i.e. |N | > 1 , and we construct a directed graph G ′ =
(N

′ , E ′) as follows. We define the set R ′ � {〈 o k , n 0 〉| k = 1 , 2 , . . . |O|}
f |O| nodes and the set I ′ � O × I of |O||I| nodes . The set of

odes in graph G ′ is defined as N

′ � { S} ∪ R ′ ∪ I ′ ∪ N ∪ { T } ,
here S and T are source and sink nodes, respectively. The edge set

′ consists of five types of edges: (1) for each 〈 o k , n 0 〉 ∈ R ′ there are

wo parallel edges (S , 〈 o k , n 0 〉) with capacities 1 and ∞ , and costs∑

j∈N w

o k
j

c 0 and 0, respectively; (2) for each 〈 o k , i 〉 ∈ I ′ there are

wo parallel edges (〈 o k , P(i) 〉 , 〈 o k , i 〉) , with capacities 1 and ∞ , and

osts −∑

j∈N i w

o k
j

[Ψ (P(i)) − Ψ (i)] and 0, respectively; (3) for each

 ∈ I ∪ { n 0 } and o k ∈ O there is one edge (〈 o k , i 〉 , i) with capac-

ty 1 and cost 0; (4) for each i ∈ L and o k ∈ O there is one edge

(〈 o k , P(i) 〉 , i) with capacity 1 and cost −w

o k
i

[Ψ (P(i)) − Ψ (i)] ; (5)

or each i ∈ N = L ∪ I there is one edge (i, T) with capacity K i and

ost 0. We reduce the MBCP problem to the minimum-cost flow

roblem on graph G ′ by proving the following two lemmas.

emma 2. Given a placement A there exists an integral flow

f A in G ′ with cost equal to C(f A) = C(A) − C(∅) , where C(∅)

s the cost of an empty placement, i.e., C(∅) =

∑

o∈O C o (∅) =

o∈O
∑

i ∈N w

o
i [Ψ (n 0) − Ψ (i) + c 0] .

roof. Let n i (o, A) be the number of occurrences of item o in

lacement (A j) j∈N i at node i and its descendants D(i) , i.e.,

 i (o, A) = |{ j ∈ { i } ∪ D(i) | o ∈ A j }| . We construct the flow f A of

alue
∑

i ∈N |A i | as follows. For each edge (i, T) of type 5, we set

he flow to |A i | . For each edge (〈 o k , j 〉 , i) of type 4 and type 3,

e set the flow to 1 if o k ∈ A i , and to 0 otherwise. For each edge

ncident to 〈 o k , i 〉 ∈ R ′ ∪ I ′ , of type 2 and type 1 with capacity 1,

e set the flow to 1 if n (o , A) > 0 , and to 0 otherwise. For each
i k

S. Jošilo et al. / Computer Networks 125 (2017) 160–171 163

Table 1

9 × 9 square sub-matrix A ′ of the constraint matrix A with det (A ′) = 2 , for instances of the

MBCP problem with at least 4 nodes, i.e., |N | ≥ 4 .

x j, o x i, j, o

j = 2 j = 3 j = 4 i = 1 i = 2 i = 3

−1 0 0 1 0 0 0 0 0 −x 2 ,o + x 1 , 2 ,o ≤ 0

−1 0 0 0 0 1 0 0 0 −x 2 ,o + x 2 , 2 ,o ≤ 0

0 −1 0 0 1 0 0 0 0 −x 3 ,o + x 1 , 3 ,o ≤ 0

0 −1 0 0 0 0 0 1 0 −x 3 ,o + x 3 , 3 ,o ≤ 0

0 0 −1 0 0 0 1 0 0 −x 4 ,o + x 2 , 4 ,o ≤ 0

0 0 −1 0 0 0 0 0 1 −x 4 ,o + x 3 , 4 ,o ≤ 0

0 0 0 −1 −1 0 0 0 0 −x 1 , 2 ,o − x 1 , 3 ,o − .. ≤ −1

0 0 0 0 0 −1 −1 0 0 −x 2 , 2 ,o − x 2 , 4 ,o − .. ≤ −1

0 0 0 0 0 0 0 −1 −1 −x 3 , 4 ,o − x 3 , 4 ,o − .. ≤ −1

e

i

a

b

o

b

c

o

c

C

w

s

d

C

L

G

P

c

o

3

f

〈

i

f

t

t

fi

e

e

a

o

q

(

f

C

F

t

p

i

4

i

a

t

t

T

G

e

a

1

t

r

T

t

f

r

i

dge incident to 〈 o k , i 〉 ∈ R ′ ∪ I ′ , of type 2 and type 1 with capac-

ty ∞ , we set the flow to max { 0 , n i (o k , A) − 1 } . Flow f A is feasible

s each edge (i, T) of type 5 has assigned flow |A i | and for all in-

ound edges (〈 o k , j 〉 , i) to node i ∈ N , flow f A is set to 1 only if

 k ∈ A i . In addition, for each node 〈 o k , i 〉 ∈ R ′ ∪ I ′ the aggregate in-

ound flow is equal to n i (o k , A) . In the following we calculate the

ost of flow f A to prove the lemma. Observe that only the flow

n edges of type 1, 2 and 4 affects the cost C(f A) . It is possible to

ompute the cost C(f A) as

(f A) =

∑

o∈O
C o (f A)

=

∑

o∈O

∑

i ∈N
1 R i (A) (o)

(

−
∑

j∈N i
w

o
j [Ψ (P(i)) − Ψ (i)]

)

, (6)

here 1 R i (A) (o) is the indicator function of set R i (A) , and it is

uch that 1 R i (A) (o) = 1 ⇔ n i (o, A) > 0 . Assuming potential induced

ownlink costs, the cost C(A) can be rewritten as

(A) =

∑

o∈O

∑

i ∈N
w

o
i

[

l(i) ∑

l=0

(1 − 1 R P l (i)
(A) (o)) c P l+1 (i) , P l (i)

]

=

∑

o∈O

∑

i ∈N
w

o
i

[

Ψ (P(n 0)) − Ψ (i)

+

l(i) ∑

l=0

1 R P l (i)
(A) (o)

[
Ψ (P

l (i)) − Ψ (P

l+1 (i))
]]

=

∑

o∈O

∑

i ∈N
w

o
i [Ψ (n 0) + c 0 − Ψ (i)]

+

∑

o∈O

∑

i ∈N
w

o
i

[

l(i) ∑

l=0

1 R P l (i)
(A) (o)

[
Ψ (P

l (i)) − Ψ (P

l+1 (i))
]]

= C(∅) +

∑

o∈O

∑

i ∈N
1 R i (A) (o)

∑

j∈N i
w

o
j [Ψ (i) − Ψ (P(i))]

= C(∅) + C(f A) . (7)

�

emma 3. For every integral minimum-cost flow f with cost C (f) in

′ , there exists a placement A

f such that C(A

f) = C(∅) + C(f) .

roof. Given an integral minimum-cost flow f in G ′ , we define a

orresponding placement A

f as follows. For each i ∈ N and each

 ∈ O, o ∈ A

f
i

⇔ f (〈 o, j〉 , i) = 1 , where (〈 o, j 〉 , i) is an edge of type

 or 4. Observe that A

f is feasible, as �o f (〈 o, j 〉 , i) ≤ K i . In the

ollowing we prove that C(A

f) = C(∅) + C(f) . Recall that for each

 o k , i 〉 ∈ R ′ ∪ I ′ there are two parallel edges (u , 〈 o k , i 〉) with capac-

ty 1 and ∞ and costs − ∑

j∈N i w

o k
j

c 0 and 0, respectively. Let us re-

er to such edges as e
〈 o k ,i 〉
1

and as e
〈 o k ,i 〉 ∞

, respectively. We now show
hat f (e
〈 o k ,i 〉 ∞

) > 0 ⇒ f (e
〈 o k ,i 〉
1

) = 1 holds by contradiction. Assume

hat f (e
〈 o k ,i 〉 ∞

) > 0 and f (e
〈 o k ,i 〉
1

) = 0 . Then there exists a flow f ′ de-

ned as f ′ (e
〈 o k ,i 〉
1

) = 1 , f ′ (e
〈 o k ,i 〉 ∞

) = f (e
〈 o k ,i 〉 ∞

) − 1 on edges e
〈 o k ,i 〉
1

and

〈 o k ,i 〉 ∞

, and f ′ (e) = f (e) on any other edge e ∈ E ′ \ { e 〈 o k ,i 〉
1

, e
〈 o k ,i 〉 ∞

} . As

dge e
〈 o k ,i 〉
1

has negative cost, it follows that C (f ′) < C (f). Thus, in

ny integral minimum cost flow f (e
〈 o k ,i 〉 ∞

) > 0 implies f (e
〈 o k ,i 〉
1

) = 1 .

From the flow conservation constraint it follows that, when

 k ∈ A

f
j

for some j ∈ N i , then f (e
〈 o k ,i 〉 ∞

) + f (e
〈 o k ,i 〉
1

) > 0 , and conse-

uently f (e
〈 o k ,i 〉
1

) = 1 . By summing the flow on non-zero cost edges

i.e., edges of type 1, 2 and 4) we can compute the cost C (f) of flow

 as

(f) =

∑

〈 o k ,i 〉∈ R ′ ∪I ′

(

−
∑

j∈N i
w

o k
j [Ψ (P(i)) − Ψ (i)]

)

1 R i (A) (o k)

+

∑

i ∈L

∑

o k ∈O

(
−w

o k
i [Ψ (P(i)) − Ψ (i)]

)
1 A i (o k)

=

∑

o k ∈O

∑

i ∈N
1 R i (A) (o k)

∑

j∈N i
w

o k
j [Ψ (i) − Ψ (P(i))] . (8)

rom (7) and (8) it follows that C(A

f) = C(∅) + C(f) , which proves

he Lemma. �

Lemmas 2 and 3 imply that solving the minimum-cost flow

roblem in G ′ (N

′ , E ′) leads to finding an optimal object placement

n G(N , E) , which proves Theorem 2 . �

. Distributed 2-approximation algorithm based on global

nformation

In what follows we show that if global information is avail-

ble about the object demands and placements at every node of

he network, then it is possible to obtain a 2-approximation to

he optimal solution using the Depth First Greedy (DFG) algorithm.

he DFG algorithm is based on a depth-first traversal of the graph

, i.e., an ordering i 1 , . . . , i |N | of the vertices in N , and can be

xecuted by the nodes in an iterative (distributed) manner. The

lgorithm starts with an empty allocation (A i = ∅); at iteration

 ≤ k ≤ |N | node i k populates its cache with K i k
objects, one at a

ime, that provide the highest global cost saving. The DFG algo-

ithm is shown in Fig. 2 .

heorem 3. The DFG algorithm is a 2-approximation algorithm for

he MBCP problem in terms of cost saving, i.e., C (∅) −C (̄A)
C (∅) −C (A DFG)

≤ 2 .

As such, the DFG algorithm has a better approximation ratio

or cache hierarchies with more than 2 levels than existing algo-

ithms [14] . Before we prove the theorem we introduce some def-

nitions and previous results.

164 S. Jošilo et al. / Computer Networks 125 (2017) 160–171

Fig. 2. Pseudo-code of the DFG algorithm.

a

�

w

�

C

t

s

n

h

r

p

t

t

c

i

i

c

p

g

s

t

5

n

t

5

l

g

o

t

A

i

T

n

p

n

T

i

t

a

o

I

G

j

i

i i
Definition 3. Let E be a finite set and let F be a collection of

subsets of E . The pair (E, F) is a partition matroid if E =

⋃ k
i =1 E i

is the disjoint union of k sets, l 1 , . . . , l k are positive integers and

F = { F | F =

⋃ k
i =1 F i , F i ⊆ E i , | F i | ≤ l i , i = 1 , . . . , k } .

Definition 4. Let E be a finite set, and f : 2 E → R a real valued

function on subsets of E . Then f is submodular if for every A, B ∈ E

we have

f (A ∩ B) + f (A ∪ B) ≤ f (A) + f (B) .

Let us now recall a fundamental result about the maximization

of submodular functions over partition matroids.

Lemma 4. [15] Let F be a partition matroid over a set E, and f :

F → R be a non-decreasing submodular function with f (∅) = 0 . Then

the DFG algorithm achieves a 2-approximation of max F ∈F f (F) .

In what follows we show that MBCP can be formulated as the

maximization of a non-decreasing submodular function over a par-

tition matroid. Let us define for every object o ∈ O one fictitious

object (o, i) per node i ∈ N , i.e., (o, i) ∈ O × N . The set of fictitious

objects that can be assigned to node i is then E i = { (o, i) | o ∈ O} and

we define the set E =

⋃

i ∈N E i . We denote by A the family of sub-

sets of E, defined as A = ×i ∈N A i , where A i ⊆ E i , | A i | ≤ K i is the set

of object placements that satisfy the storage capacity constraint at

node i , as defined in Section 2.1 .

Proposition 4. The pair (E, A) is a partition matroid.

Proof. Consider an allocation A ∈ A and a fictitious object (o, i) ∈
A i . If we remove (o, i) from A i , i.e. A

′
i
= A i \ { (o, i) } , then A

′
i
⊆ E i

will still hold as well as A j ⊆ E j , for j ∈ N \ { i } , which implies that

(E, A) is an independence system.

Consider now two allocations A , A

′ ∈ A . If |A| < |A

′ | then ∃E i
such that |A

′ ∩ E i | > |A ∩ E i | , which implies that there is a node i ∈
N with at least one free space in its cache, i.e. |A i | < K i . Therefore,

there is an (o, i) ∈ (A

′ \ A) ∩ E i such that A ∪ { (o, i) } ∈ A . �

Proof of Theorem 3.. We prove the theorem by showing that

the function C̄ (A) = −C(A) is a nondecreasing submodular func-

tion on E . Let us define the change of the global cost after in-

serting an object o in the cache of node i as �C(A) = C̄ (A ∪
{ (o, i) }) − C̄ (A) , where A ∈ A and ∃ i ∈ N for which |A i | < K i . We

show that C̄ (A ∪ (o, i) }) − C̄ (A) ≥ C̄ (A

′ ∪ (o, i) }) − C̄ (A

′) for all A ⊆
A

′ ∈ A and (o, i) ∈ E i \ A

′
i
. We now distinguish between two cases.

If ∃ j such that (o, j) ∈ A

′
j
\ A j then the difference �C(A) is

�C(A) = c 0
∑

k ∈{N | LCA (k,i)= n 0 }
w

o
k + (c 0 + d i, n 0)

∑

k ∈N i
w

o
k

+

l(i) −1 ∑

t=1

(c 0 + d P t (i) , n 0)
∑

k ∈{N P t (i) \N P t−1 (i)
}
w

o
k ,
nd the difference �C(A

′) is

C(A

′) = (c 0 + d
i, LCA (j,i)

)
∑

k ∈N i
w

o
k

+

l (i) −l (LCA (j,i)) −1 ∑

t=1

(c 0 + d P t (i) , LCA (j,i)
)

∑

k ∈{N P t (i) \N P t−1 (i)
}
w

o
k .

Since l (LCA(j, i)) ≥ 0, it holds that �C(A) > �C(A

′) . Other-

ise, if ∃ j such that (o, j) ∈ A j or if �j such that (o, j) ∈ A

′
j

then

C(A) = �C(A

′) . The result then follows by applying Lemma 4 to

(∅) − C(A) . �

Observe that the approximation ratio is bounded for arbitrary

raversals of the graph. Nonetheless, a pre-order depth-first traver-

al allows for a distributed implementation of DFG with a commu-

ication overhead of
∑ |N |

k =1
(|N | − k) K i k

. This communication over-

ead is comparable to that of a centralized implementation, as it

equires collection of all demands and needs to communicate the

lacement decisions, but allows for the distribution of the compu-

ations in the network.

It is important to note that DFG differs from the dis-

ributed global greedy (DGG) algorithm used in [8,16] . DGG

hooses in every iteration the fictitious item (i, o) that max-

mizes the cost saving, and thus has computational complex-

ty O (|N | 2 max i K i |O| log (|N | |O|)) . In contrast, DFG populates the

aches of the nodes one-by-one, and thus has computational com-

lexity O (|N | max i k K i k
|O| log (|O|)) . Unfortunately, DFG requires

lobal information at every node of the network, which may cause

ignificant communication overhead. We therefore turn to dis-

ributed approximation algorithms based on limited information.

. Distributed algorithms under limited information

In what follows we propose two distributed algorithms that do

ot need global information about the demands and the network

opology.

.1. Local Greedy Swapping (LGS) Algorithm

The first algorithm, called Local Greedy Swapping (LGS), al-

ows nodes to swap objects with their parents based on the ag-

regate demands and the object placements in their descendants

nly . Denoting the placement at node i at iteration k by A i (k) ,

he LGS algorithm starts with an arbitrary initial object placement

 (0) = (A i (0)) i ∈N in which each node i ∈ N stores K i objects. At

teration k the algorithm computes the set of beneficial swaps

 (A (k)) ⊂ N × O

2 . A triplet (i, o, p) ∈ T (A (k)) corresponds to that

ode i can swap object p ∈ A i (k) with object o ∈ A P(i) (k) at its

arent node P(i) . For i = n 0 , i.e., (n 0 , o, p) ∈ T (A (k)) the root node

 0 can evict object p and can fetch object o through the Backbone.

he set of implemented swaps S(A (k)) ⊆ T (A (k) is then chosen to

ncrease the local cost saving greedily.

To define the set of beneficial swaps T (A) , let us introduce

he function I (i, o, p) to indicate whether the aggregate demand

t node i and its descendants D(i) is higher for object o than for

bject p ,

(i, o, p) =

{

1 , if
∑

j∈N i
(w

o
j − w

p
j
) > 0

0 , otherwise.

(9)

iven a placement A , node i might be interested in swapping ob-

ect p ∈ A i with object o ∈ A P(i) at its parent if I(i, o, p) = 1 or

f p is available in the cache of node i ’s descendants D(i) , i.e.,

p ∈ R \ A , as in this case node i can retrieve object p at no cost

S. Jošilo et al. / Computer Networks 125 (2017) 160–171 165

Fig. 3. Pseudo-code of the LGS algorithm.

e

o

A

T

T

N

a

h

i

a

t

l

s

m

e

i

l

A

A

L

P

1

C

t

d

f

�

S

d

d

i

t

�

a

T

i

P

o

p

a

h

C

N

e

o

I

I

n

i

i

o

n

C

a

P

C

C

w

n

c

5

i

f

d

f

I

t
ven if p / ∈ A i . We use this observation to define the set of node-

bject triplets that would be beneficial for swapping at placement

 ,

 (A)= { (i, o, p) | i ∈ N , o ∈ A P(i) \ R i , p ∈ A i , (
(p ∈ R i \ A i) ∨ (p / ∈ R i \ A i ∧ I(i, o, p) = 1)

)} .
he algorithm terminates at iteration k if the set T (A (k)) is empty.

ote that the complexity of the algorithm is low at each iteration,

s the minimization is performed over a small subset of objects

eld by a node and its children. The pseudo-code of LGS is shown

n Fig. 3 .

To complete the definition of the algorithm, we now describe

 greedy algorithm to choose the set S(A (k)) ⊆ T (A (k)) at itera-

ion k . Given T (A (k)) , we choose a node i k with a child that would

ike to swap (i.e., ∃ j ∈ C(i k) and (j, o, p) ∈ T (A (k))). Given i k we

elect the best swap (j k , o k , p k) of its children, i.e., the one that

aximizes the local cost saving in the subtree N i k
(swap with par-

nt), and we then allow every child node j ∈ C(i k) to insert into

ts cache objects o ∈ A i k
(k) ∪ { p k } , if doing so would increase the

ocal cost saving (copy from parent). The algorithm is shown in

lgorithm 1 .

lgorithm 1 S(A (k)) = populateS (A (k) , i k) .

1: Select the best swapping opportunity at the childrenof i k ,

(j k , o k , p k) ← arg max
{ (j,o,p) ∈ T (A (k)) | j∈C(i k) }

∑

n ∈N j
c i, j (w

o
n − w

p
n)

S(A (k)) ← (j k , o k , p k)

2: Further decrease the cost function through allowing nodes

in C(i k) to insert objects available at {A i k
(k) ∪ { p k }} .

PE j ← (A i k
(k) ∪ { p k }) ∩ A j (k)

PO j ← (A i k
(k) ∪ { p k }) \ R j (k)

while ∃ (j, o, p) s.t. o ∈ PO j and p ∈ PE j and

(p ∈ R j \ A j (k)) ∨ (p / ∈ {R j \ A j (k) } ∧ I(j, o, p) = 1)) (10)

do

S(A (k)) ← S(A (k)) ∪ { (j, o, p) }
PE j ← PE j \{ p}
PO j ← PO j \{ o}

end while

emma 5. The global cost C decreases strictly at every swap.

roof. Consider (i, o, p) ∈ S(A (k)) at iteration k . For every node

j ∈ N \ N i it holds d j,i = d j, P(i) + c i, P(i) = d j, P(i) , hence d j (o, A (k +
)) = d j (o, A (k)) and d j (p, A (k + 1)) = d j (p, A (k)) . Consequently,

 j (A (k + 1)) = C j (A (k)) for all j ∈ N \ N i .

Consider now node j ∈ N i . Since S(A (k)) ⊆ T (A (k)) , it follows

hat o / ∈ R i (k) and o ∈ A P(i) (k) . Hence d j (o, A (k)) = d j,i + c P(i) ,i ,
 j (o, A (k + 1)) = d j,i , and the difference in the cost �C(k + 1) be-

ore and after the swap is

C(k + 1) =

∑

j∈N i

[
C j (A (k + 1)) − C j (A (k))

]
=

∑

j∈N i

[
w

o
j d j,i − w

o
j (d j,i + c P(i) ,i) + w

p
j
d j (p, A (k + 1))

−w

p
j
d j (p, A (k))

]
=

∑

j∈N i

[
−w

o
j c P(i) ,i + w

p
j

(
d j (p, A (k + 1)) −d j (p, A (k))

)]
.

imilarly, S(A (k)) ⊆ T (A (k)) implies that p ∈ A i (k) , hence

 j (p, A (k)) ≤ d j,i . We now distinguish between two cases. If

 j (p, A (k)) < d j,i , then d j (p, A (k + 1)) = d j (p, A (k)) , which

mplies that �C(k + 1) < 0 . Otherwise, if d j (p, A (k)) = d j,i ,

hen d j (p, A (k + 1)) = d j,i + c P(i) ,i . Since I(i, o, p) = 1 , then

C(k + 1) = c P(i) ,i

∑

j∈N i
(w

p
j
− w

o
j) < 0 . This proves the lemma. �

We can use this result to show that the algorithm terminates

fter a finite number of iterations.

heorem 5. The LGS algorithm terminates after a finite number of

terations.

roof. Consider iteration k of the LGS algorithm. Call s (A) the

bject placement that results from applying swap s = (j, o, p) to

lacement A . It follows from the proof of Lemma 5 that for

ny swap s = (j, o, p) ∈ S(A (k)) and every node l ∈ N \ N j , it

olds {R j (A (k)) ∪ A i k
(k) } = {R j (s (A (k))) ∪ s (A i k

(k)) } and hence

 l (s (A (k))) = C l (A (k)) . Since for every j, l ∈ C(i k) , j � = l it holds l /∈
 j , we can consider each node j ∈ C(i k) separately.

Consider swap s = (j, o, p) ∈ S(A (k)) . It follows from (9) that

ither p ∈ R j \ A j (k) or I(j, o, p) = 1 . Therefore, from the proof

f Lemma 5 , it follows that C l (s (A (k))) ≤ C l (A (k)) for all l ∈ N j .

n particular, for swap s k = (j k , o k , p k) ∈ T (A (k)) , it holds that

(j k , o k , p k) = 1 , which implies C j k (s k (A (k))) < C j k (A (k)) .

Since ×i ∈N A i is a finite set, C(A (k)) can not decrease indefi-

itely and the LGS algorithm terminates after a finite number of

terations. �

Besides being guaranteed to converge starting from an arbitrary

nitial placement, a nice property of LGS is that if started from an

ptimal placement, the algorithm is stable in the sense that it does

ot make any changes, as we show next.

orollary 1. An optimal content placement Ā is stable under the LGS

lgorithm.

roof. From Lemma 5 and Theorem 5 it follows that C(A (k + 1)) <

(A (k)) for any swap s ∈ S(A (k)) . By definition � A

′ ∈ ×i ∈N A i s.t.

(A

′) < C(Ā) , hence the result. �

For simplicity, we restricted ourselves to a single i k per iteration

hen defining S(A (k)) , but the above results hold for any set of

odes that are not each others’ descendants, hence the algorithm

an be executed in parallel.

.2. h-Push Down algorithm

In the LGS algorithm, every node i swaps objects based on the

nformation about the object placement and the aggregate demand

or objects at its descendants D(i) . In the following we provide a

istributed algorithm that allows node i to leverage additional in-

ormation on placements and on aggregate demands for objects.

n the h-Push Down algorithm, every node i has information about

he placement A N j and about the object demands w

o
k
, k ∈ N j , for

166 S. Jošilo et al. / Computer Networks 125 (2017) 160–171

Fig. 4. Illustration of first 4 (a) and second 4 (b) steps of the h-Push Down algorithm. Object b is evicted from A k during the first step. A PushDown move is performed during

the second step.

Fig. 5. Pseudo code of the h-Push Down algorithm.

P

c

F

P

I

w

C

P

a

d

P

s

m

Z

W

c

n

F

fi

T

n

P

d

L

�

B

t
every ancestor j that lies within its information horizon h , i.e., for

j = P

l (i) for 0 ≤ l ≤ h .

The algorithm starts with an object placement (A i (0)) i ∈N in

which each node i ∈ N stores K i objects that have the highest ag-

gregated demands in the subnetwork N i and that are not avail-

able in the cache of node i ’s descendants D(i) . An iteration of the

algorithm consists of two steps. The first step is an eviction op-

eration at some node i . The second step is a PushDown move, a

sequence of placement updates such that at each update one ob-

ject o ∈ A P l (i) is moved from P

l (i) to P

l−1 (i) , for l = 1 , 2 , . . . , k,

where P

k −1 (i) = n 0 . In the last update of the PushDown move, i.e.,

l = k, one object is retrieved through the Backbone and stored at

the root node P

k −1 (i) = n 0 . The two steps of the h-Push Down al-

gorithm are illustrated in Fig. 4 . The pseudo-code of the PushDown

move of the h-Push Down algorithm is shown in Algorithm 2 . Note

Algorithm 2 A

′ = PushDown (i, A) .

1: t ← 0

2: A

0 ← A

3: do

4: n ← P

t (i)

5: o t ← arg min o∈A t P(n)
C(A

t
n ∪ { o} , A

t −n)

6: A

t+1
n ← A

t
n ∪ { o t }

7: A

t+1
P(n)

← A

t
P(n)

\ { o t }
8: t ← t + 1

9: while n � = n 0
10: return A

′

that the complexity of the algorithm at each iteration is limited by

the number of objects held in the nodes and the number of levels

in the cache hierarchy.

Central to the algorithm is the LCA of node i and the node from

which node i would retrieve object o in the placement (∅ , A −i) ,

i.e., if it had no objects cached,

P o i (A −i) � LCA

(
i, argmin

{ j∈N\{ i }| o∈A j }
d i, j

)
. (10)

Similarly, we define P o
i
(A) for placement A , i.e., P o

i
(A) = i if o ∈ A i ,

otherwise P o
i
(A) = P o

i
(A −i) .

The following lemma shows an important property of the Push-

Down move.

Lemma 6. A move A

′ = PushDown (i, A) always decreases the global

cost by

�C PD (i, A) � C(A) − C(A

′) =

l(i) ∑

t=0

c P t+1 (i) , P t (i)

∑

j∈ T (t)

w

o t

j ,

where T (t) = { j ∈ N P t (i) | P o t j
(A) = P

t+1 (i) } .
roof. Consider iteration t of move A

′ = PushDown (i, A) . Since

 n, P(n) =0 , for all j∈N \N n it holds that d j (o t , A

t)=d j (o t , A

t+1) .

or nodes j ∈ N n we need to distinguish between two cases. If

o t

j
(A

t) � = P(n) , then P o
t+1

j
(A)=P o

t

j
(A

t) and d j (o t , A

t)=d j (o t , A

t+1) .

t follows that, if j �∈ T (t), then C o
j
(A

t) − C o
j
(A

t+1) = 0 . Other-

ise, P o
t

j
(A

t) = P(n) implies P o
t

j
(A

t+1) = n, and hence C o
j
(A

t) −

o
j
(A

t+1) = w

o t

j
c P(n) ,n . By summing over all the l (i) iterations of the

ushDown move, we prove the lemma. �

In the h-Push Down algorithm, a node i can only initiate a move,

nd therefore evict one object o , if o is cached at node i ’s descen-

ants or if P o
i
(A −i) lies within node i ’s information horizon, i.e.,

o
i
(A −i) = P

l (i) for some 0 < l ≤ h . We use Z i (A) to denote the

et of objects that are candidate for eviction at node i under place-

ent A , i.e.,

 i (A) = { o ∈ A i | P o i (−A) ∈

⋃ h
l=0 P

l (i) ∨ o ∈

⋃

j∈D(i) A j } .
e use �C EV (i, o, A) � C(A) − C(A i \ { o} , A −i) to denote the

hange in the global cost caused by the eviction of object o at

ode i . Observe that �C EV (i, o, A) ≤ 0 .

The pseudo-code of the h-Push Down algorithm is shown in

ig. 5 . We start with showing that the algorithm terminates in a

nite number of iterations.

heorem 6. The h-Push Down algorithm terminates after a finite

umber of iterations.

roof. We prove the theorem by showing that the global cost C(A)

ecreases at every iteration of the h -Push Down algorithm. From

emma 6 it follows that

C PD (i k , (A (k) i k \{ o k } , A (k) −i k
)) ≥ �C h PD (i k , A (k)) . (11)

y definition, the variation of the global cost at itera-

ion k can be written as the sum of the variation due

S. Jošilo et al. / Computer Networks 125 (2017) 160–171 167

t

i

C

(

c

C

t

P

o

s

n

i

m

6

c

t

r

m

d

t

t

t

t

p

t

c

g

c

n

w

r

e

t

t

h

t

a

c

g

g

e

f

i

i

j

i

i

s

g

g

6

r

Fig. 6. Average approximation ratio vs. Zipf exponent for the LGS, DLG, DFG , and h-

Push Down algorithms. Heterogeneous and homogeneous demands , |O| = 100 , |N | =

20 , K i = 2 .

Fig. 7. Redundancy r(A) vs. Zipf exponent for LGS, DLG, DFG , and h-Push Down and

for the optimal placement. Heterogeneous and homogeneous demands , |O| = 100 ,

|N | = 20 , K i = 2 .

r

a

c

r

a

t

D

i

r

p

t

u

j

i

t

r

w

r

I

a

r

t

p

w

o

t

w
o the eviction and the variation due to PushDown move,

.e., �C EV (i k , o
k , A (k)) + �C PD (i k , (A (k) i k \ { o k } , A (k) −i k

)) =
(A (k)) − C(A (k + 1)) . The proof of the theorem follows from

11) . �

Furthermore, similar to LGS , the algorithm does not make any

hanges to an optimal placement, as shown next.

orollary 2. The optimal content placement Ā is stable with respect

o the h-Push Down algorithm.

roof. The proof is analogous to the proof of Corollary 1 . �

Observe that the computation of �C h
PD

(i k , A (k)) depends only

n the object demands and the placements at the nodes in the

et N P h (i k)
. Furthermore, in order to compute �C EV (i k , o

k , A (k)) ,

ode i k only requires information about placements and demands

n the subnetwork N

P o
k

i
(A −i (k))

, which lies within node i k ’s infor-

ation horizon h .

. Numerical results

We use simulations to evaluate the approximation ratio and the

onvergence rate of the proposed algorithms. To generate backhaul

opologies, we use a Random grid model, in which |N | nodes are

andomly placed on a |N | × |N | regular grid. The random place-

ent of nodes on a grid captures the potentially uneven spatial

istribution of base stations in urban mobile deployments. Given

he node placement, we build a weighted complete graph by set-

ing the weight on edge (i, j) equal to the Euclidean distance be-

ween nodes i and j , computed based on their coordinates. We

hen run Kruskal ’s algorithm [17] on the resulting weighted com-

lete graph to compute a minimum spanning tree to obtain the

opology G. We consider two different cost models. In the distance

ost model the edge costs c P(i) ,i are equal to the weights used for

enerating the tree. In the descendants cost model the edge costs

 P(i) ,i are proportional to the size of the subtree N i , as larger sub-

etworks likely lead to higher peak loads and less available band-

idth on the links serving them.

The object demands w

o
i

at the nodes follow Zipf’s law. For the

anking of the object demands at the nodes we consider two mod-

ls. In the case of homogeneous demands , the object demands have

he same rank at all nodes. In the case of heterogeneous demands ,

he demand w

o
i

for object o at node i is ranked as in the case of

omogeneous demands with probability 0.5. With probability 0.5,

he rank of w

o
i

is picked uniformly at random. The results shown

re the averages of 500 simulations, and the error bars show 95%

onfidence intervals.

As a baseline for comparison, we use a selfish distributed al-

orithm called Distributed Local-Greedy (DLG), which is based on

lobal information about the object demands and placements at

very node of the network. Following the DLG algorithm, starting

rom a randomly chosen allocation, at iteration k node i k optimizes

ts placement of objects A i k
(k) so as to minimize the cost for serv-

ng the requests from the local cell site, given the placement of ob-

ects A −i k
(k) at the other nodes in the network [18–20] . As there

s no guarantee that the DLG algorithm terminates [20] , we run

t for |N | iterations and we set i k = k . Note that although DLG is

eemingly similar to DFG, DFG minimizes the global cost based on

lobal information, while DLG minimizes the local cost based on

lobal information, hence it is algorithmically simpler.

.1. Performance of distributed algorithms

In order to compare the performance of the proposed algo-

ithms, as well as to evaluate the tightness of the analytical
esults, we computed the optimal placement Ā and the cost-

pproximation ratio C (A) /C (Ā) for each algorithm. To make the

omputation of the optimal placement feasible, we considered a

elatively small scenario with |N | = 20 , |O| = 100 and K i = 2 for

ll i ∈ N . Fig. 6 shows the cost-approximation ratio as a function of

he Zipf exponent of the object demand distribution for LGS, DLG,

FG and for the h-Push Down algorithm with global information,

.e., for h = max i ∈N l(i) , for the descendants cost model.

The most salient feature of the figure is that the approximation

atio of the LGS algorithm increases exponentially with the Zipf ex-

onent at a fairly high rate. The reason for the poor performance in

he case of homogeneous demands is that the LGS algorithm pop-

lates the set S(A (k)) exclusively based on the rankings of the ob-

ect demands and not based on their values. As the Zipf exponent

ncreases, the demand of the most popular content increases and

he optimal solution might differ significantly from the allocation

eached by the LGS algorithm. In order to validate this hypothesis,

e computed the redundancy of a placement A using the index

(A) =

∑

i ∈N
∑

j∈N\{ i }
(

1 − min (K i ,K j) −|A i ∩A j |
min (K i ,K j)

)
|N | (|N | − 1)

. (12)

ntuitively, r(A) is the average ratio of objects common between

ll pairs of placements A i and A j . In Fig. 7 we plot the average

(A) index of the final placements reached by the algorithms, for

he same scenario as Fig. 6 . The figure confirms that as the Zipf ex-

onent increases, the LGS algorithm fails to introduce redundancy,

hich explains its poor performance.

Comparing the performance of h-Push Down to that of DFG we

bserve that h-Push Down (with global information) performs bet-

er than DFG , which is also reflected by the redundancy index,

hich is very close to the optimal (cf. Fig. 6). Finally, it is note-

168 S. Jošilo et al. / Computer Networks 125 (2017) 160–171

Fig. 8. Performance gain vs number of nodes |N | for the h-Push Down, LGS and DFG

algorithms on the Random grid model with descendants and distance cost model,

|O| = 50 0 0 , K i = 20 .

Fig. 9. Number of iterations vs number of nodes |N | for the h-Push Down, LGS

and DFG algorithms on the Random grid model with descendants and distance cost

model, |O| = 50 0 0 , K i = 20 .

Fig. 10. Performance gain vs. cache size K i for h-Push Down, LGS and DFG on the

Random grid model with descendants and distance cost model. Results for |O| =

50 0 0 , |N | = 50 .

Fig. 11. Performance gain vs. horizon h for cache sizes K i ∈ {10, 20} on the Random

grid model with descendants and distance cost models. Results for |O| = 50 0 0 and

|N | = 100 .

w

t

s

t

t

o

D

h

m

w

s

a

6

o

g

p

a

P

n

a

d

t

W

m

l

s
worthy that the DLG algorithm, which corresponds to selfish local

optimization, fails to achieve performance close to the optimal, de-

spite the availability of global information.

In order to evaluate the performance of the algorithms for

larger scenarios, in the following we use the DLG algorithm as a

baseline for comparison, as it is prohibitive to compute the opti-

mal placement. Recall that the DLG algorithm optimizes the place-

ment of objects in order to minimize the local cost, which would

make it a reasonable simple choice in absence of more elaborate

distributed algorithms.

To capture the performance of the algorithms relative to DLG

we define the performance gain of an algorithm as the ratio be-

tween the cost of the placement reached by the DLG algorithm and

the cost of the placement reached by the algorithm. It follows from

(1) that the performance gain is also a measure of the increased

hit rate achieved by the algorithm relative to DLG . Fig. 8 shows

the performance gain for the LGS, DFG and h-Push Down (for two

values of the information horizon h) algorithms, as a function of

the number of nodes for K i = 20 . The results are shown for het-

erogeneous demands using a Zipf exponent of 1, for the two cost

models. We observe that the performance gain for the DFG and

the h-Push Down algorithms increases with the number of nodes.

Furthermore, the figure shows that h-Push Down outperforms DFG

(i.e., it is close to optimal) for both values of the horizon h . The

figure also shows that LGS performs just slightly better than DLG ,

with a decreasing gain as the network size increases.

Fig. 9 shows the number of iterations needed to compute the fi-

nal object placement corresponding to the results shown in Fig. 8 .

Recall that the DFG algorithm starts with an empty allocation and

terminates in

∑

i ∈N K i iterations, and can thus be used a baseline

in terms of convergence. The results show that LGS performs worst,
hile h-Push Down for h = 4 requires almost an order of magni-

ude less iterations to terminate than DFG .

Fig. 10 shows the performance gain as a function of the cache

izes for |N | = 50 . The figure shows that for higher cache sizes

he performance gain of the DFG and h-Push Down algorithms over

he DLG algorithm increases faster than exponentially. In the case

f global information, the h-Push Down algorithm outperforms the

FG algorithm, while in the case of non-global information, i.e., for

 = 4 , it achieves performance close to the DFG algorithm. Further-

ore, the performance gap between the h-Push Down algorithm

ith global and non-global information increases for higher cache

izes. The figure also confirms that the LGS and DLG algorithms

chieve a comparable total cost.

.2. Impact of the information horizon (h)

Finally, we evaluate the impact of the information horizon h

n the performance of h -Push Down. We define the performance

ain PG

h (A) for horizon h as the ratio between the cost of the

lacement A

1 reached by the h -Push Down algorithm with h = 1

nd the cost of the placement A

h reached with horizon h , i.e.

G

h (A) =

C(A 1)
C(A h) .

Figs. 11 and 12 show the performance gain PG

h (A) and the

umber of iterations, respectively, for the h-Push Down algorithm

s a function of the information horizon h for |N | = 100 and two

ifferent cache sizes K i . We plot the performance gain PG

h (A) for

he same cost and object demands models as in Figs. 8 and 10 .

e observe that the performance gain increases with a decreasing

arginal gain in h , making the algorithm perform fairly well with

imited available information (low h). Furthermore, the same ob-

ervation holds for the convergence time, hence a moderate value

S. Jošilo et al. / Computer Networks 125 (2017) 160–171 169

Fig. 12. Number of iterations vs horizon h for two values of cache sizes K i ∈ {10,

20} on the Manhattan graph with descendants and distance cost models. Results for

|O| = 50 0 0 and |N | = 100 .

o

g

p

c

s

c

t

t

o

7

w

c

a

v

a

a

c

g

c

d

o

s

l

2

n

a

c

a

t

p

t

d

T

q

c

h

l

w

b

c

c

t

2

c

d

o

w

w

s

t

r

n

r

c

p

a

g

i

t

s

p

n

f

w

n

e

b

t

i

s

c

8

p

c

0

l

a

f

d

a

a

g

m

t

c

a

i

t

R

f h provides a good trade-off between performance and conver-

ence time. Fig. 11 also shows that as the horizon h increases, the

erformance gain increases more in the case of the descendants

ost model than in the case of the distance cost model. The rea-

on is that as the horizon h increases, the nodes have access to the

ost of edges between nodes at lower levels of the tree (i.e., closer

o the root), which in the case of the descendants cost model are

he edges with highest cost, and thus they have a higher impact

n the total cost.

. Related work

Closest to ours are recent works on content placement in net-

orks [8,10,14,16,21–24] . The authors in [21] compared cache ar-

hitectures in terms of latency, bandwidth usage and cache load,

nd evaluated cache placement policies. The authors in [22] pro-

ide an algorithm for computing the optimal placement in a hier-

rchical network by reducing the content placement problem to

 minimum-cost flow problem. Motivated by the computational

omplexity of the problem, they design a distributed amortizing al-

orithm that achieves a constant factor approximation. The model

onsidered in [22] is based on the ultrametric cost model intro-

uced in [9] , which differs from our model on the assumption

f symmetric costs between nodes. The authors in [8] give in-

ights in the structure of the optimal placement in a regular two

evel hierarchical network, and they develop a greedy distributed

-approximation algorithm. The authors in [16] consider a hybrid

etwork with in-network caching and they propose a (1 − 1 /e) -

pproximation greedy algorithm. A more generic cost model was

onsidered in [10] , where the authors develop a 10-approximation

lgorithm by rounding the optimal solution of the LP-relaxation of

he problem. Poularakis et al. [24] proposed a set of centralized,

olynomial time algorithms with approximation guarantees, for

he joint problem of request routing and content replication un-

er strict bandwidth constraints at the storage sites. Poularakis and

assiulas [14] considered a hierarchical cache network in which re-

uests originate in leaf nodes only, and are served from upstream

aches. They provided a 1 / (1 − 1 /e) approximation for a 2-level

ierarchy and an approximation to hierarchies with more than 2

evels with an approximation ratio bound exceeding 2, which is

orse than ours. Unlike works that provide approximations with

ounded approximation ratio, Gkatzikis et al. [23] proposed to

luster contents and to solve the placement problem for clusters of

ontents. The authors proposed clustering schemes and evaluated

he efficiency loss due to clustering. In contrast to [8,10,14,16,22–

4] , in our work we proposed a 2-approximation algorithm that

an be executed in a decentralized manner, and we developed two

istributed algorithms for computing a content placement based
n limited information on the content demands and on the net-

ork topology, which can be used to solve large problem instances

ith prohibitive space complexity.

Related to ours are recent works on game theoretical analy-

es of distributed selfish replication on graphs [18–20,25–28] , as

hey can serve as a basis for distributed content placement algo-

ithms. Equilibrium existence when the access costs are homoge-

eous and nodes form a complete graph were provided in [18] , and

esults on the approximation ratio (referred to as the price of anar-

hy) were provided in [25,26] for homogeneous costs and a com-

lete graph. Non-complete graphs were considered in [19,27,28] ,

nd results on the approximation ratio of a distributed greedy al-

orithm were given for the case of unit storage capacity and an

nfinite number of objects in [27] . Dán [28] considered a variant of

he problem where nodes can replicate a fraction of objects, and

howed the existence of equilibria, while convergence results were

rovided for the integer problem in [19] in the case of homoge-

eous neighbor costs. The case of heterogeneous neighbor costs,

or which the non-convergence of distributed greedy replication

as shown in [20] is a generalization of our model, and thus the

egative result provided in [20] may not apply to our case. Differ-

nt from these works, in this paper we consider caches managed

y a single entity, and thus we consider the minimization of the

otal cost as opposed to the selfish minimization of the cost of the

ndividual nodes. Our objective of minimizing the total cost also

ets this work apart from recent work on cache networks in the

ontext of content centric networks, e.g., [29] .

. Conclusion

Motivated by mobile backhaul networks, we considered the

roblem of minimizing the bandwidth demand in a hierarchical

ache network through cooperative caching, and formulated it as a

-1 integer linear program. We showed that a polynomial time so-

ution exists for special instances of the problem, and we proposed

 2-approximation algorithm that is based on global information

or the general case. Furthermore, we proposed a low complexity

istributed algorithm based on information about object demands

t descendants, and an algorithm with an adjustable level of avail-

ble information. We proved convergence and stability of the al-

orithms. We used extensive simulations to evaluate the perfor-

ance of the proposed algorithms. Our results show that informa-

ion about object demands at descendants is insufficient for good

ooperative caching performance, but the proposed h-Push Down

lgorithm achieves consistently good performance despite limited

nformation availability, consistently better than greedy optimiza-

ion based on global information.

eferences

[1] G. Carofiglio, M. Gallo, L. Muscariello, D. Perino, Scalable Mobile Backhauling
via Information-Centric Networking, in: Proc. of IEEE International Workshop

on Local and Metropolitan Area Networks (LANMAN), 2015, pp. 1–6, doi: 10.
1109/LANMAN.2015.7114719 .

[2] G. Dán , N. Carlsson , Dynamic Content Allocation for Cloud-assisted Service of
Periodic Workloads, in: Proc. of IEEE INFOCOM, 2014, pp. 1–9 .

[3] U. Paul, A.P. Subramanian, M.M. Buddhikot, S.R. Das, Understanding Traffic Dy-

namics in Cellular Data networks, in: Proc. of IEEE INFOCOM, 2011, pp. 882–
890, doi: 10.1109/INFCOM.2011.5935313 .

[4] M. Rodrigues , G. Dán , M. Gallo , Enabling Transparent Caching in LTE Mobile
Backhaul Networks with SDN, in: Proc. of IEEE Infocom Workshops (SWFAN),

2016 .
[5] H. Pinto, J.M. Almeida, M.A. Gonçalves, Using Early View Patterns to Predict

the Popularity of Youtube Videos, in: Proc. of ACM Intl. Conf. on Web Search
and Data Mining (WSDM), 2013, pp. 365–374, doi: 10.1145/2433396.2433443 .

[6] A. Tatar, M.D. de Amorim, S. Fdida, P. Antoniadis, A survey on predicting the

popularity of web content, J. Internet Serv. Appl. 5 (1) (2014) 8, doi: 10.1186/
s13174- 014- 0 0 08-y .

[7] Netflix, Open connect program.
[8] S. Borst , V. Gupta , A. Walid , Distributed Caching Algorithms for Content Distri-

bution Networks, in: Proc. of IEEE INFOCOM, 2010, pp. 1478–1486 .

http://dx.doi.org/10.1109/LANMAN.2015.7114719
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0002
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0002
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0002
http://dx.doi.org/10.1109/INFCOM.2011.5935313
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0004
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0004
http://dx.doi.org/10.1145/2433396.2433443
http://dx.doi.org/10.1186/s13174-014-0008-y
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0007
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0007

170 S. Jošilo et al. / Computer Networks 125 (2017) 160–171

[

[

[

[

[

[9] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, R. Panigrahy, Consis-
tent Hashing and Random Trees: Distributed Caching Protocols for Relieving

Hot Spots on the World Wide Web, in: Proc. of ACM Symposium on Theory of
Computing (STOC), 1997, pp. 654–663, doi: 10.1145/258533.258660 .

[10] I.D. Baev , R. Rajaraman , Approximation Algorithms for Data Placement in Arbi-
trary Networks, in: Proc. of ACM SODA, 2001 .

[11] E.J. Rosensweig, J. Kurose, D. Towsley, Approximate Models for General Cache
Networks, in: Proc. of IEEE INFOCOM, 2010, pp. 1–9, doi: 10.1109/INFCOM.2010.

5461936 .

[12] C. Fricker , P. Robert , J. Roberts , A Versatile and Accurate Approximation for
LRU Cache Performance, in: Proc. of the 24th International Teletraffic Congress

(ITC), 2012, pp. 1–8 .
[13] A. Schrijver, Theory of Linear and Integer Programming, 1, John Wiley & Sons,

Inc., 1986, doi: 10.1017/CBO9781107415324.004 .
[14] K. Poularakis, L. Tassiulas, On the complexity of optimal content placement in

hierarchical caching networks, IEEE Trans. Commun. 64 (5) (2016) 2092–2103,

doi: 10.1109/TCOMM.2016.2545655 .
[15] M.L. Fisher, G.L. Nemhauser, L.A. Wolsey, An analysis of approximations for

maximizing submodular set functions - II, Math. Program. Stud. 8 (1978) 73–
78, doi: 10.1007/BF01588971 .

[16] M. Dehghan , A. Seetharam , B. Jiang , T. He , T. Salonidis , J. Kurose , D. Towsley ,
R. Sitaraman , On the Complexity of Optimal Routing and Content Caching in

Heterogeneous Networks, in: Proc. of IEEE INFOCOM, 2015, pp. 936–944 .

[17] J.B. Kruskal, On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem, in: Proceedings of the American Mathematical Society, 7,

1956, doi: 10.1090/S0 0 02- 9939- 1956- 0078686- 7 . 1
[18] N. Laoutaris , O. Telelis , V. Zissimopoulos , I. Stavrakakis , Distributed selfish

replication, IEEE Trans. Parallel Distrib. Syst. 17 (12) (2006) 1401–1413 .
[19] V. Pacifici , G. Dán , Convergence in player-specific graphical resource allocation

games, IEEE J. Sel. Areas Commun. 30 (11) (2012) 2190–2199 .
[20] V. Pacifici , G. Dán , Distributed Algorithms for Content Allocation in Inter-
connected Content Distribution Networks, in: Proc. of IEEE INFOCOM, 2015,

pp. 2362–2370 .
[21] P. Rodriguez, C. Spanner, E.W. Biersack, Analysis of web caching architectures:

hierarchical and distributed caching, IEEE/ACM Trans. Netw. 9 (4) (2001) 404–
418, doi: 10.1109/90.944339 .

22] M.R. Korupolu , M. Dahlin , Coordinated placement and replacement for large-s-
cale distributed caches, IEEE Trans. Knowl. Data Eng. 14 (6) (2002) 1317–1329 .

[23] L. Gkatzikis , V. Sourlas , C. Fischione , I. Koutsopoulos , G. Dán , Clustered Content

Replication for Hierarchical Content Delivery Networks, in: Proc. of IEEE ICC,
2015 .

[24] K. Poularakis, G. Iosifidis, L. Tassiulas, Approximation algorithms for mobile
data caching in small cell networks, IEEE Trans. Commun. 62 (10) (2014) 3665–

3677, doi: 10.1109/TCOMM.2014.2351796 .
25] G. Pollatos , O. Telelis , V. Zissimopoulos , On the Social Cost of Distributed Self-

ish Content Replication, in: Proc. of IFIP Networking, 2008, pp. 195–206 .

26] E. Jaho , M. Karaliopoulos , I. Stavrakakis , Social similarity favors cooperation:
the distributed content replication case, IEEE Trans. Parallel Distrib. Syst. 24

(3) (2013) 601–613 .
[27] B.-G. Chun, K. Chaudhuri, H. Wee, M. Barreno, C.H. Papadimitriou, J. Kubi-

atowicz, Selfish Caching in Distributed Systems: a Game-Theoretic Analysis,
in: Proc. of ACM Symposium on Principles of Distributed Computing (PODC),

2004, pp. 21–30, doi: 10.1145/1011767.1011771 .

28] G. Dán , Cache-to-cache: could ISPs cooperate to decrease peer-to-peer content
distribution costs? IEEE Trans. Parallel Distrib. Syst. 22 (9) (2011) 1469–1482 .

29] N. Laoutaris, H. Che, I. Stavrakakis, The LCD interconnection of LRU caches and
its analysis, Perform. Eval. 63 (7) (2006) 609–634, doi: 10.1016/j.peva.2005.05.

003 .

http://dx.doi.org/10.1145/258533.258660
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0009
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0009
http://dx.doi.org/10.1109/INFCOM.2010.5461936
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0011
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0011
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1109/TCOMM.2016.2545655
http://dx.doi.org/10.1007/BF01588971
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0015
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0015
http://dx.doi.org/10.1090/S0002-9939-1956-0078686-7
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0017
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0018
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0019
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0019
http://dx.doi.org/10.1109/90.944339
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0021
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0022
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0022
http://dx.doi.org/10.1109/TCOMM.2014.2351796
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0024
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0025
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0025
http://dx.doi.org/10.1145/1011767.1011771
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0027
http://refhub.elsevier.com/S1389-1286(17)30233-5/sbref0027
http://dx.doi.org/10.1016/j.peva.2005.05.003

S. Jošilo et al. / Computer Networks 125 (2017) 160–171 171

ommunication Networks in KTH, Royal Institute of Technology. She received her M.Sc.

ovi Sad, Serbia in 2011. She worked as a research engineer at the Department of Power,
 Novi Sad from 2013 to 2014. Her research interests are design and analysis of distributed

rk edge using game theoretical tools.

oratory for Communication Networks in KTH Royal Institute of Technology, Stockholm,

i Milano in Milan, Italy. In October 2010, he completed a joint M.Sc. degree in computer
l Institute of Technology. He received the Ph.D. in Telecommunications from KTH in 2016.

stic modeling, design and analysis of content management systems.

tute of Technology, Stockholm, Sweden. He received the M.Sc. in computer engineering
s, Hungary in 1999, the M.Sc. in business administration from the Corvinus University of

nications from KTH in 2006. He worked as a consultant in the field of access networks,

as a visiting researcher at the Swedish Institute of Computer Science in 2008, a Fulbright
aign in 2012–2013, and an invited professor at EPFL in 2014–2015. His research interests

d computing systems, game theoretical models of networked systems, and cyber-physical
Sla đana Josilo is a Ph.D. student at the Laboratory for C

degree in electrical engineering from the University of N
Electronics and Communication Engineering, University of

algorithms for exploiting resources available at the netwo

Valentino Pacifici is a postdoctoral researcher at the Lab

Sweden. He studied computer engineering at Politecnico d
engineering, between Politecnico di Milano and KTH Roya

His research interests include game theoretical and stocha

György Dán is an associate professor at KTH Royal Insti
from the Budapest University of Technology and Economic

Budapest, Hungary in 2003, and the Ph.D. in Telecommu

streaming media and videoconferencing 1999–2001. He w
research scholar at University of Illinois at Urbana-Champ

include the design and analysis of content management an
system security in power systems.

	Distributed algorithms for content placement in hierarchical cache networks
	1 Introduction
	2 System model and problem formulation
	2.1 Objects, demand and storage
	2.2 Cost model
	2.3 Problem formulation

	3 Centralized algorithms
	3.1 Arbitrary link costs
	3.2 Potential induced downlink costs

	4 Distributed 2-approximation algorithm based on global information
	5 Distributed algorithms under limited information
	5.1 Local Greedy Swapping (LGS) Algorithm
	5.2 h-Push Down algorithm

	6 Numerical results
	6.1 Performance of distributed algorithms
	6.2 Impact of the information horizon (h)

	7 Related work
	8 Conclusion
	 References

