
Enabling Transparent Caching in LTE Mobile
Backhaul Networks with SDN

Moises Rodrigues∗ † György Dán† Massimo Gallo‡

∗ Networking and Telecommunications Research Group (GPRT),
Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil

† School of Electrical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
‡ Bell Labs, Nokia, Nozay, France

Email: ∗moises@gprt.ufpe.br, †gyuri@kth.se, ‡massimo.gallo@nokia.com,

Abstract—Today’s mobile network architecture lacks the flex-
ibility to efficiently handle the fast increasing amount of data
traffic. SDN could potentially provide the required flexibility in
future mobile architectures, however its introduction into the
existing architecture is challenging.

In this paper we propose a solution to improve the mobile
backhaul’s flexibility based on SDN, compatible with the current
architecture, focusing on the transparent in-network caching’s
use case. We explore the design space in terms of function
placement, and propose a scalable solution for in-network caching
based on stateless DPI and stateful connection tracking. We
implemented a prototype of the proposed solution to evaluate its
impact on MPEG DASH streaming performance. Our experimen-
tal results show that the delay introduced by our module is less
than 5ms for 99% of the packets, which is negligible in today’s
LTE networks, and the slight negative impact on streaming rate
selection is easily outweighed by the increased flexibility.

I. INTRODUCTION

In the last decade Internet traffic significantly increased
owing to the penetration of broadband access. In particular,
mobile traffic grew by 70% during the last year from 1.5 to
2.5 exabytes per month. The increase is mainly driven by the
rapid innovation and diffusion of mobile terminals and video
related services and it is predicted that by 2020 more than 60%
of Internet traffic will be originated by mobile terminals [1].

The current mobile network architecture is an IP packet
switched network built around 3GPP specifications that define
the Evolved Packet System (EPS) architecture, the foundation
of fourth generation mobile networks. In the EPS traffic is
encapsulated in GTP (GPRS Tunnelling Protocol) tunnels
transporting packets from edge nodes, eNodeB, to mobile
network gateways, such as the Packet Data Network Gateway
(PGW), where packets are forwarded towards the global
Internet. Although this architecture has been able to drive the
ongoing mobile revolution, it lacks the flexibility needed to
dynamically control the constantly increasing amount of mo-
bile traffic. Indeed, GTP tunnels impose that packets traverse
the whole mobile infrastructure, and transform the mobile
backhaul into a passive network segment in which traffic
cannot be dynamically managed.

Forced by the limited flexibility of the current infrastruc-
ture, to meet bandwidth and latency requirements despite the

increasing amount of traffic in their networks, mobile net-
work operators have been constantly increasing their network
capacity. Although effective, increasing the network capacity
significantly increases mobile network operators’ costs as it re-
quires the deployment of additional infrastructure. To alleviate
this problem, motivated by cache-ability studies [2], [3], [4],
edge caching solutions have been explored recently [5], [6],
and commercial edge caching products have become available,
e.g., LTE caches by ARA Networks [7], and DatE by I-Direct
[8]. These solutions are, however, limited to the network edge,
and since they do not allow to bypass GTP tunnels, they
miss the potential benefits of in-network caching and dynamic
traffic management.

While Software Defined Networking (SDN) is considered as
an enabler for the emerging 5G mobile backhaul architecture,
co-existence with EPS requires that an SDN-based backhaul
would have to support dynamic traffic management for the
existing architecture, without additional middleboxes. In this
paper we propose a solution to enhance the mobile backhaul’s
flexibility based on SDN technology, compliant with the
current architecture. In particular we propose a user-space
extension to OpenFlow switches inside the mobile backhaul
and show the benefits of network devices’ programmability
by designing and prototyping a transparent cache service. The
proposed in-network caching system can be deployed on top
of OpenFlow switches in order to reduce the excessive load
observed in the mobile backhaul network and can be offered
by the mobile network operators to Content Providers.

The main contributions of the paper are (i) design space
analysis for the introduction of SDN inside the current mobile
backhaul architecture through the in-network caching use case;
(ii) design of a solution for transparent caching of MPEG
DASH multimedia content; (iii) prototype of SDN-enabled in-
network caching solution compatible with current standards
and protocols; (iv) feasibility analysis of the proposed solution.

The rest of the paper is organized as follows. Sec.II intro-
duces basic concepts of the mobile backhaul architecture and
MPEG DASH streaming. Sec.III explores the design space
and describes the proposed design, while Sec.IV presents
our prototype implementation and its experimental evaluation.
Sec.V discusses related work and Sec.VI concludes the paper.



Fig. 1. LTE Mobile backhaul architecture.

II. BACKGROUND

A. Mobile Backhaul Architecture

The backhaul is the part of the mobile network that ties
the core, which connects to the Internet, to the antennas that
provide wireless access to mobile devices. Over the years
mobile backhaul evolved from a plesiosynchronous digital
hierarchy (PDH) and ATM transport to an Ethernet based
transport network, in which data are transmitted over IP.

Key elements of the Long Term Evolution (LTE) archi-
tecture are illustrated in Fig. 1. User equipment (UE), are
connected to the network through antennas associated with
at least one eNodeB. The eNodeBs provide network access
to UEs by performing radio admission control, dynamic re-
source allocation and transforming the radio signal into digital
information. At the eNodeB, the UE’s traffic is encapsulated
in a GTP Tunnel that is directed over the serving gateways
(SGW) and terminated at the Packet Data Network Gateway
(PGW). SGW’s function is to route incoming UEs’ traffic
in the appropriate GTP Tunnel, as well as to support users’
mobility driven by the Mobility Management Entity (MME).
The MME is the key element of the mobile backhaul’s control
plane and is responsible for multiple control operations such
as UEs’ mapping, authentication, authorization, etc. Finally,
the PGW is the termination point of the mobile backhaul,
and connects the network to the Internet. Its main functions
are packet filtering and marking, accounting, and IP address
assignment under control of the MME.

B. MPEG DASH Streaming

MPEG Dynamic Adaptive Streaming over HTTP (DASH)
[9] is a popular video-on-demand protocol adopted in 3GPP
for video streaming over mobile networks. DASH video con-
tent is partitioned into one or more segments, with typical
segment durations between 1s and some tens of seconds. The
DASH client retrieves stream’s metadata by downloading from
the Media Presentation Description (MPD) file, which speci-
fies segment information including timing, duration, available
bitrates and resolutions, and the URL. Given the MPD file,
the DASH client requests segments sequentially using HTTP
and chooses the bitrate of the next segment based on the
estimated download rate. A DASH client would thus generate
an HTTP request up to once per second on average, depending
on the segment duration. While DASH naturally lends itself to
caching due to relying on HTTP, GTP tunneling in the mobile
backhaul makes it challenging to implement efficient dynamic
caching. In what follows we propose a solution to address this
challenge leveraging SDN.

III. TRANSPARENT CACHING IN THE MOBILE BACKHAUL

The introduction of SDN switches would provide mobile
network operators a more flexible architecture allowing them
to sustain the increasing amount of traffic while reducing
infrastructure’s maintenance costs, as well as giving them a
way to increase their revenue by introducing novel in-network
services. To investigate the feasibility of SDN introduction
in the current mobile backhaul architecture, in this section
we explore the use case of transparent in-network caching for
MPEG DASH video content.

To enable DASH content’s transparent caching the proposed
architecture needs to (i) intercept an HTTP GET request in a
TCP segment transmitted in a GTP tunnel, (ii) decide if the
request is for cacheable content, (iii) decide if the requested
segment is cached and, if yes, (iv) remove the request from
the GTP tunnel and the TCP connection, redirect it to the
appropriate cache, and then (v) insert the data received from
the cache into the GTP tunnel and TCP connection so that
caching remains transparent to the UE. Finally, for charging
purpose, caching architecture (vi) should offer a way for
tracking requests satisfied by local caches. Next, we propose
an architecture for supporting these six network functions
and discuss the main design choices. The components of the
architecture are shown in Fig. 2.

Function (i) requires stateless DPI, and since all UE traffic
traverses the backhaul in a GTP tunnel, it has to be performed
by SDN switches, as otherwise all packets would have to be
transmitted to the controller. Since various SDN switches are
expected to include a DPI engine in the near future (e.g., Open
vSwitch [10]), we assume DPI is available.

To decide whether the request is for cacheable content,
function (ii) matches the destination socket of the request
(extracted from the GTP tunnel) against a list of known content
server sockets, maintained in the Content Server Directory
(CSD). Function (ii) can be implemented using stateless DPI,
although the entries in the CSD may change over time.

To support function (iii) we maintain a Content Location
Directory (CLD), which holds content placement information
i.e., the address(es) of the cache(s) serving the segment, and
a reference to the DASH MPD file. Notice that obtaining
the MPD file of a content is straightforward, and allows
optimizations as we discuss later. The CLD can be either
centralized (at or near the the PGW) or distributed, and the
information it contains does not change due to flow or packet
arrivals, hence function (iii) can be considered stateless.

To support functions (iv) and (v) we designed a splicing
network function that transparently extracts and reinserts seg-
ments into a TCP connection, and packets into the GTP tunnel.
Unlike the DPI, the CSD and the CLD, the splicing function
is stateful. Finally function (vi) requires that operations (iv)
and (v) are registered by the centralized controller in order to
keep pricing consistent when traffic flows are served from the
in-network caches.



Fig. 2. Transparent caching for LTE network architecture.

A. Design and Function Placement

While function (i) based on stateless DPI must be performed
in the switch, several alternatives exist for the placement of
functions (ii)-(v), which we will discuss next.

Controller-based: SDN switches use a stateless DPI engine
to perform function (i) and redirect the identified requests
to the central SDN controller. Functions (ii)-(vi) are then
performed in the controller. Since splicing (function (iv) and
(v)) is located in the controller, video segments are delivered
from the caches via the controller to the switch and charging
(function (vi)) is centralized at the controller. While this
solution provides a centralized view of the network, is easy
to manage, and requires simple stateless DPI in the switches,
it does not scale well and has a single point of failure. The
single point of failure problem can be partly solved by using
a distributed controller, such as the one proposed in [11].
However, a distributed controller increases complexity, and
a significant amount of packets has to be forwarded via the
controllers, hence the solution is not scalable.

Switch-Controller Hybrid: SDN switches use a stateless
DPI engine to perform functions (i) and (ii). If the requested
content is cacheable, the packet is redirected to a controller,
where functions (iii)-(vi) are performed. In this way only
requests for cachable video content are forwarded to the
controller, and the DPI on the switch only needs to hold the
CSD. However, the amount of traffic traversing the controller
remains significant, leading to limited scalability.

Switch-based: SDN switches perform functions (i)-(v) by
using stateful L5-L7 packet inspection, similar to [12].
Function (vi) is then performed locally at the switch that
regularly provide statistics on charging to the controller. With
this solution, the SDN switch still exchanges messages with
the Controller (using the CLD to find the best cache to serve
the request, in the case of a centralized CLD). However, since
the request rate per DASH client is relatively low (up to
1/sec on average), this solution scales well, especially with a
distributed CLD. Note that since (iv) and (v) are implemented
in the switch, video segments are delivered from the caches
via the local SDN switch, not via the controller.

While currently available SDN switches do not have the
required features for the implementation of the switch-based
design, various switches will include DPI and stateful con-
nection tracking (e.g., Open vSwitch [10]) in the near future.
In the rest of the section we describe the components of

the Switch-based design, assuming that DPI and connection
tracking are feasible.

B. Switch-based transparent caching for LTE

The proposed solution for SDN enabled transparent caching
in the mobile backhaul relies on a local AppTable in the user
space of the SDN switch, similarly to [12]. In this solution, the
SDN switch has rules with ’goto AppTable’ actions instead of
’fwd to controller’. If functions (i), (ii) identify a request for
cacheable content, the request is redirected to the AppTable
.AppTable entries provide the location of the best cache if
the same content segment has been previously requested.
Otherwise, the request is forwarded to the CLD (located in the
switch or in the controller). If the segment is cached, the CLD
returns the location of the best cache (and other information,
as described later), and the request is served in the switch’s
AppTable scope using functions (iv) and (v).

AppTable Design
The AppTable is an Openflow table in which matching can

be performed on L5-L7. AppTable entries are of the form

<IPaddress ><port ><segmentpath> → <action>

where IPaddress and port are web server’s IP address and port
number. The segmentpath field is a string of the format “GET
path/to/cachedvideosegment”, and action is the address of the
cache where the video segment is cached.

The AppTable is initially empty, and populated in response
to requests. Every time a request is forwarded to the CLD,
and the requested DASH segment is identified as cached, the
CLD returns the names of all cached segments listed in the
requested segment’s MPD file, together with corresponding
cache locations. The returned segment names are then added to
the AppTable. As an effect, upon receiving the request for the
first DASH segment of a media file, the AppTable is populated
with the cache locations for the subsequent segments of the
file, which helps keep the load of the CLD low. Although the
AppTable is populated dynamically, its use does not need per-
flow state to be maintained. An existing AppTable entry can
be invalidated and discarded upon removal of a segment from
a cache, the CLD triggers this.

GTP and TCP splicing Functions (iv) and (v), i.e., the
removal and insertion of packets into the GTP tunnel and
the TCP connection, are based on splicing. TCP splicing
is a technique for enhancing L7 proxy performance, which
allows the proxy to forward TCP segments received from
one endpoint to the other, avoiding application layer segment
processing [13]. It is important to note that our use of splicing
is different from that of regular proxies. Proxies intercept the
SYN from the client and send a new SYN to the server
to establish a connection, as implemented in TCPSP [14].
Unlike a regular proxy, we do not splice all TCP connections
traversing the switch, but only connections that are requesting
content cached by local caches. Therefore, the SYN sent by
the client remains unchanged. If a request for cached content
is identified in an established TCP connection, the segment



Fig. 3. Experimental testbed topology.

containing the request to the local cache is redirected through
splicing. The response sent by the cache is then spliced into
the connection between the client and the server. A similar
solution is used for the GTP tunnel. Notice that functions (iv)
and (v) require per-flow state to be kept.

IV. PROTOTYPING AND EXPERIMENTAL EVALUATION

In this section we present a prototype-based evaluation of
the transparent SDN-based in-network caching solution. In
order to evaluate the feasibility of the proposed architecture
we implemented a proof-of-concept prototype. Due to the
lack of DPI support in OpenFlow, we choose to implement
the solution based on a centralized controller. This solution
allows us to assess the worst-case impact of the proposed
architecture on the download performance of DASH clients,
not considering scalability.

A. Prototype Implementation

Our prototype implementation is based on Open vSwitch
v2.0.2 [15], and Floodlight v1.1 1 running on Ubuntu 14.04.
The prototype consists in a Floodlight controller’s module
we identify as the Transparent Caching (TC) module. The
TC module performs GTP dissection, payload inspection to
detect cacheability (search for HTTP GET method for a locally
cached content), acts as a local CLD, and does GTP and TCP
splicing, i.e., it implements functions (i)-(v).

TCP Splicing: To implement TCP splicing, upon identi-
fying a request for cached content, we buffer the segment
corresponding to the GET method, and we initiate an active
open from the module to the local cache by sending a SYN
segment. We add the newly initiated connection to the list
of spliced connections, and we set its state to Sync, which
represents the beginning and the end of a spliced connection.
While in this state, if a SYN-ACK is received from the
local cache then the module acknowledges its receipt and
then sends the buffered GET method to the local cache.
Once the local cache acknowledges the segment of the GET
method with a TCP ACK, the state of the connection is set
to Connected and data start to be spliced. Since after this
point everything is spliced, flow control, congestion control
and error control are taken care of by the two sessions’
endpoints (the DASH client and the cache server). While the
connection is in the Connected state, the only TCP segment

1http://www.projectfloodlight.org/floodlight/

that needs to be evaluated is the FIN segment. If either the
DASH client or the local cache sends a FIN segment then the
state of the connection is changed to Sync, Disconnecting and
Disconnected after FIN-ACK and ACK messages are sent, or if
the connection is inactive for a 2 minutes Maximum Segment
Lifetime. When a connection is considered as Disconnected
the module removes it from the list of spliced connections.

GTP support: In order to enable GTP in Floodlight we
developed two subclasses of the BasePacket class found in
net.floodlightcontroller.packet, one for GTP-C (GTP Control
plane, used for signaling) and the other for GTP-U (GTP
User plane, used to transport data packets) packets. The
implemented subclasses allow us to handle GTP packets in the
developed module, i.e., remove and insert them from/into the
GTP tunnel. Removal and insertion of packets require to store
the context for each new client opening a GTP tunnel, which
consists of the MAC and IP addresses, and GTP information,
such as flags and Tunnel Endpoint Identifier (TEID).

B. Experiment Methodology

The topology of our experimental platform is shown in
Fig. 3. A GTPv1 tunnel is established between a DASH
Client (DC) and the Origin server (OSVR), traversing an
OVS switch. The GTP tunnel is created using the ggsn and
the sgsnemu tools in OpenGGSN2. The DC establishes TCP
connections over the GTP tunnel to the OSVR in order to
download DASH segments. When the DC requests a segment
over the TCP connection, the Transparent Cache (TC) module
detects the request, and if the content is stored by the cache
server (CSVR) then the module establishes a TCP connection
between itself and the CSVR. Once the TCP connection is
established, the TC module starts to splice the TCP connection
and the GTP tunnel between the DC and the OSVR.

In order to evaluate the impact of the TC module and of
GTP, we considered four different scenarios. The first one
is a baseline scenario, in which GTP tunnels are not used,
and Floodlight is equipped with a dummy module that takes
packets as input and puts them unmodified as its output
(’dummy’). In the second scenario GTP tunneling is used
and Floodlight uses the dummy module (’GTP’). In the third
scenario GTP tunneling is not used and Floodlight is equipped
with the TC module that performs all functions but GTP
splicing (’TC’). In the fourth scenario GTP tunneling is used
and Floodlight is equipped with the TC module that performs
TCP and GTP splicing (’GTP+TC’).

C. Throughput Performance

In the first set of experiments we consider a single DC
that downloads DASH segments to evaluate the impact of
the TC module on the achievable download rate. We used
DASH video segments of lengths between 1s and 15s worth
of video content and bitrates between 150 and 8000kbps. For
each scenario, we used Apache ab3 as the DC, and downloaded
7293 video segments twice, consecutively.

2http://openbsc.osmocom.org/trac/
3https://httpd.apache.org/docs/2.2/programs/ab.html



(a) Box plot of bitrates for 15s length video segments. (b) CDF of bitrate for 1s-15s segments for GTP+TC scenario.

Fig. 4. Achieved download rates with and without TCP and GTP splicing during sequential segment download.

n4
-d

um
m

y

n4
-G

TP+T
C

n4
-T

C

n3
2-

du
m

m
y

n3
2-

G
TP+T

C

n3
2-

TC

n6
4-

du
m

m
y

n6
4-

G
TP+T

C

n6
4-

TC

n1
28

-d
um

m
y

n1
28

-G
TP+T

C

n1
28

-T
C

F
re

q
u
e
n
c
y
 o

f 
ra

te
 s

e
le

c
te

d

0

0.2

0.4

0.6

0.8

1
8000
5000
2500
1200
 700
 500
 150

Fig. 5. Segment bitrate selection frequency for three scenarios and n =
4, 32, 64, 128 simultaneous DASH clients. Bitrates in the legend in kbps.

Fig. 6. Autocorrelation function (ACF) of segment download rates for three
scenarios and n = 4, 32, 64, 128 simultaneous DASH clients.

Fig. 4(a) shows the box plot of the achieved bitrates for
the four scenarios in which the DC download 15s segments.
We observe a decrease of about 30% in download rate when
comparing ’GTP+TC’ to the ’dummy’ scenario, which is due
to TCP and GTP splicing, mainly the delay introduced by the
TCP connection establishment from the module to the CSRV.
The performance decrease is, however, not that significant
considering the complexity of GTP and TCP splicing.

Fig. 4(b) shows the CDF of the achieved bitrates for the
’GTP+TC’ scenario for variable DASH segment. It is worth
noticing that download rate for small segments is lower, which
is due to TCP slow start and to the delay introduced by the
additional connection establishment for TCP splicing.

To evaluate the overhead introduced by the TC module
we measured the additional latency it generates. For both the
’GTP+TC’ and the ’TC’ scenarios we found that the additional
delay was less than 5ms on average, negligible compared to
the typical round trip time of LTE networks, i.e., 50ms.

D. DASH Streaming Performance

In the second set of experiments we consider multiple
DCs simultaneously streaming DASH content to evaluate the
impact of the TC module on the achieved streaming rate, and
the impact of the module on the rate selection algorithm of the
DCs, two factors that determine the user perceived QoE. We

use 6s length DASH segments and bitrates between 150 and
8000kbps. To perform this set of experiments, we implemented
an instrumented DASH client that uses the bitrate calculation
and selection algorithm of DASH-js4. In order to compensate
for Floodlight’s multi-threaded packet processing, which can
result in out-of-order packet deliveries, we increased the TCP
receive buffers to allow for segment reordering.

Fig. 5 shows the bitrate selection of the DASH clients
for the ’dummy’, ’TC’ and ’GTP+TC’ scenarios for n =
4, 32, 64, 128 simultaneous DCs. For n = 4 the highest bitrate
(8000kbps) is chosen almost exclusively in all three scenarios,
hence the TC module has no significant impact on the rate
selection algorithm. For 32 or more simultaneous clients we
observe that ’TC’ and ’GTP+TC’ typically results in one level
lower bitrate chosen most frequently (e.g., 700kbps instead of
1200 kbps for n = 64).

To gain insight into the rate changes of the DASH clients,
Fig. 6 shows the autocorrelation function (ACF) of the down-
load rates achieved by the DCs for the same scenarios and
for n = 2, 16, 128 simultaneous DCs, as a function of the lag
in terms of segments. The ACF shows an exponential decay
for all scenarios and number of clients, which shows that the
bitrates are stationary both with and without the TC module.

4https://github.com/dazedsheep/DASH-JS



The experimental results show that the the proposed solution
slightly decreases the streaming performance. Note, however,
that in lack of support in the available switch implementations
we implemented all functionality in the controller, and the
performance of the proposed switch-based solution would be
better. Furthermore, in our evaluation scenario the OSVR is
located as close to the DCs as the CSVR. In practice, the
round trip time to the OSVR may be significantly higher than
to the CSVR, which again would favor the proposed solution.

V. RELATED WORK

Recent works have shown the benefits of in-network caching
for mobile networks [2], [3], [6]. While these works show the
potential benefits of RAN level caching, they do not consider
the implementation of dynamic caching and the impact of
GTP tunneling between the SGSN/SGW and the GGSN/PGW,
which is the focus of our work.

An SDN-based solution providing cache-as-a-service was
proposed in [16]. The proposed solution consists of two
entities, a coordinator and a cache node. The coordinator re-
ceives and redirects requests according to information retrieved
from Content Providers about cached contents. The proposed
architecture does not consider a mobile network scenario and
does not implement real-time cacheable content detection.
SDN-based transparent caching in the RAN was proposed
in [17]. The proposal relies on deep packet inspection (DPI) to
identify requests for cacheable content, triggering a content-
dependent IPv6 address assignment to the request. The prefix
is later used to forward the request to the appropriate cache.
Authors in [18] propose an MME within an SDN controller
to support content delivery through Content Centric Networks
(CCN). The solution proposes to use an IPv6 header extension
to identify CCN packets at specific Gateway, placed after the
P-GW, and redirect requests to the appropriate cache. Also in
the context of CCN, [19] proposes an SDN-based extension of
the CONET architecture, which is composed of ICN Clients,
ICN Servers and a Name Routing System (NRS). Packet
forwarding is done based on content name in a ”Lookup-and-
Cache” fashion where each forwarding node contacts the NRS
for routing information. Content is identified using tags within
an ICN/Openflow domain, eventually removed by edge nodes
whenever traffic is leaving the ICN domain. The solution was
implemented on the OFELIA testbed using Openflow v1.0.

Unlike all previous works, we propose a scalable solution
for SDN-enabled dynamic caching compatible with current
LTE backhaul technology, and supports dynamic request redi-
rection to caches based on locally managed lookup tables that
can proactively be populated based on meta information such
as the MPEG DASH MPD for minimizing the control traffic.

VI. CONCLUSION

In this paper we investigated the feasibility of introducing
SDN in the current mobile backhaul architecture through
the use-case of transparent in-network caching. We analyzed
the design space for the introduction of SDN in the mobile
backhaul for in-network caching, and proposed a scalable

solution compatible with the existing backhaul architecture.
We made a controller-based prototype implementation of the
proposed solution that demonstrates that the overhead of
the network functions needed in order to enable in-network
caching in the mobile backhaul through SDN switches (and
controllers) is negligible. Furthermore, our results show that
the proposed solution has a minor impact on the streaming
clients’ behaviour.

ACKNOWLEDGEMENTS

This work has been partially funded by EIT Digital through the
Information-aware data plane for programmable networks project,
by the Swedish Foundation for Strategic Research through the
MODANE project, and by CNPq - Brazil (206501/2014-5).

REFERENCES

[1] “CISCO Visual Networking Index 2014-2019,” http://www.cisco.com/c/
en/us/solutions/collateral/service-provider/visual-networking-index-vni/
white paper c11-520862.pdf.

[2] B. Ramanan, L. Drabeck, M. Haner, N. Nithi, T. Klein, and C. Sawkar,
“Cacheability analysis of HTTP traffic in an operational LTE network,”
in In Proc. of WTS, 2013.

[3] G. Carofiglio, M. Gallo, L. Muscariello, and D. Perino, “Scalable
mobile backhauling via information-centric networking,” in Proc. of
IEEE LANMAN, 2015.

[4] C. Imbrenda, L. Muscariello, and D. Rossi, “Analyzing cacheability in
the access network with HACkSAw,” in Proc. of ACM ICN, 2014.

[5] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role of
proactive caching in 5G wireless networks,” IEEE Comm. Mag., vol. 52,
no. 8, 2014.

[6] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. Leung, “Cache in the
air: exploiting content caching and delivery techniques for 5G systems,”
IEEE Comm. Mag., vol. 52, no. 2, 2014.

[7] “ARA Networks, LTE cache,” http://aranetworks.com/solutions/mobile
edgeCDN.

[8] “I-Direct, Data-at-the-Edge,” http://www.idirect.net/Altobridge.aspx.
[9] “Information technology - dynamic adaptive streaming over http

(dash) - part 1: Media presentation description and segment formats,”
http://www.iso.org/iso/home/store/catalogue ics/catalogue detail ics.
htm?csnumber=65274, iSO/IEC 23009-1:2014(E).

[10] F. Baudin, “OpenvSwitch L7 matchers & conntrack
metadatas,” http://www.openvswitch.org/support/ovscon2014/17/
1100-OVS-L7-matchers-v1-1.pptx.

[11] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proc. of USENIX INM/WREN, 2010.

[12] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. Lakshman,
“Application-aware data plane processing in SDN,” in Proc. of ACM
HotSDN, 2014.

[13] A. Cohen, S. Rangarajan, and H. Slye, “On the performance of tcp
splicing for url-aware redirection,” in Proc. of USENIX USITS, 1999.

[14] “TCPSP - tcp splicing for the linux kernel,” http://www.linux-vs.org/
software/tcpsp/index.html.

[15] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado,
“The design and implementation of open vswitch,” in Proc. of USENIX
NSDI, 2015.

[16] P. Georgopoulos, M. Broadbent, B. Plattner, and N. Race, “Cache as a
service: Leveraging sdn to efficiently and transparently support video-
on-demand on the last mile,” in Proc. of ICCCN, 2014.

[17] M. Kimmerlin, J. Costa-Requena, and J. Manner, “Caching using
software-defined networking in lte networks,” in Proc. of IEEE ANTS,
2014.

[18] R. Haw, C. S. Hong, and S. Lee, “An efficient content delivery
framework for sdn based lte network,” in Proc. of ACM ICUIMC, 2014.

[19] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, and L. Veltri,
“Information centric networking over SDN and OpenFlow: Architectural
aspects and experiments on the OFELIA testbed,” Computer Networks,
vol. 57, no. 16, 2013.


