KTH ROYAL INSTITUTE OF TECHNOLOGY

Resilient Time Synchronization for the Smart Grid

Vulnerabilities and Mitigation Schemes

György Dán KTH/EECS/NSE

Keynote, IEEE SmartGridComm 2019

Reliable, Flexible, Efficient, Sustainable

Reliable

- Improved protection
- Real-time voltage stability monitoring
- Wide-area damping control
- Fault location
- Islanding detection

Efficient and Sustainable

- Model validation
- Load disaggregation
- Real-time state estimation
- Predictive maintenance

SMART GRID

Shutterstock/monicaodo

Phasor measurement units (PMUs)

- Situational awareness
- ↑ Stability
- ↑ Efficiency

Source: NASPI

Phasor measurement units (PMUs)

Source: Cirio et al "Wide area monitoring in the Italian power system: Architecture, functions and experiences", European Transactions on Electrical Power 21(4):1541 – 1556, 2011

Synchrophasor Measurements

Source: IEEE C37.118-2011

Time Synchronization for PMUs

Space-based (SBTS)

- GPS, Glonass, Galileo, BeiDou-2
- Trilateration
- Accuracy ~10-40ns

Network-based (NBTS)

- IEEE 1588-2008 (PTPv2)
- Request-response
- Accuracy ~100ns
 - Hardware timestamping
 - Calibration/symmetry assumption

N.M. Freris, S.R. Graham, P.R.Kumar, "Fundamental Limits on Synchronizing Clocks over Networks," TAC 56(6) 6

OODA Loop for Synchrophasors

Are Synchrophasors Vulnerable to Time Synchronization Attacks?

- Could an attacker compromise PMU time references?
- Could an attack remain undetected?
- Is an attack easy to compute?
- Could an attack have significant impact?

SBTS Security (GPS)

Spoofing

• Theoretical and experimental results

 S_1

 $S_2 S_3$

 "A small group located off the south coast of Italy successfully took control of an \$80 million super-yacht's navigation system using a homemade device, and sent the luxury vessel on a potentially disastrous wayward path." 2013

Reliability

 "GPS timing issues have been reported from some user communities to the U.S. Coast Guard Navigation Center (NAVCEN) over the last 12 hours" Jan 26, 2016 – 13 μs offset from UTC

Tippenhauer et al, "On the requirements for successful GPS spoofing attacks", in Proc. ACM CCS, 2011 Ng, Y., Gao, G.X, "Advanced Multi-Receiver Position-Information-Aided Vector Tracking for Robust GPS g Time Transfer to PMUs", GNSS 2015

PTPv2 Security

PTPv2 Security

- Spoofing
- Delay attack

PTPv2 Security

- Spoofing
- Delay attack
- Software compromise

Securing PTP: PTPv2.1 AuthenticationTLV

- Integrity protection (Immediate)
 - Based on group key (HMAC)

13

- Authentication (Delayed)
 - Secure multicast (TESLA)
 - Unmutable fields only

E. Shereen, F. Bitard, G. Dán, S. Fries, T. Sel,"Next Steps in Security for Time Synchronization: Experiences from implementing IEEE 1588 v2.1," *in Proc. of IEEE Symposium on Precision Clock Synchronization for Measurement, Control and Communication (ISPCS), Sep. 2019*

Securing PTP: PTPv2.1 AuthenticationTLV

- Integrity protection (Immediate)
 - Based on group key (HMAC)

14

- Authentication (Delayed)
 - Secure multicast (TESLA)
 - Unmutable fields only
- Implementation in LinuxPTP
 - Accuracy
 - Overhead

	No Security	Immediate	Delayed + Immediate
Processing time / min	8 ms	24 ms	27 ms

E. Shereen, F. Bitard, G. Dán, S. Fries, T. Sel,"Next Steps in Security for Time Synchronization: Experiences from implementing IEEE 1588 v2.1," *in Proc. of IEEE Symposium on Precision Clock Synchronization for Measurement, Control and Communication (ISPCS), Sep. 2019*

How Secure is PTPv2.1?

- Protects only data in transit
- Vulnerable to
 - Software compromise
 - Group key disclosure
 - Delay attacks

Could benefit from

Constant time crypto

Are precise time synchronization and end-to-end security compatible?

E. Shereen, F. Bitard, G. Dán, S. Fries, T. Sel, "Next Steps in Security for Time Synchronization: Experiences from implementing IEEE 1588 v2.1," *in Proc. of IEEE Symposium on Precision Clock Synchronization for Measurement, Control and Communication (ISPCS), Sep. 2019* 15

Are Synchrophasors Vulnerable to Time Synchronization Attacks?

- Could an attacker compromise PMU time references? YES
- Could an attack remain undetected?
- Is an attack easy to compute?
- Could an attack have significant impact?

KTH

Physics-based approach: Linear state estimation

System model

- Linear measurement model (V, I=YV) $\hat{z}' = H'\hat{x}' + e$,
- Linear state estimation $\hat{x}' = (H'^T D H')^{-1} H'^T D z' = G^{-1} H'^T D z'$
- Residual for Bad data detection (BDD) $r = \hat{z}' - z'$

Attacker model

- Knows the instantaneous measurements (z')
- Knows the system model (H)
- Can manipulate *p* time references

- Manipulated measurement $z_i^a = z_i' u_i = z_i' e_i^{\alpha j}$

Question

Can attacker manipulate time references without changing the residual?

 К.Т.Ц. ⁸

Physics-based approach: Linear state estimation

System model

- Linear measurement model (V, I=YV) $\hat{z}' = H'\hat{x}' + e$,
- Linear state estimation $\hat{x}' = (H'^T D H')^{-1} H'^T D z' = G^{-1} H'^T D z'$
- Residual for Bad data detection (BDD) $r = \hat{z}' - z'$

Attacker model

- Knows the instantaneous measurements (z')
- Knows the system model (H)
- Can manipulate *p* time references

- Manipulated measurement $z_i^a = z_i' u_i = z_i' e_i^{\alpha j}$

Question

• Can attacker manipulate time references without changing the residual?

Undetectable Time Synchronization Attacks

Feasibility

- Necessary and sufficient condition for undetectable attacks
 - Based on system topology
- p=1 : No attack possible
- *p*=2 : 1 non-trivial attack may be possible
- *p*>2: Continuum of attacks

Computability

- O(1) algorithm for computing attack angles α_i
- Efficient algorithm for finding attackable sets of PMUs based on equivalence classes

S. Barreto, M. Pignati, G. Dán, J-Y Le Boudec, M. Paolone, ``Undetectable Timing-Attack on Linear State-Estimation by Using Rank-1 Approximation," IEEE Trans. on Smart Grid, 9(4), 2018 E. Shereen, M Delcourt, S. Barreto, G. Dán, J-Y. Le Boudec, M. Paolone, ``Feasibility of Time Synchronization Attacks against PMU-based State-Estimation," IEEE Trans. on Instrumentation and Measurement, to appear

Implementing Time Synchronization Attacks

• Consider practical constraints – clock servo

- Idea:
 - Small changes at a time
 - Track clock servo output
- Algorithms
 - Brute force (BF)
 - Clock-servo aware (OCPI)

S. Barreto, E. Shereen, M. Pignati, G. Dán, J-Y. Le Boudec, M Paolone, ``A Continuum of Undetectable Timing-Attacks on PMU-based Linear State-Estimation," *in Proc. of IEEE SmartGridComm, Oct. 2017 E. Shereen, M. Delcourt, S. Barreto, G. Dán, M. Paolone, J-Y. Le Boudec, "Feasibility of Time Synchronization Attacks against PMU-based State-Estimation" IEEE Trans. on Instr. and Measurment, to appear*

Implementing Time Synchronization Attacks

• Consider practical constraints – clock servo

S. Barreto, E. Shereen, M. Pignati, G. Dán, J-Y. Le Boudec, M Paolone, ``A Continuum of Undetectable Timing-Attacks on PMU-based Linear State-Estimation," *in Proc. of IEEE SmartGridComm, Oct. 2017 E. Shereen, M. Delcourt, S. Barreto, G. Dán, M. Paolone, J-Y. Le Boudec, "Feasibility of Time Synchronization Attacks against PMU-based State-Estimation" IEEE Trans. on Instr. and Measurment, to appear*

Are Synchrophasors Vulnerable to Time Synchronization Attacks?

- Could an attacker compromise PMU time references? YES
- Could an attack remain undetected?
 YES
- Is an attack easy to compute?
- Could an attack have significant impact?

YES

Impact on Estimated Power Flow (p=5)

- IEEE 39-bus network
- Real load profiles@50Hz
- 34 V,I measurements

- BF: Brute force greedy attack
- OCPI: PI clock servo-aware attack

E. Shereen, M Delcourt, S. Barreto, G. Dán, J-Y. Le Boudec, M. Paolone, ``Feasibility of Time Synchronization Attacks against PMU-based State-Estimation," IEEE Trans. on Instrumentation and Measurement, to appear

Impact on Estimated Power Flow (p=5)

- IEEE 39-bus network
- Real load profiles@50Hz
- 34 V,I measurements

BF: Brute force greedy attack
OCPI: PI clock servo-aware attack

E. Shereen, M Delcourt, S. Barreto, G. Dán, J-Y. Le Boudec, M. Paolone, ``Feasibility of Time Synchronization Attacks against PMU-based State-Estimation," IEEE Trans. on Instrumentation and Measurement, to appear

Are Synchrophasors Vulnerable to Time Synchronization Attacks?

- Could an attacker compromise PMU time references? YES
- Could an attack remain undetected?
 YES
- Is an attack easy to compute?
 YES
- Could an attack have significant impact?
 YES

OODA Loop Revisited

Cyber-physical Detection and Mitigation

- Impact-based detection
 - Passive
 - Active
 - Perturbation/MTD
 - Measurement level
 - Temporal/spatial
 - Application level

Time Synchronization Attack Detection

Existing approach

• Tick rate adjustment change detection (e.g., CUSUM)

Time Synchronization Attack Detection

Existing approach

• Tick rate adjustment change detection (e.g., CUSUM)

Cyber-physical systems view

• Combine information from physical system and the clock

E. Shereen, G. Dán, "Correlation-based Detection of PMU Time Synchronization Attacks," *in Proc. of IEEE SmartGridComm, Oct. 2018*

Cyber-physical systems view

• Combine information from physical system and the clock

E. Shereen, G. Dán, "Correlation-based Detection of PMU Time Synchronization Attacks," *in Proc. of IEEE SmartGridComm, Oct. 2018*

Cyber-physical systems view

• Combine information from physical system and the clock

Proposed detectors:

- Model-based: needs parameter estimation
- Model-free: needs estimated correlation

E. Shereen, G. Dán, "Model-based and Data-driven Detectors for Time Synchronization Attacks against PMUs," IEEE Journal on Selected Areas in Communications (JSAC), to appear

Cyber-physical systems view

• Combine information from physical system and the clock

E. Shereen, G. Dán, "Model-based and Data-driven Detectors for Time Synchronization Attacks against PMUs," IEEE Journal on Selected Areas in Communications (JSAC), to appear

Time for a Resilient Smart Grid

- Detection
 - Passive/Active
 - Measurement/Application
 - Attack characterization
- Mitigation
 - Cyber
 - Cyber-physical
- Design of resilient applications
 - Graceful performance degradation

- Game theoretical models
 - Strategic attacker behavior

Time for a Resilient Smart Grid

- Detection
 - Passive/Active
 - Measurement/Application
 - Attack characterization
- Mitigation
 - Cyber
 - Cyber-physical
- Design of resilient applications
 - Graceful performance degradation

- Game theoretical models
 - Strategic attacker behavior

Acknowledgements

Thanks to

- Ezzeldin Shereen
- Florian Bitard
- Sergio Barreto
- Marguerite Delcourt
- Marco Pignati
- Jean-Yves Le Boudec
- Mario Paolone
- Steffen Fries
- Tolga Sel

SIEMENS

References

- E. Shereen, G. Dán, "Model-based and Data-driven Detectors for Time Synchronization Attacks against PMUs," IEEE Journal on Selected Areas in Communications (JSAC), to appear
- E. Shereen, F. Bitard, G. Dán, S. Fries, T. Sel,"Next Steps in Security for Time Synchronization: Experiences from implementing IEEE 1588 v2.1," *in Proc. of IEEE Symposium on Precision Clock Synchronization for Measurement, Control and Communication (ISPCS), Sep. 2019*
- E. Shereen, M Delcourt, S. Barreto, G. Dán, J-Y. Le Boudec, M. Paolone, ``Feasibility of Time Synchronization Attacks against PMU-based State-Estimation," IEEE Trans. on Instrumentation and Measurement, to appear
- E. Shereen, G. Dán, "Correlation-based Detection of PMU Time Synchronization Attacks," *in Proc. of IEEE SmartGridComm, Oct. 2018*
- S. Barreto, E. Shereen, M. Pignati, G. Dán, J-Y Le Boudec, M Paolone, "A Continuum of Undetectable Timing-Attacks on PMU-based Linear State-Estimation," in Proc. of IEEE SmartGridComm, Oct. 2017
- S. Barreto, M. Pignati, G. Dán, J-Y Le Boudec, M Paolone, ``Undetectable Timing-Attack on Linear State-Estimation by Using Rank-1 Approximation," *IEEE Trans. on Smart Grid,* vol. 9, no. 4, Jul. 2018,
- S. Barreto, A. Suresh, J-Y Le Boudec, "Cyber-attack on Packet-Based Time Synchronization Protocols: the Undetectable Delay Box", in Proc. of IEEE Intl. Instrumentation and Measurement Techn. Conf., 2016
- Cirio et al "Wide area monitoring in the Italian power system: Architecture, functions and experiences", European Transactions on Electrical Power 21(4):1541 1556, 2011
- Tippennhauer et al, "On the requirements for successful GPS spoofing attacks", in Proc. ACM CCS, 2011
- Ng, Y., Gao, G.X, "Advanced Multi-Receiver Position-Information-Aided Vector Tracking for Robust GPS Time Transfer to PMUs", GNSS 2015
- N.M. Freris, S.R. Graham, P.R.Kumar, "Fundamental Limits on Synchronizing Clocks over Networks," TAC 56(6)

KTH ROYAL INSTITUTE OF TECHNOLOGY

Resilient Time Synchronization for the Smart Grid

Vulnerabilities and Mitigation Schemes

György Dán KTH/EECS/NSE

IEEE SmartGridComm 2019

